Если тело покоится то сила трения покоя. Трение покоя. Смотреть что такое "Трение покоя" в других словарях

Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаимодействием, которое существует между телами.

Различают трение внешнее и внутреннее .

Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя).

Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ).

Различают сухое и жидкое (или вязкое ) трение.

Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

Рассмотрим законы сухого трения (рис. 4.5).


Рис. 4.5

Рис. 4.6

Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит, внешняя сила уравновешивается некоторой силой , направленной по касательной к трущейся поверхности, противоположной силе . В этом случае и есть сила трения покоя.

Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления N :

μ 0 – коэффициент трения покоя , зависящий от природы и состояния трущихся поверхностей.

Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение F 0 , тело начнет скользить по опоре – трение покоя F тр.пок сменится трением скольжения F ск (рис. 4.6):

F тр = μ N , (4.4.1)

Где μ – коэффициент трения скольжения.

Трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. Сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент трения μ ; здесь значительно меньше.

Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7).

На тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести , нормальная сила реакции опоры и сила сухого трения . Сила есть равнодействующая сил и ; она направлена вниз, вдоль наклонной плоскости. Из рис. 4.7 видно, что

F = mg sin α, N = mg cos α.


Рис. 4.7
Если – тело остается неподвижным на наклонной плоскости. Максимальный угол наклона α определяется из условия (F тр) max = F или μ mg cosα = mg sinα, следовательно, tg α max = μ, где μ – коэффициент сухого трения.

F тр = μN = mg cosα,
F = mg sinα.

При α > α max тело будет скатываться с ускорением

a = g (sinα - μ cosα),
F ск = ma = F - F тр.


Если дополнительная сила F вн, направленная вдоль наклонной плоскости, приложена к телу, то критический угол α max и ускорение тела будут зависеть от величины и направления этой внешней силы.

Сила трения (Fтр.) - это сила, возникающая при контакте поверхностей двух тел и препятствующая их относительному перемещению. Она появляется за счёт электромагнитных сил, возникающих атомами и молекулами в месте контакта этих двух объектов.

Чтобы остановить движущийся объект, сила должна действовать в противоположную по отношению к направлению движения сторону. Например, если толкнуть книгу через стол, то она начнёт движение. Сила, с которой вы воздействовали на книгу, будет перемещать её. Книга скользит, затем замедляется и останавливается из-за влияния силы трения.

Особенности сил трения

Трение, о котором говорилось выше, проявляющееся при движении объектов называют внешним или сухим. Но оно может существовать и между частями или слоями одного объекта (жидкого или газообразного), такой вид называют внутренним.
Главной особенностью назовём зависимость трения от скорости относительного движения тел.
Существуют и другие характерные особенности:

  • возникновение при контакте двух движущихся тел поверхностями;
  • её действие параллельно области соприкосновения;
  • направлена противоположно вектору скорости тела;
  • зависит от качества поверхностей (гладкие или шероховатые), взаимодействующих объектов;
  • форма или размер объекта, движущегося в газе или жидкости, влияют на величину силы трения.

Виды трения

Выделяют несколько видов. Рассмотрим их различия. На книгу, скользящую по столу, действует трение скольжения.

Сила трения скольжения

Где N - сила реакции опоры.

Обратите внимание на некоторые ситуации:

Если человек едет на велосипеде, то трение, возникающее во время контакта колеса с дорогой - трение качения. Такой вид силы значительно меньше по величине силы трения скольжения.

Сила трения качения

Существенно меньшие значения величины такого вида силы используют люди, используя колесо, ролики и шариковые подшипники в различных движущихся частях устройств.

Шарль Огюстен Кулон в своей работе по теории трения предложил вычислять силу трения качения следующим образом:

,
μ - коэффициент трения.
Смазка, чаще всего в виде тонкого слоя жидкости, уменьшает трение.
Жидкости или газы - это особые среды, в которых тоже проявляется данный вид сил. В этих средах трение проявляется только во время перемещения объекта. Нельзя говорить о силе трения покоя в данных средах.

Сила трения в жидкостях и газах

Такой вид силы называют силой сопротивления среды. Она замедляет движение объекта. Более обтекаемая форма объекта влияет на величину силы сопротивления - она значительно уменьшается. Поэтому в судостроении используются обтекаемые формы корпусов кораблей или подводных лодок.
Сила сопротивления среды зависит от:

  • геометрических размеров и формы объекта;
  • вязкости жидкой или газообразной среды;
  • состояния поверхности объекта;
  • скорости объекта относительно той среды, в которой он находится.

Тела взаимодействуют друг с другом по-разному. Один из видов взаимодействия - трение. Прежде чем разбираться с тонкостями сухого и вязкого трения, ответим на два вопроса. Что такое сила трения, и когда она возникает?

Что такое сила трения?

Сила трения - сила, возникающая при соприкосновении тел и препятствующая их относительному движению.

Трение возникает вследствие взаимодействия между атомами и молекулами тел, когда они соприкасаются друг с другом.

Природа силы трения - электромагнитная.

Как и для любого другого взаимодействия, для трения справедлив третий закон Ньютона. Если на одно из двух взаимодействующих тел действует сила трения, то такая же по модулю сила действует на другое тело в противоположном направлении.

Различают сухое и вязкое трение, силу трения покоя, силу трения скольжения, силу трения качения.

Сухое трение - это трение, которое возникает между твердыми телами при отсутствии между ними жидкой или газообразной прослойки. Силы трения направлена по касательной к соприкасающимся поверхностям.

Представим, что на тело, например, брусок, лежащий на столе, действует некоторая внешняя сила. Эта сила стремится сдвинуть брусок с места. Пока тела покоятся, на брусок действуют сила трения покоя и, собственно, внешняя сила. Сила трения покоя равна внешней силе и уравновешивает ее.

Когда внешняя сила превышает некоторое предельное значение F т р. m a x , брусок сдвигается с места. На него так же действует сила трения, но это уже не сила трения покоя, а сила трения скольжения. Сила трения скольжения направлена в сторону, противоположную движению, и зависит от скорости движения тела.

При решении физических задач силу трения скольжения часто принимают равной максимальной силе трения покоя, а зависимостью от силы трения от относительной скорости движения тел пренебрегают.

На рисунке выше показаны реальная и идеализированная характеристики сухого трения. Как видим, на самом деле сила трения скольжения меняется в зависимости от скорости, однако изменения не столь велики, чтобы ими нельзя было пренебречь.

Сила трения пропорциональна силе нормальной реакции опоры.

F т р = F т р. m a x = μ N .

Что такое коэффициент трения скольжения?

μ - коэффициент пропорциональности, который называется коэффициентом трения скольжения. Он зависит от материалов соприкосающихся тел и их свойств. Коэффициент трения скольжения - безразмерная величина, не превышающая единицы.

Силы трения качения возникают при качении тел. Обычно при решении задач ими пренебрегают.

Вязкое трение в жидкостях и газах

Вязкое трение возникает при движении тел в жидкостях и газах. Сила вязкого трения также направлена в сторону, противоположную движению тела, но по величине гораздо меньше силы трения скольжения. Трение покоя отсутствует при вязком трении.

Расчет силы вязкого трения более сложен, нежели расчет силы трения скольжения. При малых скоростях движения тела в жидкоси сила вязкого трения пропорциональна скорости тела, а при больших скоростях - квадрату скорости. Коэффициенты пропорциональности при этом зависят от формы тел, также необходимо учитывать свойства самой среды, в которой происходит движение.

Например, силы вязкого трения в воде и масле будут отличаться, так как эти жидкости имеют различные вязкости.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

«Физика - 10 класс»

Вспомните, что такое трение.
Какими факторами оно обусловлено?
Почему изменяется скорость движения по столу бруска после толчка?

Ещё один вид сил, с которыми имеют дело в механике, - это силы трения. Эти силы действуют вдоль поверхностей тел при их непосредственном соприкосновении.

Силы трения во всех случаях препятствуют относительному движению соприкасающихся тел. При некоторых условиях силы трения делают это движение невозможным. Однако они не только тормозят движение тел. В ряде практически важных случаев движение тела не могло бы возникнуть без действия сил трения.

Трение, возникающее при относительном перемещении соприкасающихся поверхностей твёрдых тел, называется сухим трением .

Различают три вида сухого трения: трение покоя, трение скольжения и трение качения.


Трение покоя.

Попробуйте сдвинуть пальцем лежащую на столе толстую книгу. Вы приложили к ней некоторую силу, направленную вдоль поверхности стола, а книга остаётся в покое. Следовательно, между книгой и поверхностью стола возникает сила, направленная против той силы, с которой вы действуете на книгу, и в точности равная ей по модулю. Это сила трения тp . Вы с большей силой толкаете книгу, но она по-прежнему остаётся на месте. Значит, и сила трения тp настолько же возрастает.

Силу трения, действующую между двумя телами, неподвижными относительно друг друга, называют силой трения покоя .

Если на тело действует сила , параллельная поверхности, на которой оно находится, и тело при этом остаётся неподвижным, то это означает, что на него действует сила трения покоя тp , равная по модулю и направленная в противоположную сторону силе (рис. 3.22). Следовательно, сила трения покоя определяется действующей на него силой:

Если действующая на покоящееся тело сила хотя бы немного превысит максимальную силу трения покоя, то тело начнёт скользить.

Наибольшее значение силы трения, при котором скольжение ещё не наступает, называется максимальной силой трения покоя .

Для определения максимальной силы трения покоя существует весьма простой, но не очень точный количественный закон. Пусть на столе находится брусок с прикреплённым к нему динамометром. Проведём первый опыт. Потянем за кольцо динамометра и определим максимальную силу трения покоя. На брусок действуют сила тяжести m, сила нормальной реакции опоры 1 , сила натяжения 1 , пружины динамометра и максимальная сила трения покоя тр1 (рис. 3.23).

Положим на брусок ещё один такой же брусок. Сила давления брусков на стол увеличится в 2 раза. Согласно третьему закону Ньютона сила нормальной реакции опоры 2 также увеличится в 2 раза. Если мы снова измерим максимальную силу трения покоя, то увидим, что она увеличилась во столько раз, во сколько раз увеличилась сила 2 , т. е. в 2 раза.

Продолжая увеличивать число брусков и измеряя каждый раз максимальную силу трения покоя, мы убедимся в том, что

>максимальное значение модуля силы трения покоя пропорционально модулю силы нормальной реакции опоры.

Если обозначить модуль максимальной силы трения покоя через F тр. mах, то можно записать:

F тр. mах = μN (3.11)

где μ - коэффициент пропорциональности, называемый коэффициентом трения. Коэффициент трения характеризует обе трущиеся поверхности и зависит не только от материала этих поверхностей, но и от качества их обработки. Коэффициент трения определяется экспериментально.

Эту зависимость впервые установил французский физик Ш. Кулон.

Если положить брусок на меньшую грань, то F тр. mах не изменится.

Максимальная сила трения покоя не зависит от площади соприкосновения тел.

Сила трения покоя изменяется в пределах от нуля до максимального значения, равного μN. За счёт чего может происходить изменение силы трения?

Дело здесь вот в чём. При действии на тело некоторой силы оно слегка (незаметно для глаза) смещается, и это смещение продолжается до тех пор, пока микроскопические шероховатости поверхностей не расположатся относительно друг друга так, что, зацепляясь одна за другую, они приведут к появлению силы, уравновешивающей силу . При увеличении силы тело опять чуть-чуть сдвинется так, что мельчайшие неровности поверхностей по-иному будут цепляться друг за друга, и сила трения возрастёт.

И лишь при > F тр. mах ни при каком взаимном расположении шероховатостей поверхности сила трения не в состоянии уравновесить силу , и начнётся скольжение.

Зависимость модуля силы трения скольжения от модуля действующей силы показана на рисунке 3.24.

При ходьбе и беге на подошвы ног действует сила трения покоя, если только ноги не скользят. Такая же сила действует на ведущие колёса автомобиля. На ведомые колёса также действует сила трения покоя, но уже тормозящая движение, причём эта сила значительно меньше силы, действующей на ведущие колёса (иначе автомобиль не смог бы тронуться с места).

В давнее время сомневались, что паровоз сможет ехать по гладким рельсам. Думали, что трение, тормозящее ведомые колёса, будет равно силе трения, действующей на ведущие колёса. Предлагали даже делать ведущие колёса зубчатыми и прокладывать для них специальные зубчатые рельсы.


Трение скольжения.


При скольжении сила трения зависит не только от состояния трущихся поверхностей, но и от относительной скорости движения тел, причём эта зависимость от скорости является довольно сложной. Опыт показывает, что часто (хотя и не всегда) в самом начале скольжения, когда относительная скорость ещё мала, сила трения становится несколько меньше максимальной силы трения покоя. Лишь затем, по мере увеличения скорости, она растёт и начинает превосходить F тр. mах.

Вы, вероятно, замечали, что тяжёлый предмет, например ящик, трудно сдвинуть с места, а потом двигать его становится легче. Это как раз и объясняется уменьшением силы трения при появлении скольжения с малой скоростью (см. рис. 3.24).

При не слишком больших относительных скоростях движения сила трения скольжения мало отличается от максимальной силы трения покоя. Поэтому приближённо можно считать её постоянной и равной максимальной силе трения покоя:

F тр ≈ F тр. mах = μN.

Силу трения скольжения можно уменьшить во много раз с помощью смазки - чаще всего тонкого слоя жидкости (обычно того или иного сорта минерального масла) - между трущимися поверхностями.

Ни одна современная машина, например двигатель автомобиля или трактора, не может работать без смазки. Специальная система смазки предусматривается при конструировании всех машин.

Трение между слоями жидкости, прилегающими к твёрдым поверхностям, значительно меньше, чем между сухими поверхностями.


Трение качения.


Сила трения качения существенно меньше силы трения скольжения, поэтому гораздо легче перекатывать тяжёлый предмет, чем двигать его.

Сила трения зависит от относительной скорости движения тел. В этом её главное отличие от сил тяготения и упругости, зависящих только от расстояний.


Силы сопротивления при движении твёрдых тел в жидкостях и газах.


При движении твёрдого тела в жидкости или газе на него действует сила сопротивления среды. Эта сила направлена против скорости тела относительно среды и тормозит движение.

Главная особенность силы сопротивления состоит в том, что она появляется только при наличии относительного движения тела и окружающей среды.
Сила трения покоя в жидкостях и газах полностью отсутствует.

Это приводит к тому что усилием рук можно сдвинуть тяжёлое тело, например плавающую лодку, в то время как сдвинуть с места, скажем, поезд усилием рук просто невозможно.

Модуль силы сопротивления F c зависит от размеров, формы и состояния поверхности тела, свойств среды (жидкости или газа), в которой тело движется, и, наконец, от относительной скорости движения тела и среды.

Примерный характер зависимости модуля силы сопротивления от модуля относительной скорости тела показан на рисунке 3.25. При относительной скорости, равной нулю, сила сопротивления не действует на тело (F c = 0). С увеличением относительной скорости сила сопротивления сначала растёт медленно, а затем всё быстрее и быстрее. При малых скоростях движения силу сопротивления можно считать прямо пропорциональной скорости движения тела относительно среды:

F c = k 1 υ, (3.12)

где k 1 - коэффициент сопротивления, зависящий от формы, размеров, состояния поверхности тела и свойств среды - её вязкости. Вычислить коэффициент k 1 теоретически для тел сколько-нибудь сложной формы не представляется возможным, его определяют опытным путём.

При больших скоростях относительного движения сила сопротивления пропорциональна квадрату скорости:

F c = k 2 υ 2 , υ, (3.13)

где k 2 - коэффициент сопротивления, отличный от k 1 .

Какую из формул - (3 12) или (3.13) - можно использовать в конкретном случае, определяется опытным путём. Например, для легкового автомобиля первую формулу желательно применять приблизительно при 60-80 км/ч, при больших скоростях следует использовать вторую формулу.

Благодаря этой силе автомобили тормозят на светофоре, катер останавливается в воде, колесо буксует в яме. Как вы уже поняли, в этой статье мы будем разбираться, как решать задачи на силу трения.

Сила трения имеет электромагнитную природу. Это значит, что эта сила проявляется в результате взаимодействия частиц, из которых состоит вещество.

Хотите больше полезной и интересной информации по разным темам? Подписывайтесь на наш телеграм-канал .

Что нужно знать о силе трения, чтобы решать задачи

Трение – один из видов взаимодействия тел, которое возникает при их соприкосновении.

Сила трения всегда направлена в сторону, противоположную движению и по касательной к соприкасающимся поверхностям. Между твердыми телами возникает сухое трение, а при движении тел в жидкостях или газах говорят о вязком трении.

Природу этой силы мы уже установили. Помимо этого нужно знать, что бывают разные виды сил трения:

  • трение покоя;
  • трение скольжения;
  • трение качения (при перекатывании тел друг по другу);
  • сопротивление среды (для движения в жидкости).

Вот пример на виды силы трения : брусок лежит на столе, и никто его на трогает. В этом случае действуют только сила тяжести и сила нормальной реакции опоры. Если мы начнем толкать брусок, но так сильно, чтобы его сдвинуть, на него будет действовать сила трения покоя, по третьему закону Ньютона равная внешней силе, приложенной к бруску. Сила трения покоя имеет предельное значение. Если внешняя сила будет больше этого значения, брусок начнет скользить по столу. В этом случае говорят о силе трения-скольжения. А вот и простейшая формула для силы трения:

«Мю» - коэффициент трения скольжения. Это безразмерная величина, которая зависит от материалов взаимодействующих тел и от качества их поверхностей. Величина коэффициента трения не превышает единицы.

При решении простых физических задач силу трения скольжения часто принимают равной максимальной силе трения покоя.

Вопросы по теме «Сила трения»

Вопрос 1. От чего зависит сила трения?

Ответ. Взглянем на формулу выше, и ответ придет сам. Сила трения зависит от свойств соприкасающихся тел, силы нормальной реакции опоры, скорости относительного движения тел.

Вопрос 2. Зависит ли сила трения от площади соприкасающихся поверхностей?

Ответ. Нет, площадь не влияет на силу трения.

Вопрос 3. Какими способами можно уменьшить или увеличить силу трения?

Ответ. Можно уменьшить коэффициент трения, сделав сухое трения вязким. Для увеличения силы трения необходимо увеличить давление на них.

Вопрос 4. Тело покоится на плоскости. Действует ли на него сила трения?

Ответ. Если на тело не действуют внешние силы, то сила трения покоя, по третьему закону Ньютона, равна нулю.

Вопрос 5. Какая из этих сил самая большая по модулю: сила трения покоя, сила трения качения или сила трения скольжения?

Ответ. Сила трения скольжения имеет самое большое значение.

Вопрос 6. Какие есть примеры полезного действия силы трения?

Ответ. Среди полезного использования силы трения можно выделить работу тормозов транспортных средств, добычу огня первобытными людьми.

Задачи на силу трения с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы .

Задача №1. Нахождение силы трения

Условие

Брусок массой 5 килограмм скользит по горизонтальной поверхности. Сила трения скольжения равна 20 Н. Найдите силу трения, если масса бруска уменьшится в два раза, а коэффициент трения останется неизменным.

Решение

Применим формулы:


Ответ: 10 Н.

Задача №2. Нахождение коэффициента трения

Условие

Тело скользит по горизонтальной плоскости. Найти коэффициент трения, если сила трения равна 5 Н, а сила давления тела на плоскость – 20 Н.

Решение

Сила давления тела на плоскость равна силе нормальной реакции опоры.

Ответ: 0,25

Задача №3. Нахождение силы трения и коэффициента трения

Условие

Лыжник массой 60 кг, имеющий в конце спуска скорость 10 м/с, останавливается через 40 с после окончания спуска. Определите силу трения и коэффициент трения.

Решение

Сначала найдем ускорение, с которым движется лыжник. Затем по второму закону Ньютона найдем силу, которая действует на него:

Ответ: 15 Н; 0,025.

Задача №4. Нахождение силы трения

Условие

Брусок массой 20 кг равномерно перемещается по горизонтальной поверхности под действием постоянной силы, направленной под углом 30° к поверхности и равной 75 Н. Каков коэффициент трения между бруском и плоскостью?

Решение

Сначала воспользуемся вторым законом Ньютона, учитывая, что ускорение равно нулю. Затем найдем проекции силы на вертикальную и горизонтальную оси:

Ответ: 0,4

Задача №5. Нахождение силы трения покоя

Условие

Ящик массой 10 кг стоит на горизонтальном полу. Коэффициент трения между полом и ящиком равен 0,25. К ящику в горизонтальном направлении прикладывают силу 16 Н. Сдвинется ли он с места. Какова сила трения между ящиком и полом?

Решение

Вычислим максимальную силу трения покоя:

Так как приложенная сила по условию меньше, чем максимальная сила трения покоя, ящик останется стоять на месте. Сила трения между полом и ящиком, по третьему закону Ньютона, равна приложенной силе.

Ответ: 16 Н.

Нужна помощь в решении задач или других заданий? Обращайтесь за ней в