Геометрический смысл производной состоит в том что. Производная функции. Геометрический смысл производной. Уравнение касательной прямой

Конспект открытого урока преподавателя ГБПОУ «Педагогического колледжа № 4 Санкт-Петербурга»

Мартусевич Татьяны Олеговны

Дата: 29.12.2014.

Тема: Геометрический смысл производной.

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Образовательные задачи:

    Добиться понимания геометрического смысла производной; вывода уравнения касательной; научиться решать базовые задачи;

    обеспечить повторение материала по теме «Определение производной»;

    создать условия контроля (самоконтроля) знаний и умений.

Развивающие задачи:

    способствовать формированию умений применять приемы сравнения, обобщения, выделения главного;

    продолжить развитие математического кругозора, мышления и речи, внимания и памяти.

Воспитательные задачи:

    содействовать воспитанию интереса к математике;

    воспитание активности, мобильности, умения общаться.

Тип урока – комбинированный урок с использованием ИКТ.

Оборудование – мультимедийная установка, презентация Microsoft Power Point .

Этап урока

Время

Деятельность преподавателя

Деятельность учащегося

1. Организационный момент.

Сообщение темы и цели урока.

Тема: Геометрический смысл производной.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Подготовка студентов к работе на занятии.

Подготовка к работе на занятии.

Осознание темы и цели урока.

Конспектирование.

2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

Организация повторения и актуализации опорных знаний: определения производной и формулирование её физического смысла.

Формулирование определения производной и формулирование её физического смысла. Повторение, актуализация и закрепление опорных знаний.

Организация повторения и формирование навыка нахождения производной степенной функции и элемениарных функций.

Нахождение производной данных функций по формулам.


Повторение свойств линейной функции.

Повторение, восприятие чертежей и высказываний преподавателя

3. Работа с новым материалом: объяснение.

Объяснение смысла отношения приращения функции к приращению аргумента

Объяснение геометрического смысла производной.

Введение нового материала посредством словесных объяснений с привлечением образов и наглядных средств: мультимедийной презентации с анимацией.

Восприятие объяснения, понимание, ответы на вопросы учителя.

Формулирование вопроса преподавателю в случае затруднения.

Восприятие новой информации, её первичное понимание и осмысление.

Формулирование вопросов преподавателю в случае затруднения.

Создание конспекта.

Формулирование геометрического смысла производной.

Рассмотрение трех случаев.

Конспектирование, выполнение рисунков.

4. Работа с новым материалом.

Первичное осмысление и применение изученного материала, его закрепление.

В каких точках производная положительна?

Отрицательна?

Равна нулю?

Обучение поиску алгоритма ответов на поставленные вопросы по графику.

Понимание и осмысление и применение новой информации для решения задачи.

5. Первичное осмысление и применение изученного материала, его закрепление.

Сообщение условия задачи.

Запись условия задачи.

Формулирование вопроса преподавателю в случае затруднения

6. Применение знаний: самостоятельная работа обучающего характера.

Решите задачу самостоятельно:

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения.

7. Работа с новым материалом: объяснение.

Вывод уравнения касательной к графику функции в точке.


Подробное объяснение вывода уравнения касательной к графику функции в точке с привлечением в качестве наглядности в виде мультимедийной презентации, ответы на вопросы учащихся.

Вывод уравнения касательной совместно с преподавателем. Ответы на вопросы преподавателя.

Конспектирование, создание рисунка.

8. Работа с новым материалом: объяснение.

В диалоге со студентами вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

В диалоге с преподавателем вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

Конспектирование.

Сообщение условия задачи.

Обучение применению полученных знаний.

Организация поиска путей решения задачи и их реализация. подробный разбор решения с объяснением.

Запись условия задачи.

Выдвижение предположений о возможных путях решения задачи при реализации каждого пункта плана действий. Решение задачи совместно с преподавателем.

Запись решения задачи и ответа.

9. Применение знаний: самостоятельная работа обучающего характера.

Индивидуальный контроль. Консультирование и помощь студентам по мере необходимости.

Проверка и объяснение решения с использованием презентации.

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения

10. Домашнее задание.

§48, задачи 1 и 3, разобраться в решении и записать его в тетрадь, с рисунками.

№ 860 (2,4,6,8),

Сообщение домашнего задания с комментариями.

Запись домашнего задания.

11. Подведение итогов.

Повторили определение производной; физический смысл производной; свойства линейной функции.

Узнали, в чём заключается геометрический смысл производной.

Научились выводить уравнение касательной к графику данной функции в данной точке.

Корректировка и уточнение итогов урока.

Перечисление итогов урока.

12. Рефлексия.

1. Вам было на уроке: а) легко; б) обычно; в) трудно.

а) усвоил(а) полностью, могу применить;

б) усвоил(а), но затрудняюсь в применении;

в) не усвоил(а).

3. Мультимедийная презентация на уроке:

а) помогала усвоению материала; б) не помогала усвоению материала;

в) мешала усвоению материала.

Проведение рефлексии.


Эту статью начнем с обзора необходимых определений и понятий.

После этого перейдем к записи уравнения касательной прямой и приведем подробные решения самых характерных примеров и задач.

В заключении остановимся на нахождении уравнения касательной к кривым второго порядка, то есть, к окружности, эллипсу, гиперболе и параболе.

Навигация по странице.

Определения и понятия.

Определение.

Углом наклона прямой y=kx+b называют угол , отсчитываемый от положительного направления оси абсцисс до прямой y=kx+b в положительном направлении (то есть, против часовой стрелки).

На рисунке положительное направление оси абсцисс показано горизонтальной зеленой стрелочкой, положительное направление отсчета угла изображено зеленой дугой, прямая показана синей линией, а угол наклона прямой - красной дугой.

Определение.

Угловым коэффициентом прямой y=kx+b называют числовой коэффициент k .

Угловой коэффициент прямой равен тангенсу угла наклона прямой , то есть, .

Определение.

Прямую AB , проведенную через две точки графика функции y=f(x) , называют секущей . Другими словами, секущая – это прямая, проходящая через две точки графика функции.

На рисунке секущая прямая AB изображена синей линией, график функции y=f(x) - черной кривой, угол наклона секущей - красной дугой.

Если принимать во внимание, что угловой коэффициент прямой равен тангенсу угла наклона (об этом говорили выше), и тангенс угла в прямоугольном треугольнике ABC есть отношение противолежащего катета к прилежащему (это определение тангенса угла), то для нашей секущей будет справедлива серия равенств , где - абсциссы точек А и В , - соответствующие значения функции.

То есть, угловой коэффициент секущей определяется равенством или , а уравнение секущей записывается в виде или (при необходимости обращайтесь к разделу ).

Секущая прямая разбивает график функции на три части: слева от точки А , от А до В и справа от точки В , хотя может иметь более чем две общих точки с графиком функции.

На рисунке ниже приведены три фактически разных секущих (точки А и В различны), но они совпадают и задаются одним уравнением.


Нам ни разу не встречались разговоры о секущей прямой для прямой. Но все же, если отталкиваться от определения, то прямая и ее секущая прямая совпадают.

В некоторых случаях секущая может иметь с графиком функции бесконечное число точек пересечения. Например, секущая, определяемая уравнением y=0 , имеет бесконечное число общих точек с синусоидой.

Определение.

Касательной к графику функции y=f(x) в точке называют прямую, проходящую через точку , с отрезком которой практически сливается график функции при значениях х сколь угодно близких к .

Поясним это определение на примере. Покажем, что прямая y = x+1 является касательной к графику функции в точке (1; 2) . Для этого покажем графики этих функций при приближении к точке касания (1; 2) . Черным цветом показан график функции , касательная прямая показана синей линией, точка касания изображена красной точкой.

Каждый последующий рисунок является увеличенной областью предыдущего (эти области выделены красными квадратами).


Хорошо видно, что вблизи точки касания график функции практически сливается с касательной прямой y=x+1 .

А сейчас перейдем к более значимому определению касательной.

Для этого покажем, что будет происходить с секущей АВ , если точку В бесконечно приближать к точке А .

Рисунок ниже иллюстрирует этот процесс.

Секущая АВ (показана синей пунктирной прямой) будет стремиться занять положение касательной прямой (показана синей сплошной линией), угол наклона секущей (показан красной прерывистой дугой) будет стремиться к углу наклона касательной (изображен красной сплошной дугой).

Определение.

Таким образом, касательная к графику функции y=f(x) в точке А – это предельное положение секущей AB при .

Вот теперь можно переходить к оописанию геометрического смысла производной функции в точке.

Геометрический смысл производной функции в точке.

Рассмотрим секущую АВ графика функции y=f(x) такую, что точки А и В имеют соответственно координаты и , где - приращение аргумента. Обозначим через приращение функции. Отметим все на чертеже:

Из прямоугольного треугольника АВС имеем . Так как по определению касательная – это предельное положение секущей, то .

Вспомним определение производной функции в точке : производной функции y=f(x) в точке называется предел отношения приращения функции к приращению аргумента при , обозначается .

Следовательно, , где - угловой коэффициент касательной.

Таким образом, существование производной функции y=f(x) в точке эквивалентно существованию касательной к графику функции y=f(x) в точке касания , причем угловой коэффициент касательной равен значению производной в точке , то есть .

Заключаем: геометрический смысл производной функции в точке состоит в существовании касательной к графику функции в этой точке.

Уравнение касательной прямой.

Для записи уравнения любой прямой на плоскости достаточно знать ее угловой коэффициент и точку, через которую она проходит. Касательная прямая проходит через точку касания и ее угловой коэффициент для дифференцируемой функции равен значению производной в точке . То есть, из пункта мы можем взять все данные для записи уравнения касательной прямой.

Уравнение касательной к графику функции y = f(x) в точке имеет вид .

Мы подразумеваем, что существует конечное значение производной , в противном случае касательная прямая либо вертикальна (если и ), либо не существует (если ).

В зависимости от углового коэффициента , касательная может быть параллельна оси абсцисс (), параллельна оси ординат ( в этом случае уравнение касательной будет иметь вид ), возрастать () или убывать ().

Самое время привести несколько примеров для пояснения.

Пример.

Составить уравнение касательной к графику функции в точке (-1;-3) и определить угол наклона.

Решение.

Функция определена для всех действительных чисел (при необходимости обращайтесь к статье ). Так как (-1;-3) – точка касания, то .

Находим производную (для этого может пригодиться материал статьи дифференцирование функции, нахождение производной) и вычисляем ее значение в точке :

Так как значение производной в точке касания есть угловой коэффициент касательной, а он равен тангенсу угла наклона, то .

Следовательно, угол наклона касательной равен , а уравнение касательной прямой имеет вид

Графическая иллюстрация.

Черным цветом показан график исходной функции, касательная прямая изображена синей линией, точка касания - красной точкой. Рисунок справа представляет собой увеличенную область, обозначенную красным пунктирным квадратом на рисунке слева.


Пример.

Выяснить, существует ли касательная к графику функции в точке (1; 1) , если да, то составить ее уравнение и определить угол ее наклона.

Решение.

Областью определения функции является все множество действительных чисел.

Находим производную:

При производная не определена, но и , следовательно, в точке (1;1) существует вертикальная касательная, ее уравнение имеет вид x = 1 , а угол наклона равен .

Графическая иллюстрация.

Пример.

Найти все точки графика функции , в которых:
a) касательная не существует; b) касательная параллельна оси абсцисс; c) касательная параллельна прямой .

Решение.

Как всегда начинаем с области определения функции. В нашем примере функция определена на всем множестве действительных чисел. Раскроем знак модуля, для этого рассмотрим два промежутка и :

Продифференцируем функцию:

При x=-2 производная не существует, так как односторонние пределы в этой точке не равны:

Таким образом, вычислив значение функции при x=-2 , мы можем дать ответ на пункт а) : , касательная к графику функции не существует в точке (-2;-2) .

b) Касательная параллельна оси абсцисс, если ее угловой коэффициент равен нулю (тангенс угла наклона равен нулю). Так как , то нам нужно найти все значения х , при которых производная функции обращается в ноль. Эти значения и будут абсциссами точек касания, в которых касательная параллельна оси Ox .

При решаем уравнение , а при - уравнение :

Осталось вычислить соответствующие значения функции:

Поэтому, - искомые точки графика функции.

Графическая иллюстрация.

График исходной функции изображен черной линией, красными точками отмечены найденные точки, в которых касательные параллельны оси абсцисс.

c) Если две прямые на плоскости параллельны, то их угловые коэффициенты равны (об этом написано в статье ). Исходя из этого утверждения, нам нужно найти все точки графика функции, в которых угловой коэффициент касательной равен восьми пятым. То есть, нам нужно решить уравнение . Таким образом, при решаем уравнение , а при - уравнение .

Дискриминант первого уравнения отрицателен, следовательно, оно не имеет действительных корней:

Второе уравнение имеет два действительных корня:

Находим соответствующие значения функции:

В точках касательные к графику функции параллельны прямой .

Графическая иллюстрация.

График функции изображен черной линией, красной линией показан график прямой , синими линиями показаны касательные к графику функции в точках .

Для тригонометрических функций в силу их периодичности, может существовать бесконечно много касательных прямых, имеющих один угол наклона (одинаковый угловой коэффициент).

Пример.

Написать уравнения всех касательных к графику функции , которые перпендикулярны прямой .

Решение.

Чтобы составить уравнение касательной к графику функции нам достаточно знать ее угловой коэффициент и координаты точки касания.

Угловой коэффициент касательных найдем из : произведение угловых коэффициентов перпендикулярных прямых равно минус единице, то есть . Так как по условию угловой коэффициент перпендикулярной прямой равен , то .

Приступим к нахождению координат точек касания. Для начала найдем абсциссы, затем вычислим соответствующие значения функции – это будут ординаты точек касания.

При описании геометрического смысла производной функции в точке мы отметили, что . Из этого равенства найдем абсциссы точек касания.

Мы пришли к тригонометрическому уравнению. Просим обратить на него внимание, так как позже мы его используем при вычислении ординат точек касания. Решаем его (при затруднениях обращайтесь к разделу решение тригонометрических уравнений ):

Абсциссы точек касания найдены, вычислим соответствующие ординаты (здесь используем равенство, на которое мы просили обратить внимание чуть выше):

Таким образом, - все точки касания. Следовательно, искомые уравнения касательных имеют вид:

Графическая иллюстрация.

На рисунке черной кривой показан график исходной функции на отрезке [-10;10] , синими линиями изображены касательные прямые. Хорошо видно, что они перпендикулярны красной прямой . Точки касания отмечены красными точками.


Касательная к окружности, эллипсу, гиперболе, параболе.

До этого момента мы занимались нахождением уравнений касательных к графикам однозначных функций вида y = f(x) в различных точках. Канонические уравнения кривых второго порядка не являются однозначными функциями. Но окружность, эллипс, гиперболу и параболу мы можем представить комбинацией двух однозначных функций и уже после этого составлять уравнения касательных по известной схеме.

Касательная к окружности.

Окружность с центром в точке и радиусом R задается равенством .

Запишем это равенство в виде объединения двух функций:

Здесь первая функция соответствует верхней полуокружности, вторая - нижней.

Таким образом, чтобы составить уравнение касательной к окружности в точке , принадлежащей верхней (или нижней) полуокружности, мы находим уравнение касательной к графику функции (или ) в указанной точке.

Легко показать, что в точках окружности с координатами и касательные параллельны оси абсцисс и задаются уравнениями и соответственно (на рисунке ниже они показаны синими точками и синими прямыми), а в точках и - параллельны оси ординат и имеют уравнения и соответственно (на рисунке ниже они отмечены красными точками и красными прямыми).

Касательная к эллипсу.

Эллипс с центром в точке с полуосями a и b задается уравнением .

Эллипс также как и окружность можно задать объединением двух функций - верхнего и нижнего полуэллипса:

Касательные в вершинах эллипса параллельны либо оси абсцисс (на рисунке ниже изображены синими прямыми), либо оси ординат (на рисунке ниже изображены красными прямыми).

То есть, верхний полуэллипс задается функцией , а нижний - .

Теперь можем действовать по стандартному алгоритму для составления уравнения касательной к графику функции в точке.

Первая касательная в точке :

Вторая касательная в точке :

Графическая иллюстрация.

Касательная к гиперболе.

Гипербола с центром в точке и вершинами и задается равенством (рисунок ниже слева), а с вершинами и - равенством (рисунок ниже справа).


В виде объединения двух функций гипербола представима как

или .


В вершинах гиперболы касательные параллельны оси Оу для первого случая и параллельны оси Ох для второго.

Таким образом, для нахождения уравнения касательной к гиперболе, выясняем какой функции принадлежит точка касания, и действуем обычным образом.

Возникает логичный вопрос, как определить какой из функций принадлежит точка. Для ответа на него подставляем координаты в каждое уравнение и смотрим, какое из равенств обращается в тождество. Рассмотрим это на примере.

Пример.

Составьте уравнение касательной к гиперболе в точке .

Решение.

Запишем гиперболу в виде двух функций:

Выясним к какой функции принадлежит точка касания .

Для первой функции , следовательно, точка не принадлежит графику этой функции.

Для второй функции , следовательно, точка принадлежит графику этой функции.

Находим угловой коэффициент касательной:

Таким образом, уравнение касательной имеет вид .

Графическая иллюстрация.

Касательная к параболе.

Для составления уравнения касательной к параболе вида в точке пользуемся стандартной схемой, и уравнение касательной записываем как . Касательная к графику такой параболы в вершине параллельна оси Ох .

Параболу сначала зададим объединением двух функций. Для этого разрешим это уравнение относительно y :


Теперь выясняем к какой из функций принадлежит точка касания и действуем по стандартной схеме.

Касательная к графику такой параболы в вершине параллельна оси Оу ..

Для второй функции:

Получаем точку касания .

Таким образом, уравнение искомой касательной имеет вид .

Перед прочтением информации на текущей странице советуем посмотреть видео о производной и её геометрическом смысле

Также смотрите пример вычисления производной в точке

Касательной к линии l в точке М0 называется прямая М0Т — предельное положение секущей М0М, когда точка М стремится к М0 вдоль данной линии (т. е. угол устремится к нулю) произвольным образом.

Производной функции у = f{x) в точке x0 называется предел отношения приращения этой функции к приращению аргумента, когда последнее стремится к нулю. Производную функции у = f{x) в точке х0 и учебниках обозначают символом f"(x0). Следовательно, по определению

Термин «производная» (а также «вторая производная») ввел Ж. Лагранж (1797), к тому же он дал обозначения y’, f’(x), f”(x) (1770,1779). Обозначение dy/dx впервые встречается у Лейбница (1675).

Производная функции y = f(х) при х = xо равна угловому коэффициенту касательной к графику данной функции в точке Мо(хо, f(xо)), т. е.

где а - угол наклона касательной к оси Ох прямоугольной декартовой системы координат.

Уравнение касательной к линии у = f(x) в точке Мо(хо, уо) принимает вид

Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f(x0) не равно 0, то уравнение нормали к линии у = f(x) в точке Мо(хо, уо) запишется так:

Физический смысл производной

Если x = f(t) — закон прямолинейного движения точки, то x’ = f’(t) - скорость этого движения в момент времени t. Быстрота протекания физических, химических и других процессов выражается с помощью производной .

Если отношение dy/dх при х->х0 имеет предел справа (или слева), то он называется производной справа (соответственно производной слева). Такие пределы называются односторонними производными .

Очевидно, функция f{x) определенная в некоторой окрестности точки х0, имеет производную f’{x) тогда и только тогда, когда односторонние производные существуют и равны между собой.

Геометрическое истолкование производной как углового коэффициента касательной к графику распространяется и на этот случай: касательная в данном случае параллельна оси Оу.

Функция, имеющая производную в данной точке, называется дифференцируемой в этой точке. Функция, имеющая производную в каждой точке данного промежутка, называется дифференцируемой в этом промежутке. Если промежуток является замкнутым, то на концах его имеются односторонние производные.

Операция нахождения производной называется .

Произво́дная (функции в точке) - основное понятие дифференциального исчисления , характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю , если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием . Обратный процесс - нахождение первообразной - интегрирование .

Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой - вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.

4.Производная сложной и обратной функции.

Пусть теперь задана сложная функция , т.е. переменная есть функция переменной , а переменная есть, в свою очередь, функция от независимой переменной .

Теорема . Если и дифференцируемые функции своих аргументов, то сложная функция является дифференцируемой функцией и ее производная равна произведению производной данной функции по промежуточному аргументу и производной промежуточного аргумента по независимой переменной:

.

Утверждение легко получается из очевидного равенства (справедливого при и ) предельным переходом при (что в силу непрерывности дифференцируемой функции влечет ).

Перейдем к рассмотрению производной обратной функции .

Пусть на множестве дифференцируемая функция имеет множество значений и на множестве существует обратная функция .

Теорема . Если в точке производная , то производная обратной функции в точке существует и равна обратной величине производной данной функции : , или

Эта формула легко получается из геометрических соображений.

Так как есть тангенс угла наклона касательной линии к оси , то есть тангенс угла наклона той же касательной (той же линии ) в той же точке к оси .

Если и острые, то , а если тупые, то .

В обоих случаях . Этому равенству и равносильно равенство

5.Геометрический и физический смысл производной.

1) Физический смысл производной.

Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная– скорость изменения переменной y относительно переменной x в точке. Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная– скорость в момент времени. Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называется секущей.

Касательной к кривой в точкеназывается предельное положение секущей, если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую y = f(x) (т.е. график функции y = f(x)). Пусть в точке он имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент k).

По определению углового коэффициента , где– угол наклона прямойк оси.

Пусть– угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что– угловой коэффициент касательной к графику функции y = f(x) в точке(геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой y = f(x) в точкеможно записать в виде

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется