Как посчитать сумму арифметической прогрессии. Формула n-го члена арифметической прогрессии. Формулы геометрической прогрессии

В математике есть своя красота, как в живописи и поэзии.

Русский ученый, механик Н.Е. Жуковский

Весьма распространенными задачами на вступительных испытаниях по математике являются задачи, связанные с понятием арифметической прогрессии. Для успешного решения таких задач необходимо хорошо знать свойства арифметической прогрессии и иметь определенные навыки их применения.

Предварительно напомним основные свойства арифметической прогрессии и приведем наиболее важные формулы , связанные с этим понятием.

Определение. Числовая последовательность , в которой каждый последующий член отличается от предыдущего на одно и то же число , называется арифметической прогрессией. При этом число называется разностью прогрессии.

Для арифметической прогрессии справедливы формулы

, (1)

где . Формула (1) называется формулой общего члена арифметической прогрессии, а формула (2) представляет собой основное свойство арифметической прогрессии: каждый член прогрессии совпадает со средним арифметическим своих соседних членов и .

Отметим, что именно из-за этого свойства рассматриваемая прогрессия называется «арифметической».

Приведенные выше формулы (1) и (2) обобщаются следующим образом:

(3)

Для вычисления суммы первых членов арифметической прогрессии обычно применяется формула

(5) где и .

Если принять во внимание формулу (1 ), то из формулы (5) вытекает

Если обозначить , то

где . Так как , то формулы (7) и (8) являются обобщением соответствующих формул (5) и (6).

В частности , из формулы (5) следует , что

К числу малоизвестных большинству учащихся относится свойство арифметической прогрессии, сформулированное посредством следующей теоремы.

Теорема. Если , то

Доказательство. Если , то

Теорема доказана.

Например , используя теорему , можно показать , что

Перейдем к рассмотрению типовых примеров решения задач на тему «Арифметическая прогрессия».

Пример 1. Пусть и . Найти .

Решение. Применяя формулу (6), получаем . Так как и , то или .

Пример 2. Пусть в три раза больше , а при делении на в частном получается 2 и в остатке 8. Определить и .

Решение. Из условия примера вытекает система уравнений

Так как , , и , то из системы уравнений (10) получаем

Решением данной системы уравнений являются и .

Пример 3. Найти , если и .

Решение. Согласно формуле (5) имеем или . Однако, используя свойство (9), получаем .

Так как и , то из равенства вытекает уравнение или .

Пример 4. Найти , если .

Решение. По формуле (5) имеем

Однако, используя теорему, можно записать

Отсюда и из формулы (11) получаем .

Пример 5 . Дано: . Найти .

Решение. Так как , то . Однако , поэтому .

Пример 6. Пусть , и . Найти .

Решение. Используя формулу (9), получаем . Поэтому, если , то или .

Так как и , то здесь имеем систему уравнений

Решая которую, получаем и .

Натуральным корнем уравнения является .

Пример 7. Найти , если и .

Решение. Так как по формуле (3) имеем, что , то из условия задачи вытекает система уравнений

Если подставить выражение во второе уравнение системы , то получим или .

Корнями квадратного уравнения являются и .

Рассмотрим два случая.

1. Пусть , тогда . Поскольку и , то .

В таком случае, согласно формуле (6), имеем

2. Если , то , и

Ответ: и .

Пример 8. Известно, что и . Найти .

Решение. Принимая во внимание формулу (5) и условие примера, запишем и .

Отсюда следует система уравнений

Если первое уравнение системы умножим на 2, а затем сложим его со вторым уравнением, то получим

Согласно формуле (9) имеем . В этой связи из (12) вытекает или .

Поскольку и , то .

Ответ: .

Пример 9. Найти , если и .

Решение. Поскольку , и по условию , то или .

Из формулы (5) известно , что . Так как , то .

Следовательно , здесь имеем систему линейных уравнений

Отсюда получаем и . Принимая во внимание формулу (8), запишем .

Пример 10. Решить уравнение .

Решение. Из заданного уравнения следует, что . Положим, что , , и . В таком случае .

Согласно формуле (1), можно записать или .

Так как , то уравнение (13) имеет единственный подходящий корень .

Пример 11. Найти максимальное значение при условии, что и .

Решение. Так как , то рассматриваемая арифметическая прогрессия является убывающей. В этой связи выражение принимает максимальное значение в том случае, когда является номером минимального положительного члена прогрессии.

Воспользуемся формулой (1) и тем фактом , что и . Тогда получим , что или .

Поскольку , то или . Однако в этом неравенстве наибольшее натуральное число , поэтому .

Если значения , и подставить в формулу (6), то получим .

Ответ: .

Пример 12. Определить сумму всех двузначных натуральных чисел, которые при делении на число 6 дают в остатке 5.

Решение. Обозначим через множество всех двузначных натуральных чисел, т.е. . Далее, построим подмножество , состоящее из тех элементов (чисел) множества , которые при делении на число 6 дают в остатке 5.

Нетрудно установить , что . Очевидно , что элементы множества образуют арифметическую прогрессию , в которой и .

Для установления мощности (числа элементов) множества положим, что . Так как и , то из формулы (1) следует или . Принимая во внимание формулу (5), получим .

Приведенные выше примеры решения задач ни в коем случае не могут претендовать на исчерпывающую полноту. Настоящая статья написана на основе анализа современных методов решения типовых задач на заданную тему. Для более глубокого изучения методов решения задач, связанных с арифметической прогрессией, целесообразно обратиться к списку рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

3. Медынский М.М. Полный курс элементарной математики в задачах и упражнениях. Книга 2: Числовые последовательности и прогрессии. – М.: Эдитус , 2015. – 208 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Понятие числовой последовательности подразумевает соответствие каждому натуральному числу некоторого действительного значения. Такой ряд чисел может быть как произвольным, так и обладать определенными свойствами – прогрессия. В последнем случае каждый последующий элемент (член) последовательности можно вычислить с помощью предыдущего.

Арифметическая прогрессия – последовательность числовых значений, в которой ее соседние члены разнятся между собой на одинаковое число (подобным свойством обладают все элементы ряда, начиная со 2-ого). Данное число – разница между предыдущим и последующим членом – постоянно и называется разностью прогрессии.

Разность прогрессии: определение

Рассмотрим последовательность, состоящую из j значений A = a(1), a(2), a(3), a(4) … a(j), j принадлежит множеству натуральных чисел N. Арифметическая прогрессия, согласно своего определения, – последовательность, в которой a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. Величина d – искомая разность данной прогрессии.

d = a(j) – a(j-1).

Выделяют:

  • Возрастающую прогрессию, в таком случае d > 0. Пример: 4, 8, 12, 16, 20, …
  • Убывающую прогрессию, тогда d < 0. Пример: 18, 13, 8, 3, -2, …

Разность прогрессии и ее произвольные элементы

Если известны 2 произвольных члена прогрессии (i-ый, k-ый), то установить разность для данной последовательности можно на базе соотношения:

a(i) = a(k) + (i – k)*d, значит d = (a(i) – a(k))/(i-k).

Разность прогрессии и ее первый член

Данное выражение поможет определить неизвестную величину лишь в случаях, когда известен номер элемента последовательности.

Разность прогрессии и ее сумма

Сумма прогрессии – это сумма ее членов. Для вычисления суммарного значения ее первых j элементов воспользуйтесь соответствующей формулой:

S(j) =((a(1) + a(j))/2)*j, но т.к. a(j) = a(1) + d(j – 1), то S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=((2a(1) + d(– 1))/2)*j.

Тип урока: изучение нового материала.

Цели урока:

  • расширение и углубление представлений учащихся о задачах, решаемых с использованием арифметической прогрессии; организация поисковой деятельности учащихся при выводе формулы суммы первых n членов арифметической прогрессии;
  • развитие умений самостоятельно приобретать новые знания, использовать для достижения поставленной задачи уже полученные знания;
  • выработка желания и потребности обобщать полученные факты, развитие самостоятельности.

Задачи:

  • обобщить и систематизировать имеющиеся знания по теме “Арифметическая прогрессия”;
  • вывести формулы для вычисления суммы n первых членов арифметической прогрессии;
  • научить применять полученные формулы при решении различных задач;
  • обратить внимание учащихся на порядок действий при нахождении значения числового выражения.

Оборудование:

  • карточки с заданиями для работы в группах и парах;
  • оценочный лист;
  • презентация “Арифметическая прогрессия”.

I. Актуализация опорных знаний.

1. Самостоятельная работа в парах.

1-й вариант:

Дайте определение арифметической прогрессии. Запишите рекуррентную формулу, с помощью которой задается арифметическая прогрессия. Приветите пример арифметической прогрессии и укажите её разность.

2-й вариант:

Запишите формулу n-го члена арифметической прогрессии. Найдите 100-й член арифметической прогрессии {a n }: 2, 5, 8 …
В это время два ученика на обратной стороне доски готовят ответы на эти же вопросы.
Учащиеся оценивают работу партнера, сверяя с доской. (Листочки с ответами сдают).

2. Игровой момент.

Задание 1.

Учитель. Я задумала некоторую арифметическую прогрессию. Задайте мне только два вопроса, чтобы после ответов вы быстро смогли бы назвать 7-й член этой прогрессии. (1, 3, 5, 7, 9, 11, 13, 15…)

Вопросы учащихся.

  1. Чему равен шестой член прогрессии и чему равна разность?
  2. Чему равен восьмой член прогрессии и чему равна разность?

Если вопросов больше не последует, то учитель может стимулировать их – “запрет” на d (разность), то есть не разрешается спрашивать чему равна разность. Можно задать вопросы: чему равен 6-й член прогрессии и чему равен 8-й член прогрессии?

Задание 2.

На доске записано 20 чисел: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Учитель стоит спиной к доске. Ученики называют номер числа, а учитель мгновенно называет само число. Объясните, как мне это удается?

Учитель помнит формулу n-го члена a n = 3n – 2 и, подставляя задаваемые значения n, находит соответствующие значения a n .

II. Постановка учебной задачи.

Предлагаю решить старинную задачу, относящуюся ко II-му тысячелетию до нашей эры, найденную в египетских папирусах.

Задача: “Пусть тебе сказано: раздели 10 мер ячменя между 10 человеками, разность между каждым человеком и его соседом равняется 1/8 меры”.

  • Как эта задача связана с темой арифметическая прогрессия? (Каждый следующий получает на 1/8 меры больше, значит разность d=1/8, 10 человек, значит n=10.)
  • А что, по-вашему мнению, означает число 10 мер? (Сумма всех членов прогрессии.)
  • Что ещё необходимо знать, чтобы было легко и просто разделить ячмень согласно условию задачи? (Первый член прогрессии.)

Задача урока – получение зависимости суммы членов прогрессии от их числа, первого члена и разности, и проверка того, верно ли в древности решали поставленную задачу.

Прежде чем сделать вывод формулы, посмотрим, как решали задачу древние египтяне.

А решали её следующим образом:

1) 10 мер: 10 = 1 мера – средняя доля;
2) 1 мера ∙ = 2 меры – удвоенная средняя доля.
Удвоенная средняя доля – это сумма долей 5-го и 6-го человек.
3) 2 меры – 1/8 меры = 1 7/8 меры – удвоенная доля пятого человека.
4) 1 7/8: 2 = 5/16 – доля пятого; и так далее можно найти долю каждого предыдущего и последующего человека.

Получим последовательность:

III. Решение поставленной задачи.

1. Работа в группах

I-я группа: Найти сумму 20 последовательных натуральных чисел: S 20 =(20+1)∙10 =210.

В общем виде

II-я группа: Найти сумму натуральных чисел от 1 до 100 (Легенда о маленьком Гауссе).

S 100 = (1+100)∙50 = 5050

Вывод:

III-я группа: Найти сумму натуральных чисел от 1 до 21.

Решение: 1+21=2+20=3+19=4+18…

Вывод:

IV-я группа: Найти сумму натуральных чисел от 1 до 101.

Вывод:

Этот метод решения рассмотренных задач называется “Метод Гаусса”.

2. Каждая группа представляет решение задачи на доске.

3. Обобщение предложенных решений для произвольной арифметической прогрессии:

a 1 , a 2 , a 3 ,…, a n-2 , a n-1 , a n .
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n .

Найдем эту сумму рассуждая аналогично:

4. Решили мы поставленную задачу? (Да.)

IV. Первичное осмысление и применение полученных формул при решении задач.

1. Проверка решения старинной задачи по формуле.

2. Применение формулы при решении различных задач.

3. Упражнения на формирование умения применения формулы при решении задач.

А) №613

Дано: (а n) – арифметическая прогрессия;

(а n): 1, 2, 3, …, 1500

Найти: S 1500

Решение: , а 1 = 1, а 1500 = 1500,

Б) Дано: (а n) – арифметическая прогрессия;
(а n): 1, 2, 3, …
S n = 210

Найти: n
Решение:

V. Самостоятельная работа с взаимопроверкой.

Денис поступил на работу курьером. В первый месяц его зарплата составила 200 рублей, в каждый последующий она повышалась на 30 рублей. Сколько всего он заработал за год?

Дано: (а n) – арифметическая прогрессия;
а 1 = 200, d=30, n=12
Найти: S 12
Решение:

Ответ: 4380 рублей получил Денис за год.

VI. Инструктаж по домашнему заданию.

  1. п. 4.3 – выучить вывод формулы .
  2. №№ 585, 623 .
  3. Составить задачу, которая решалась бы с использованием формулы суммы n первых членов арифметической прогрессии.

VII. Подведение итогов урока.

1. Оценочный лист

2. Продолжи предложения

  • Сегодня на уроке я узнал …
  • Изученные формулы …
  • Я считаю что …

3. Сможешь ли ты найти сумму чисел от 1 до 500? Каким методом будешь решать эту задачу?

Список литературы.

1. Алгебра, 9-й класс. Учебник для общеобразовательных учреждений. Под ред. Г.В. Дорофеева. М.: “Просвещение”, 2009.