Математика и информатика. Учебное пособие по всему курсу. Законы распределения дискретных случайных величин У какого распределения случайной величины

Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях (см. гл. 6).

Определение. Непрерывная случайная величина X имеет нормальный закон распределения (закон Гаусса) с параметрами а и а 2 , если ее плотность вероятности имеет вид

Термин «нормальный» не совсем удачный. Многие признаки подчиняются нормальному закону, например, рост человека, дальность полета снаряда и т.п. Но если какой-либо признак подчиняется другому, отличному от нормального, закону распределения, то это вовсе не говорит о «ненормальности» явления, связанного с этим признаком.

Кривую нормального закона распределения называют нормальной , или гауссовой , кривой. На рис. 4.6, а , 6 приведены нормальная кривая фд, (х) с параметрами йио 2 , т.е. И[а а 2), и график функции распределения случайной величины X , имеющей нормальный закон. Обратим внимание на то, что нормальная кривая симметрична относительно прямой х = а, имеет максимум в точке х = а ,

равный , т.е.

И две точки перегиба х = а±

с ординатой

Можно заметить, что в выражении плотности нормального закона параметры обозначены буквами а и ст 2 , которыми мы обозначаем математическое ожидание М(Х ) и дисперсию О(Х). Такое совпадение неслучайно. Рассмотрим теорему, устанавливающую теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины X, распределенной по нормальному закону, равно параметру а этого закона, т.е.

а ее дисперсия - параметру а 2 , т.е.

Математическое ожидание случайной величины X:

Произведем замену переменной, положив

Тогда пределы интегрирования не меняются

и, следовательно,

(первый интеграл равен нулю как интеграл от нечетной функции по симметричному относительно начала координат промежутку, а второй интеграл - интеграл Эйлера - Пуассона).

Дисперсия случайной величины X:

Сделаем ту же замену переменной х = а + о^2 t, как и при вычислении предыдущего интеграла. Тогда

Применяя метод интегрирования по частям, получим

Выясним, как будет меняться нормальная кривая при изменении параметров а и с 2 (или а). Если а = const, и меняется параметр а {а х а 3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 4.7).

Если а = const и меняется параметр а 2 (или а), то меняется ордината

максимума кривой При увеличении а ордината максимума

кривой уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс; при уменьшении су, напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков. На рис. 4.8 показаны нормальные кривые с параметрами а 1(о 2 и а 3 , где о, а (он же математическое ожидание) характеризует положение центра, а параметр а 2 (он же дисперсия) - фор м у нормальной кривой.

Нормальный закон распределения случайной величины X с параметрами а = 0, ст 2 = 1, г.е. X ~ N(0; 1), называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной.

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, по формуле (3.23) и вероятности ее попадания на некоторый промежуток по формуле (3.22) связана с гем, что интеграл от функции (4.26) является «нсберу- щимся» в элементарных функциях. Поэтому их выражают через функцию

- функцию (интеграл вероятностей) Лапласа, для которой составлены таблицы. Напомним, что функция Лапласа уже встречалась нам при рассмотрении интегральной теоремы Муавра - Лапласа (см. параграф 2.3). Там же были рассмотрены ее свойства. Геометрически функция Лапласа Ф(.с) представляет собой площадь под стандартной нормальной кривой на отрезке [-х; х ] (рис. 4.9) 1 .

Рис. 4.10

Рис. 4.9

Теорема. Функция распределения случайной величины X, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х) по формуле

По формуле (3.23) функция распределения:

Сделаем замену переменной, полагая при X -> -оо? -» -00, поэтому

1 Наряду с интегралом вероятностей вида (4.29), представляющим функцию Ф(х), в литературе используется его выражения и в виде других табулированных функций:

представляющих собой площади иод стандартной нормальной кривой соответственно на интервалах (0; х], (-оо; х], [-х>/2; Хл/2.

Первый интеграл

(в силу четности подынтегральной функции и того, что интеграл Эйлера - Пуассона равен ).

Второй интеграл с учетом формулы (4.29) составляет

Геометрически функция распределения представляет собой площадь под нормальной кривой на интервале (-со, х) (рис. 4.10). Как видим, она состоит из двух частей: первой, на интервале (-оо, а), равной 1/2, т.е. половине всей площади под нормальной кривой, и второй, на интервале (я, х),

равной

Рассмотрим свойства случайной величины, распределенной по нормальному закону.

1. Вероятность попадания случайной величины X, распределенной по нормальному закону, в интервал [х 1(х 2 ], равна

Учитывая, что согласно свойству (3.20) вероятность Р(х,

где и Г 2 определяются по формуле (4.33) (рис. 4.11). ?

2. Вероятность того, что отклонение случайной величины X, распределенной по нормальному закону, от математического ожидания а не превысит величину А > 0 (по абсолютной величине), равна

а также свойство нечетности функции Лапласа, получим

где? =Д/о (рис. 4.12). ?

На рис. 4.11 и 4.12 приведена геометрическая интерпретация свойств нормального закона .

Замечание. Рассмотренная в гл. 2 приближенная интегральная формула Муавра - Лапласа (2.10) следует из свойства (4.32) нормально распределенной случайной величины при х { = а, х 2 = Ь } а = пр и так

как биномиальный закон распределения случайной величины X = т с параметрами п и р, для которого получена эта формула, при п -> ос стремится к нормальному закону (см. гл. 6).

Аналогично и следствия (2.13), (2.14) и (2.16) интегральной формулы Муавра - Лапласа для числа X = т появления события в п независимых испытаниях и его частости т/п вытекают из свойств (4.32) и (4.34) нормального закона.

Вычислим по формуле (4.34) вероятности Р(Х-а д) при различных значениях Д (используем табл. II приложений). Получим

Отсюда вытекает «правило трех сигм».

Если случайная величина X имеет нормальный закон распределения с параметрами а и а 2 , т.е. М(а; а 2), то практически достоверно, что ее значения заключены в интервале (а - За, а + За).

Нарушение «правила трех сигм», т.е. отклонение нормально распределенной случайной величины X больше, чем на За (но абсолютной величине), является событием практически невозможным, так как его вероятность весьма мала:

Заметим, что отклонение Д в, при котором , называется

вероятным отклонением. Для нормального закона Д в « 0,675а, т.е. на интервал (а - 0,675а, а + 0,675а) приходится половина всей площади под нормальной кривой.

Найдем коэффициент асимметрии и эксцесс случайной величины X, распределенной по нормальному закону.

Очевидно, в силу симметрии нормальной кривой относительно вертикальной прямой х = а, проходящей через центр распределения а = М(Х), коэффициент асимметрии нормального распределения Л = 0.

Эксцесс нормально распределенной случайной величины X найдем по формуле (3.37), т.е.

где учли, что центральный момент 4-го порядка, найденный по формуле (3.30) с учетом определения (4.26), т.е.

(вычисление интеграла опускаем).

Таким образом, эксцесс нормального распределения равен нулю и крутость других распределений определяется по отношению к нормальному (об этом мы уже упоминали в параграфе 3.7).

О Пример 4.9. Полагая, что рост мужчин определенной возраст-ной группы есть нормально распределенная случайная величинах X с параметрами а = 173 и а 2 =36:

  • 1) Найти: а) выражение плотности вероятности и функции распределения случайной величины X; б) доли костюмов 4-го роста (176-182 см) и 3-го роста (170-176 см), которые нужно предусмотреть в общем объеме производства для данной возрастной группы; в) квантиль х 07 и 10%-ную точку случайной величины X.
  • 2) Сформулировать «правило трех сигм» для случайной величины X. Решение. 1, а) По формулам (4.26) и (4.30) запишем

1, б) Доля костюмов 4-го роста (176-182 см) в общем объеме производства определится по формуле (4.32) как вероятность


(рис. 4.14), так как по формулам (4.33)

Долю костюмов 3-го роста (170-176 см) можно было определить аналогично но формуле (4.32), но проще это сделать по формуле (4.34), если учесть, что данный интервал симметричен относительно математического ожидания а = М(Х) = 173, т.е. неравенство 170 X Х -173|

(см. рис. 4.14;.

1, в) Квантиль х 07 (см. параграф 3.7) случайной величины X найдем из уравнения (3.29) с учетом формулы (4.30):

откуда

По табл. 11 приложений находим I- 0,524 и

Это означает, что 70% мужчин данной возрастной группы имеют рост до 176 см.

  • 10%-ная точка - эго квантиль х 09 = 181 см (находится аналогично), т.е. 10% мужчин имеют рост не менее 181 см.
  • 2) Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от а - Зет = 173 - 3 6 = 155 до а + Зет = 173 + 3 - 6 = = 191 (см), т.е. 155

    В силу особенностей нормального закона распределения, отмеченных в начале параграфа (и в гл. 6), он занимает центральное место в теории и практике вероятностно-статистических методов. Большое теоретическое значение нормального закона состоит в том, что с его помощью получен ряд важных распределений, рассматриваемых ниже.

    • Стрелками на рис. 4.11-4.13 отмечены условно п л о щ а д и соответствующих фигурпод нормальной кривой.
    • Значения функции Лапласа Ф(х) определяем но табл. II приложений.

Определение 3. Х имеет нормальный закон распределения (закон Гаусса), если ее плотность распределения имеет вид:

где m = M (X ), σ 2 = D (X ), σ > 0 .

Кривую нормального закона распределения называют нормальной или гауссовой кривой (рис. 6.7).

Нормальная кривая симметрична относительно прямой х = m , имеет максимум в точке х = m , равный .

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х ) по формуле:

Ф(x ) – функция Лапласа.

Замечание. Функция Ф(х ) является нечетной (Ф(-х ) = -Ф(х )), кроме того, при х > 5 можно считать Ф(х ) ≈ 1/2.

Таблица значений функции Ф(х ) приведена в приложении (табл. П 2.2).

График функции распределения F (x ) изображен на рис. 6.8.

Вероятность того, что случайная величина Х примет значения, принадлежащие интервалу (a;b ) вычисляются по формуле:

Р (a < Х < b ) = .

Вероятность того, что абсолютная величина отклонения случайной величины от ее математического ожидания меньше положительного числа δ вычисляется по формуле:

P (| X - m| .

В частности, при m =0 справедливо равенство:

P (| X| .

"Правило трех сигм"

Если случайная величина Х имеет нормальный закон распределения с параметрами m и σ, то практически достоверно, что ее значения заключены в интервале (m 3σ; m + 3σ), так как P (| X - m| = 0,9973.

Задача 6.3. Случайная величина Х распределена нормально с математическим ожиданием 32 и дисперсией 16. Найти: а) плотность распределения вероятностей f (x ); Х примет значение из интервала (28;38).

Решение: По условию m = 32, σ 2 = 16, следовательно, σ= 4, тогда

а)

б) Воспользуемся формулой:

Р (a< Х)= .

Подставив a = 28, b = 38, m = 32, σ= 4, получим

Р (28< Х< 38)= Ф(1,5) Ф(1)

По таблице значений функции Ф(х ) находим Ф(1,5) = 0,4332, Ф(1) = 0,3413.

Итак, искомая вероятность:

P (28

Задачи

6.1. Случайная величина Х равномерно распределена в интервале (-3;5). Найдите:

а) плотность распределения f (x );

б) функции распределения F (x );

в) числовые характеристики;

г) вероятность Р (4<х <6).

6.2. Случайная величина Х равномерно распределена на отрезке . Найдите:

а) плотность распределения f (x );

б) функцию распределения F (x );

в) числовые характеристики;

г) вероятность Р (3≤х ≤6).

6.3. На шоссе установлен автоматический светофор, в котором 2 минуты для транспорта горит зеленый свет, 3 секунды - желтый и 30 секунд - красный и т.д. Машина проезжает по шоссе в случайный момент времени. Найти вероятность того, что машина проедет мимо светофора, не останавливаясь.


6.4. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать поезд пассажиру придется больше 50 секунд. Найти математическое ожидание случайной величины Х - время ожидания поезда.

6.5. Найти дисперсию и среднее квадратическое отклонение показательного распределения, заданного функцией распределения:

6.6. Непрерывная случайная величина Х задана плотностью распределения вероятностей:

а) Назовите закон распределения рассматриваемой случайной величины.

б) Найдите функцию распределения F (x ) и числовые характеристики случайной величины Х .

6.7. Случайная величина Х распределена по показательному закону, заданному плотностью распределения вероятностей:

Х примет значение из интервала (2,5;5).

6.8. Непрерывная случайная величина Х распределена по показательному закону, заданному функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение из отрезка .

6.9. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины соответственно равны 8 и 2. Найдите:

а) плотность распределения f (x );

б) вероятность того, что в результате испытания Х примет значение из интервала (10;14).

6.10. Случайная величина Х распределена нормально с математическим ожиданием 3,5 и дисперсией 0,04. Найдите:

а) плотность распределения f (x );

б) вероятность того, что в результате испытания Х примет значение из отрезка .

6.11. Случайная величина Х распределена нормально с M (X ) = 0 и D (X )= 1. Какое из событий: |Х |≤0,6 или |Х |≥0,6 имеет большую вероятность?

6.12. Случайная величина Х распределена нормально с M (X ) = 0 и D (X )= 1.Из какого интервала (-0,5; -0,1) или (1; 2) при одном испытании она примет значение с большей вероятностью?

6.13. Текущая цена за одну акцию может быть смоделирована с помощью нормального закона распределения с M (X )= 10 ден. ед. и σ(Х ) = 0,3 ден. ед. Найти:

а) вероятность того, что текущая цена акции будет от 9,8 ден. ед. до 10,4 ден. ед.;

б) с помощью "правила трех сигм" найти границы, в которых будет находиться текущая цена акции.

6.14. Производится взвешивание вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением σ= 5г. Найти вероятность того, что в четырех независимых опытах ошибка при трех взвешиваниях не превзойдет по абсолютной величине 3 г.

6.15. Случайная величина Х распределена нормально с M (X)= 12,6. Вероятность попадания случайной величины в интервал (11,4; 13,8) равна 0,6826. Найдите среднее квадратическое отклонение σ.

6.16. Случайная величина Х распределена нормально с M (X ) = 12 и D (X ) = 36. Найти интервал, в который с вероятностью 0,9973 попадет в результате испытания случайная величина Х .

6.17. Деталь, изготовленная автоматом, считается бракованной, если отклонение Х ее контролируемого параметра от номинала превышает по модулю 2 единицы измерения. Предполагается, что случайная величина Х распределена нормально с M (X ) = 0 и σ(Х ) = 0,7. Сколько процентов бракованных деталей выдает автомат?

3.18. Параметр Х детали распределен нормально с математическим ожиданием 2, равным номиналу, и средним квадратическим отклонением 0,014. Найти вероятность того, что отклонение Х от номинала по модулю не превысит 1 % номинала.

Ответы

в) M (X )=1, D (X )=16/3, σ(Х )= 4/ , г)1/8.



в) M (X )=4,5, D (X ) =2 , σ (Х )= , г)3/5.


6.3. 40/51.

6.4. 7/12, M (X )=1.


6.5. D (X ) = 1/64, σ (Х )=1/8

6.6. M (X )=1 , D (X ) =2 , σ (Х )= 1 .


6.7. Р(2,5<Х <5)=е -1 е -2 ≈0,2325 6.8. Р(2≤Х ≤5)=0,252.


б) Р (10 < Х < 14) ≈ 0,1574.

б) Р (3,1 ≤ Х ≤ 3,7) ≈ 0,8185.


6.11. |x |≥0,6.

6.12. (-0,5; -0,1).


6.13. а) Р(9,8 ≤ Х ≤ 10,4) ≈ 0,6562 6.14. 0,111.

б) (9,1; 10,9).


6.15. σ = 1,2.

6.16. (-6; 30).

6.17. 0,4 %.

Глава 6. Непрерывные случайные величины.

§ 1. Плотность и функция распределения непрерывной случайной величины.

Множество значений непрерывной случайной величины несчетно и обычно представляет собой некоторый промежуток конечный или бесконечный.

Случайная величина x(w),заданная в вероятностном пространстве {W, S,P}, называется непрерывной (абсолютно непрерывной) W, если существует неотрицательная функция такая, что при любых х функцию распределения Fx(x) можно представить в виде интеграла

Функция называется функцией плотности распределения вероятностей .

Из определения вытекают свойства функции плотности распределения :

1..gif" width="97" height="51">

3. В точках непрерывности плотность распределения равна производной функции распределения: .

4. Плотность распределения определяет закон распределения случайной величины, т. к. определяет вероятность попадания случайной величины на интервал :

5.Вероятность того, что непрерывная случайная величина примет конкретное значение равна нулю: . Поэтому справедливы следующие равенства:

График функции плотности распределения называется кривой распределения , и площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Тогда геометрически значение функции распределения Fx(x) в точке х0 есть площадь, ограниченная кривой распределения и осью абсцисс и лежащая левее точки х0.

Задача 1. Функция плотности непрерывной случайной величины имеет вид:

Определить константу C, построить функцию распределения Fx(x) и вычислить вероятность .

Решение. Константа C находится из условия Имеем:

откуда C=3/8.

Чтобы построить функцию распределения Fx(x), отметим, что интервал делит область значений аргумента x (числовую ось) на три части: https://pandia.ru/text/78/107/images/image017_17.gif" width="264" height="49">

так как плотность x на полуоси равна нулю. Во втором случае

Наконец, в последнем случае, когда x>2,

Так как плотность обращается в нуль на полуоси . Итак, получена функция распределения

Вероятность вычислим по формуле . Таким образом,

§ 2. Числовые характеристики непрерывной случайной величины

Математическое ожидание для непрерывно распределенных случайных величин определяется по формуле https://pandia.ru/text/78/107/images/image028_11.gif" width="205" height="56 src=">,

если интеграл, стоящий справа, абсолютно сходится.

Дисперсия x может быть вычислена по формуле , а также, как и в дискретном случае, по формуле https://pandia.ru/text/78/107/images/image031_11.gif" width="123" height="49 src=">.

Все свойства математического ожидания и дисперсии , приведенные в главе 5 для дискретных случайных величин, справедливы и для непрерывных случайных величин.

Задача 2 . Для случайной величины x из задачи 1 вычислить математическое ожидание и дисперсию.

Решение.

И значит,

https://pandia.ru/text/78/107/images/image035_9.gif" width="184" height="69 src=">

График плотности равномерного распределения см. на рис. .

Рис.6.2. Функция распределения и плотность распределения. равномерного закона

Функция распределения Fx(x) равномерно распределенной случайной величины равна

Fx(x)=

Математическое ожидание и дисперсия ; .

Показательное (экспоненециальное) распределение. Непрерывная случайная величина x, принимающая неотрицательные значения, имеет показательное распределение с параметром l>0, если плотность распределения вероятностей случайной величины равна

рx(x)=

Рис. 6.3. Функция распределения и плотность распределения показательного закона.

Функция распределения показательного распределения имеет вид

Fx(x)=https://pandia.ru/text/78/107/images/image041_8.gif" width="17" height="41">.gif" width="13" height="15"> и , если ее плотность распределения равна

.

Через обозначается множество всех случайных величин, распределенных по нормальному закону с параметрами параметрами и .

Функция распределения нормально распределенной случайной величины равна

.

Рис. 6.4. Функция распределения и плотность распределения нормального закона

Параметры нормального распределения суть математическое ожидание https://pandia.ru/text/78/107/images/image048_6.gif" width="64 height=24" height="24">

В частном случае, когда https://pandia.ru/text/78/107/images/image050_6.gif" width="44" height="21 src="> нормальное распределение называется стандартным , и класс таких распределений обозначается https://pandia.ru/text/78/107/images/image052_6.gif" width="119" height="49">,

а функция распределения

Такой интеграл не вычислим аналитически (не берется в «квадратурах»), и потому для функции составлены таблицы. Функция связана с введенной в главе 4 функцией Лапласа

,

следующим соотношением . В случае же произвольных значений параметров https://pandia.ru/text/78/107/images/image043_5.gif" width="21" height="21 src="> функция распределения случайной величины связана с функцией Лапласа с помощью соотношения:

.

Поэтому вероятность попадания нормально распределенной случайной величины на интервал можно вычислять по формуле

.


Неотрицательная случайная величина x называется логарифмически нормально распределенной, если ее логарифм h=lnx подчинен нормальному закону. Математическое ожидание и дисперсия логарифмически нормально распределенной случайной величины равны Мx= и Dx=.

Задача 3. Пусть задана случайная величина https://pandia.ru/text/78/107/images/image065_5.gif" width="81" height="23">.

Решение. Здесь и https://pandia.ru/text/78/107/images/image068_5.gif" width="573" height="45">

Распределение Лапласа задается функцией fx(x)=https://pandia.ru/text/78/107/images/image070_5.gif" width="23" height="41"> и эксцесс равен gx=3.

Рис.6.5. Функция плотности распределения Лапласа.

Случайная величина x распределена по закону Вейбулла , если она имеет функцию плотности распределения, равную https://pandia.ru/text/78/107/images/image072_5.gif" width="189" height="53">

Распределению Вейбулла подчиняются времена безотказной работы многих технических устройств. В задачах данного профиля важной характеристикой является интенсивность отказа (коэффициент смертности) l(t) исследуемых элементов возраста t, определяемый соотношением l(t)=. Если a=1, то распределение Вейбулла превращается в экспоненциальное распределение, а если a=2 - в так называемое распределение Рэлея.

Математическое ожидание распределения Вейбулла: -https://pandia.ru/text/78/107/images/image075_4.gif" width="219" height="45 src=">, где Г(а) - функция Эйлера. .

В различных задачах прикладной статистики часто встречаются так называемые «усеченные» распределения. Например, налоговые органы интересуются распределением доходов тех лиц, годовой доход которых превосходит некоторый порог с0, установленный законами о налогообложении. Эти распределения оказываются приближенно совпадающими с распределением Парето. Распределение Парето задается функциями

Fx(x)=P(x.gif" width="44" height="25"> случайной величины x и монотонная дифференцируемая функция ..gif" width="200" height="51">

Здесь https://pandia.ru/text/78/107/images/image081_4.gif" width="60" height="21 src=">.

Задача 4. Случайная величина равномерно распределена на отрезке . Найти плотность случайной величины .

Решение. Из условия задачи следует, что

Далее, функция является монотонной и дифференцируемой функцией на отрезке и имеет обратную функцию , производная которой равна Следовательно,

§ 5. Пара непрерывных случайных величин

Пусть заданы две непрерывные случайные величины x и h. Тогда пара (x, h) определяет «случайную» точку на плоскости. Пару (x, h) называют случайным вектором или двумерной случайной величиной.

Совместной функцией распределения случайных величин x и h и называется функция F(x, y)=Phttps://pandia.ru/text/78/107/images/image093_3.gif" width="173" height="25">. Совместной плотностью распределения вероятностей случайных величин x и h называется функция такая, что .

Смысл такого определения совместной плотности распределения заключается в следующем. Вероятность того, что «случайная точка» (x, h) попадет в область на плоскости, вычисляется как объем трехмерной фигуры – «криволинейного» цилиндра, ограниченного поверхностью https://pandia.ru/text/78/107/images/image098_3.gif" width="211" height="39 src=">

Простейшим примером совместного распределения двух случайных величин является двумерное равномерное распределение на множестве A . Пусть задано ограниченное множество М с площадью Оно определяется как распределение пары (x, h), задаваемое с помощью следующей совместной плотности:

Задача 5. Пусть двумерный случайный вектор (x, h) равномерно распределен внутри треугольника . Вычислить вероятность неравенства x>h.

Решение. Площадь указанного треугольника равна (см. рис. № ?). В силу определения двумерного равномерного распределения совместная плотность случайных величин x, h равна

Событие соответствует множеству на плоскости, т. е. полуплоскости. Тогда вероятность

На полуплоскости B совместная плотность равна нулю вне множества https://pandia.ru/text/78/107/images/image102_2.gif" width="15" height="17">. Таким образом, полуплоскость B разбивается на два множества и https://pandia.ru/text/78/107/images/image110_1.gif" width="17" height="23"> и , причем второй интеграл равен нулю, так как там совместная плотность равна нулю. Поэтому

Если задана совместная плотность распределения для пары (x, h), то плотности и составляющих x и h называются частными плотностями и вычисляются по формулам:

https://pandia.ru/text/78/107/images/image116_1.gif" width="224" height="23 src=">

Для непрерывно распределенных случайных величин с плотностями рx(х), рh(у) независимость означает, что

Задача 6. В условиях предыдущей задачи определить, независимы ли составляющие случайного вектора x и h?

Решение . Вычислим частные плотности и . Имеем:

https://pandia.ru/text/78/107/images/image119_1.gif" width="283" height="61 src=">

Очевидно, что в нашем случае https://pandia.ru/text/78/107/images/image121_1.gif" width="64" height="25"> - совместная плотность величин x и h, а j(х, у) - функция двух аргументов, тогда

https://pandia.ru/text/78/107/images/image123_1.gif" width="184" height="152 src=">

Задача 7. В условиях предыдущей задачи вычислить .

Решение. Согласно указанной выше формуле имеем:

.

Представив треугольник в виде

https://pandia.ru/text/78/107/images/image127_1.gif" width="479" height="59">

§ 5. Плотность суммы двух непрерывных случайных величин

Пусть x и h - независимые случайные величины с плотностями https://pandia.ru/text/78/107/images/image128_1.gif" width="43" height="25">. Плотность случайной величины x + h вычисляется по формуле свертки

https://pandia.ru/text/78/107/images/image130_0.gif" width="39" height="19 src=">. Вычислить плотность суммы .

Решение. Так как x и h распределены по показательному закону с параметром , то их плотности равны

Следовательно,

https://pandia.ru/text/78/107/images/image134_0.gif" width="339 height=51" height="51">

Если x<0, то в этой формуле аргумент https://pandia.ru/text/78/107/images/image136_0.gif" width="65" height="25">отрицателен, и потому . Поэтому Если же https://pandia.ru/text/78/107/images/image140_0.gif" width="359 height=101" height="101">

Таким образом, мы получили ответ:

https://pandia.ru/text/78/107/images/image142_0.gif" width="40" height="41 "> нормально распределена с параметрами 0 и 1. Случайные величины x1 и x2 независимы и имеют нормальные распределения с параметрами а1, и а2, соответственно. Доказать, что x1 + x2 имеет нормальное распределение. Случайные величины x1, x2, ... xn распределены и независимы и имеют одинаковую функцию плотности распределения

.

Найти функцию распределения и плотность распределения величин:

а) h1 = min {x1 , x2, ...xn} ; б) h(2) = max {x1,x2, ... xn }

Случайные величины x1, x2, ... xn независимы и равномерно распределены на отрезке [а, b]. Найти функции распределения и функции плотности распределения величин

x(1) = min {x1,x2, ... xn} и x(2)= max{x1, x2, ...xn}.

Доказать, что Мhttps://pandia.ru/text/78/107/images/image147_0.gif" width="176" height="47">.

Случайная величина распределена по закону Коши Найти: а) коэффициент а; б) функцию распределения; в) вероятность попадания на интервал (-1, 1). Показать, что математическое ожидание x не существует. Случайная величина подчинена закону Лапласа с параметром l (l>0): Найти коэффициент а; построить графики плотности распределения и функции распределения; найти Mx и Dx; найти вероятности событий {|x|< и {çxç<}. Случайная величина x подчинена закону Симпсона на отрезке [-а, а], т. е. график её плотности распределения имеет вид:

Написать формулу для плотности распределения, найти Мx и Dx.

Вычислительные задачи.

Случайная точка А имеет в круге радиуса R равномерное распределение. Найти математическое ожидание и дисперсию расстояния r точки до центра круга. Показать, что величина r2 равномерно распределена на отрезке .

Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:
Вычислить константу C, функцию распределения F(x), , дисперсию и вероятность Случайная величина имеет функцию распределения

Вычислить плотность случайной величины, математическое ожидание, дисперсию и вероятность Проверить, что функция =
может быть функцией распределения случайной величины. Найти числовые характеристики этой величины: Mx и Dx. Случайная величина равномерно распределена не отрезке . Выписать плотность распределения. Найти функцию распределения. Найти вероятность попадания случайной величины на отрезок и на отрезок . Плотность распределения x равна

.

Найти постоянную с, плотность распределения h = и вероятность

Р (0,25

Время безотказной работы ЭВМ распределено по показательному закону с параметром l = 0,05 (отказа в час), т. е. имеет функцию плотности

р(х) =.

Решение определенной задачи требует безотказной работы машины в течение 15 минут. Если за время решения задачи произошел сбой, то ошибка обнаруживается только по окончании решения, и задача решается заново. Найти: а) вероятность того, что за время решения задачи не произойдет ни одного сбоя; б) среднее время, за которое будет решена задача.

Стержень длины 24 см ломают на две части; будем считать, что точка излома распределена равномерно по всей длине стержня. Чему равна средняя длина большей части стержня? Отрезок длины 12 см случайным образом разрезается на две части. Точка разреза равномерно распределена по всей длине отрезка. Чему равна средняя длина малой части отрезка? Случайная величина равномерно распределена на отрезке . Найти плотность распределения случайной величины а) h1 = 2x + 1; б) h2 =-ln(1-x); в) h3 = .

Показать, что если x имеет непрерывную функцию распределения

F(x) = P(x

Найти функцию плотности и функцию распределения суммы двух независимых величин x и h c равномерными законами распределения на отрезках и соответственно. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины независимы и имеют показательное распределение с плотностью . Найти плотность распределения их суммы. Найти распределение суммы независимых случайных величин x и h, где x имеет равномерное на отрезке распределение, а h имеет показательное распределение с параметром l. Найти Р, если x имеет: а) нормальное распределение с параметрами а и s2 ; б) показательное распределение с параметром l; в) равномерное распределение на отрезке [-1;1]. Совместное распределение x, h является равномерным в квадрате
К ={х, у): |х| +|у|£ 2}. Найти вероятность. Являются ли x и h независимыми? Пара случайных величин x и h равномерно распределена внутри треугольника K=. Вычислить плотность x и h. Являются ли эти случайные величины независимыми? Найти вероятность . Случайные величины x и h независимы и равномерно распределены на отрезках и [-1,1]. Найти вероятность . Двумерная случайная величина (x, h) равномерно распределена в квадрате с вершинами (2,0), (0,2), (-2, 0), (0,-2). Найти значение совместной функции распределения в точке (1, -1). Случайный вектор (x, h) равномерно распределен внутри круга радиуса 3 с центром в начале координат. Написать выражение для совместной плотности распределения. Определить, зависимы ли эти случайные величины. Вычислить вероятность . Пара случайных величин x и h равномерно распределена внутри трапеции с вершинами в точках (-6,0), (-3,4), (3,4), (6,0). Найти совместную плотность распределения для этой пары случайных величин и плотности составляющих. Зависимы ли x и h? Случайная пара (x, h) равномерно распределена внутри полукруга . Найти плотности x и h, исследовать вопрос об их зависимости. Совместная плотность двух случайных величин x и h равна .
Найти плотности x, h. Исследовать вопрос о зависимости x и h. Случайная пара (x, h) равномерно распределена на множестве . Найти плотности x и h, исследовать вопрос об их зависимости. Найти М(xh). Случайные величины x и h независимы и распределены по показательному закону с параметром Найти

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

Можно выделить наиболее часто встречающиеся законы распределения дискретных случайных величин:

  • Биномиальный закон распределения
  • Пуассоновский закон распределения
  • Геометрический закон распределения
  • Гипергеометрический закон распределения

Для данных распределений дискретных случайных величин расчет вероятностей их значений, а также числовых характеристик (математическое ожидание, дисперсия, и т.д.) производится по определенных «формулам». Поэтому очень важно знать данные типы распределений и их основные свойства.


1. Биномиальный закон распределения.

Дискретная случайная величина $X$ подчинена биномиальному закону распределения вероятностей, если она принимает значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$. Фактически, случайная величина $X$ - это число появлений события $A$ в $n$ независимых испытаний . Закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & \dots & n \\
\hline
p_i & P_n\left(0\right) & P_n\left(1\right) & \dots & P_n\left(n\right) \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание $M\left(X\right)=np$, дисперсия $D\left(X\right)=np\left(1-p\right)$.

Пример . В семье двое детей. Считая вероятности рождения мальчика и девочки равными $0,5$, найти закон распределения случайной величины $\xi $ - числа мальчиков в семье.

Пусть случайная величина $\xi $ - число мальчиков в семье. Значения, которые может принимать $\xi:\ 0,\ 1,\ 2$. Вероятности этих значений можно найти по формуле $P\left(\xi =k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$, где $n=2$ - число независимых испытаний, $p=0,5$ - вероятность появления события в серии из $n$ испытаний. Получаем:

$P\left(\xi =0\right)=C^0_2\cdot {0,5}^0\cdot {\left(1-0,5\right)}^{2-0}={0,5}^2=0,25;$

$P\left(\xi =1\right)=C^1_2\cdot 0,5\cdot {\left(1-0,5\right)}^{2-1}=2\cdot 0,5\cdot 0,5=0,5;$

$P\left(\xi =2\right)=C^2_2\cdot {0,5}^2\cdot {\left(1-0,5\right)}^{2-2}={0,5}^2=0,25.$

Тогда закон распределения случайной величины $\xi $ есть соответствие между значениями $0,\ 1,\ 2$ и их вероятностями, то есть:

$\begin{array}{|c|c|}
\hline
\xi & 0 & 1 & 2 \\
\hline
P(\xi) & 0,25 & 0,5 & 0,25 \\
\hline
\end{array}$

Сумма вероятностей в законе распределения должна быть равна $1$, то есть $\sum _{i=1}^{n}P(\xi _{{\rm i}})=0,25+0,5+0,25=1 $.

Математическое ожидание $M\left(\xi \right)=np=2\cdot 0,5=1$, дисперсия $D\left(\xi \right)=np\left(1-p\right)=2\cdot 0,5\cdot 0,5=0,5$, среднее квадратическое отклонение $\sigma \left(\xi \right)=\sqrt{D\left(\xi \right)}=\sqrt{0,5}\approx 0,707$.

2. Закон распределения Пуассона.

Если дискретная случайная величина $X$ может принимать только целые неотрицательные значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$, то говорят, что она подчинена закону распределения Пуассона с параметром $\lambda $. Для такой случайной величины математическое ожидание и дисперсия равны между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda $.

Замечание . Особенность этого распределения заключается в том, что мы на основании опытных данных находим оценки $M\left(X\right),\ D\left(X\right)$, если полученные оценки близки между собой, то у нас есть основание утверждать, что случайная величина подчинена закону распределения Пуассона.

Пример . Примерами случайных величин, подчиненных закону распределения Пуассона, могут быть: число автомашин, которые будут обслужены завтра автозаправочной станцией; число бракованных изделий в произведенной продукции.

Пример . Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти закон распределения случайной величины $X$, равной числу поврежденных изделий; чему равно $M\left(X\right),\ D\left(X\right)$.

Пусть дискретная случайная величина $X$ - число поврежденных изделий. Такая случайная величина подчинена закону распределения Пуассона с параметром $\lambda =np=500\cdot 0,002=1$. Вероятности значений равны $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$. Очевидно, что все вероятности всех значений $X=0,\ 1,\ \dots ,\ 500$ перечислить невозможно, поэтому мы ограничимся лишь первыми несколькими значениями.

$P\left(X=0\right)={{1^0}\over {0!}}\cdot e^{-1}=0,368;$

$P\left(X=1\right)={{1^1}\over {1!}}\cdot e^{-1}=0,368;$

$P\left(X=2\right)={{1^2}\over {2!}}\cdot e^{-1}=0,184;$

$P\left(X=3\right)={{1^3}\over {3!}}\cdot e^{-1}=0,061;$

$P\left(X=4\right)={{1^4}\over {4!}}\cdot e^{-1}=0,015;$

$P\left(X=5\right)={{1^5}\over {5!}}\cdot e^{-1}=0,003;$

$P\left(X=6\right)={{1^6}\over {6!}}\cdot e^{-1}=0,001;$

$P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$

Закон распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & ... & k \\
\hline
P_i & 0,368; & 0,368 & 0,184 & 0,061 & 0,015 & 0,003 & 0,001 & ... & {{{\lambda }^k}\over {k!}}\cdot e^{-\lambda } \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание и дисперсия равным между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda =1$.

3. Геометрический закон распределения.

Если дискретная случайная величина $X$ может принимать только натуральные значения $1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=p{\left(1-p\right)}^{k-1},\ k=1,\ 2,\ 3,\ \dots $, то говорят, что такая случайная величина $X$ подчинена геометрическому закону распределения вероятностей. Фактически, геометрическое распределения представляется собой испытания Бернулли до первого успеха.

Пример . Примерами случайных величин, имеющих геометрическое распределение, могут быть: число выстрелов до первого попадания в цель; число испытаний прибора до первого отказа; число бросаний монеты до первого выпадения орла и т.д.

Математическое ожидание и дисперсия случайной величины, подчиненной геометрическому распределению, соответственно равны $M\left(X\right)=1/p$, $D\left(X\right)=\left(1-p\right)/p^2$.

Пример . На пути движения рыбы к месту нереста находится $4$ шлюза. Вероятность прохода рыбы через каждый шлюз $p=3/5$. Построить ряд распределения случайной величины $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Найти $M\left(X\right),\ D\left(X\right),\ \sigma \left(X\right)$.

Пусть случайная величина $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Такая случайная величина подчинена геометрическому закону распределения вероятностей. Значения, которые может принимать случайная величина $X:$ 1, 2, 3, 4. Вероятности этих значений вычисляются по формуле: $P\left(X=k\right)=pq^{k-1}$, где: $p=2/5$ - вероятность задержания рыбы через шлюз, $q=1-p=3/5$ - вероятность прохода рыбы через шлюз, $k=1,\ 2,\ 3,\ 4$.

$P\left(X=1\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^0={{2}\over {5}}=0,4;$

$P\left(X=2\right)={{2}\over {5}}\cdot {{3}\over {5}}={{6}\over {25}}=0,24;$

$P\left(X=3\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^2={{2}\over {5}}\cdot {{9}\over {25}}={{18}\over {125}}=0,144;$

$P\left(X=4\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^3+{\left({{3}\over {5}}\right)}^4={{27}\over {125}}=0,216.$

$\begin{array}{|c|c|}
\hline
X_i & 1 & 2 & 3 & 4 \\
\hline
P\left(X_i\right) & 0,4 & 0,24 & 0,144 & 0,216 \\
\hline
\end{array}$

Математическое ожидание:

$M\left(X\right)=\sum^n_{i=1}{x_ip_i}=1\cdot 0,4+2\cdot 0,24+3\cdot 0,144+4\cdot 0,216=2,176.$

Дисперсия:

$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2=}0,4\cdot {\left(1-2,176\right)}^2+0,24\cdot {\left(2-2,176\right)}^2+0,144\cdot {\left(3-2,176\right)}^2+$

$+\ 0,216\cdot {\left(4-2,176\right)}^2\approx 1,377.$

Среднее квадратическое отклонение:

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{1,377}\approx 1,173.$

4. Гипергеометрический закон распределения.

Если $N$ объектов, среди которых $m$ объектов обладают заданным свойством. Случайных образом без возвращения извлекают $n$ объектов, среди которых оказалось $k$ объектов, обладающих заданным свойством. Гипергеометрическое распределение дает возможность оценить вероятность того, что ровно $k$ объектов в выборке обладают заданным свойством. Пусть случайная величина $X$ - число объектов в выборке, обладающих заданным свойством. Тогда вероятности значений случайной величины $X$:

$P\left(X=k\right)={{C^k_mC^{n-k}_{N-m}}\over {C^n_N}}$

Замечание . Статистическая функция ГИПЕРГЕОМЕТ мастера функций $f_x$ пакета Excel дает возможность определить вероятность того, что определенное количество испытаний будет успешным.

$f_x\to $ статистические $\to $ ГИПЕРГЕОМЕТ $\to $ ОК . Появится диалоговое окно, которое нужно заполнить. В графе Число_успехов_в_выборке указываем значение $k$. Размер_выборки равен $n$. В графе Число_успехов_в_совокупности указываем значение $m$. Размер_совокупности равен $N$.

Математическое ожидание и дисперсия дискретной случайной величины $X$, подчиненной геометрическому закону распределения, соответственно равны $M\left(X\right)=nm/N$, $D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}$.

Пример . В кредитном отделе банка работают 5 специалистов с высшим финансовым образованием и 3 специалиста с высшим юридическим образованием. Руководство банка решило направить 3 специалистов Для повышения квалификации, отбирая их в случайном порядке.

а) Составьте ряд распределения числа специалистов с высшим финансовым образованием, которые могут быть направлены на повышение квалификации;

б) Найдите числовые характеристики этого распределения.

Пусть случайная величина $X$ - число специалистов с высшим финансовым образованием среди трех отобранных. Значения, которые может принимать $X:0,\ 1,\ 2,\ 3$. Данная случайная величина $X$ распределена по гипергеометрическому распределению с параметрами: $N=8$ - размер совокупности, $m=5$ - число успехов в совокупности, $n=3$ - размер выборки, $k=0,\ 1,\ 2,\ 3$ - число успехов в выборке. Тогда вероятности $P\left(X=k\right)$ можно рассчитать по формуле: $P(X=k)={C_{m}^{k} \cdot C_{N-m}^{n-k} \over C_{N}^{n} } $. Имеем:

$P\left(X=0\right)={{C^0_5\cdot C^3_3}\over {C^3_8}}={{1}\over {56}}\approx 0,018;$

$P\left(X=1\right)={{C^1_5\cdot C^2_3}\over {C^3_8}}={{15}\over {56}}\approx 0,268;$

$P\left(X=2\right)={{C^2_5\cdot C^1_3}\over {C^3_8}}={{15}\over {28}}\approx 0,536;$

$P\left(X=3\right)={{C^3_5\cdot C^0_3}\over {C^3_8}}={{5}\over {28}}\approx 0,179.$

Тогда ряд распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 \\
\hline
p_i & 0,018 & 0,268 & 0,536 & 0,179 \\
\hline
\end{array}$

Рассчитаем числовые характеристики случайной величины $X$ по общим формулам гипергеометрического распределения.

$M\left(X\right)={{nm}\over {N}}={{3\cdot 5}\over {8}}={{15}\over {8}}=1,875.$

$D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}={{3\cdot 5\cdot \left(1-{{5}\over {8}}\right)\cdot \left(1-{{3}\over {8}}\right)}\over {8-1}}={{225}\over {448}}\approx 0,502.$

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{0,502}\approx 0,7085.$