Микробиология: конспект лекций (К. В. Ткаченко). Генетика бактерий и вирусов Генетический материал у бактерий располагается

Данная книга предназначена студентам медицинских образовательных учреждений. Это краткое пособие поможет при подготовке и сдаче экзамена по микробиологии. Материал изложен в очень удобной и запоминающейся форме и поможет студентам за сжатый срок детально освоить основные концепции и понятия курса, а также конкретизировать и систематизировать знания.

* * *

Приведённый ознакомительный фрагмент книги Микробиология: конспект лекций (К. В. Ткаченко) предоставлен нашим книжным партнёром - компанией ЛитРес .

ЛЕКЦИЯ № 4. Генетика микроорганизмов. Бактериофаги

1. Организация наследственного материала бактерий

Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены.

Функциональными единицами генома бактерий, кроме хромосомных генов, являются:

1) IS-последовательности;

2) транспозоны;

3) плазмиды.

IS-последовательности – это короткие фрагменты ДНК. Они не несут структурных (кодирующих белок) генов, а содержат только гены, ответственные за транспозицию (способность перемещаться по хромосоме и встраиваться в различные ее участки).

Транспозоны – это более крупные молекулы ДНК. Помимо генов, ответственных за транспозицию, они содержат и структурный ген. Транспозоны способны перемещаться по хромосоме. Их положение сказывается на экспрессии генов. Транспозоны могут существовать и вне хромосомы (автономно), но неспособны к автономной репликации.

Плазмиды – дополнительный внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. Плазмиды способны к автономной репликации, т. е. независимо от хромосомы или под слабым ее контролем. За счет автономной репликации плазмиды могут давать явление амплификации: одна и та же плазмида может находиться в нескольких копиях, тем самым усиливая проявление данного признака.

В зависимости от свойств признаков, которые кодируют плазмиды, различают:

1) R-плазмиды. Обеспечивают лекарственную устойчивость; могут содержать гены, ответственные за синтез ферментов, разрушающих лекарственные вещества, могут менять проницаемость мембран;

2) F-плазмиды. Кодируют пол у бактерий. Мужские клетки (F+) содержат F-плазмиду, женские (F-) – не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские – реципиента. Они отличаются поверхностным электрическим зарядом и поэтому притягиваются. От донора переходит сама F-плазмида, если она находится в автономном состоянии в клетке.

F-плазмиды способны интегрировать в хромосому клетки и выходить из интегрированного состояния в автономное. При этом захватываются хромосомные гены, которые клетка может отдавать при конъюгации;

3) Col-плазмиды. Кодируют синтез бактериоцинов. Это бактерицидные вещества, действующие на близкородственные бактерии;

4) Tox-плазмиды. Кодируют выработку экзотоксинов;

5) плазмиды биодеградации. Кодируют ферменты, с помощью которых бактерии могут утилизировать ксенобиотики.

Потеря клеткой плазмиды не приводит к ее гибели. В одной и той же клетке могут находиться разные плазмиды.

2. Изменчивость у бактерий

Различают два вида изменчивости – фенотипическую и генотипическую.

Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу.

Генотипическая изменчивость затрагивает генотип. В основе ее лежат мутации и рекомбинации.

Мутации – изменение генотипа, сохраняющееся в ряду поколений и сопровождающееся изменением фенотипа. Особенностями мутаций у бактерий является относительная легкость их выявления.

По локализации различают мутации:

1) генные (точечные);

2) хромосомные;

3) плазмидные.

По происхождению мутации могут быть:

1) спонтанными (мутаген неизвестен);

2) индуцированными (мутаген неизвестен).

Рекомбинации – это обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом.

У бактерий существует несколько механизмов рекомбинации:

1) конъюгация;

2) слияние протопластов;

3) трансформация;

4) трансдукция.

Конъюгация – обмен генетической информацией при непосредственном контакте донора и реципиента. Наиболее высокая частота передачи у плазмид, при этом плазмиды могут иметь разных хозяев. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше этот контакт, тем большая часть донорской ДНК может быть передана реципиенту.

Слияние протопластов – механизм обмена генетической информацией при непосредственном контакте участков цитоплазматической мембраны у бактерий, лишенных клеточной стенки.

Трансформация – передача генетической информации в виде изолированных фрагментов ДНК при нахождении реципиентной клетки в среде, содержащей ДНК-донора. Для трансдукции необходимо особое физиологическое состояние клетки-реципиента – компетентность. Это состояние присуще активно делящимся клеткам, в которых идут процессы репликации собственных нуклеиновых кислот. В таких клетках действует фактор компетенции – это белок, который вызывает повышение проницаемости клеточной стенки и цитоплазматической мембраны, поэтому фрагмент ДНК может проникать в такую клетку.

Трансдукция – это передача генетической информации между бактериальными клетками с помощью умеренных трансдуцирующих фагов. Трансдуцирующие фаги могут переносить один ген или более.

Трансдукция бывает:

1) специфической (переносится всегда один и тот же ген, трансдуцирующий фаг всегда располагается в одном и том же месте);

2) неспецифической (передаются разные гены, локализация трансдуцирующего фага непостоянна).

3. Бактериофаги

Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и отростка.

Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток – спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии.

Фаги могут существовать в двух формах:

1) внутриклеточной (это профаг, чистая ДНК);

2) внеклеточной (это вирион).

Фаги, как и другие вирусы, обладают антигенными свойствами и содержат группоспецифические и типоспецифические антигены.

Различают два типа взаимодействия фага с клеткой:

1) литический (продуктивная вирусная инфекция). Это тип взаимодействия, при котором происходит репродукция вируса в бактериальной клетке. Она при этом погибает. Вначале происходит адсорбция фагов на клеточной стенке. Затем следует фаза проникновения. В месте адсорбции фага действует лизоцим, и за счет сократительных белков хвостовой части в клетку впрыскивается нуклеиновая кислота фага. Далее следует средний период, в течение которого подавляется синтез клеточных компонентов и осуществляется дисконъюнктивный способ репродукции фага. При этом в области нуклеоида синтезируется нуклеиновая кислота фага, а затем на рибосомах осуществляется синтез белка. Фаги, обладающие литическим типом взаимодействия, называют вирулентными.

В заключительный период в результате самосборки белки укладываются вокруг нуклеиновой кислоты и образуются новые частицы фагов. Они выходят из клетки, разрывая ее клеточную стенку, т. е. происходит лизис бактерии;

2) лизогенный. Это умеренные фаги. При проникновении нуклеиновой кислоты в клетку идет интеграция ее в геном клетки, наблюдается длительное сожительство фага с клеткой без ее гибели. При изменении внешних условий могут происходить выход фага из интегрированной формы и развитие продуктивной вирусной инфекции.

По признаку специфичности выделяют:

1) поливалентные фаги (лизируют культуры одного семейства или рода бактерий);

2) моновалентные (лизируют культуры только одного вида бактерий);

3) типовые (способны вызывать лизис только определенных типов (вариантов) бактериальной культуры внутри вида бактерий).

Фаги могут применяться в качестве диагностических препаратов для установления рода и вида бактерий, выделенных в ходе бактериологического исследования. Однако чаще их применяют для лечения и профилактики некоторых инфекционных заболеваний.

тема: Генетика бактерий

1865 год Мендель установил существование генов. 1869 Фишер выделил ДНК. Через 80 лет доказано что носителем генов является ДНК, 1953 Крик, Уотсон – расшифрована структура ДНК.

Ген выполняет следующие основные функции :


  1. Непрерывность наследования генетической информации благодаря механизму репликации ДНК

  2. Управление структурами и функциями организма с помощью генетического кода

  3. Благодаря мутации и генетическим рекомбинациям, которые происходят в гене осуществляется эволюция всех живых организмов.
Генетический код расшифрован и характеризуется следующими свойствами:

  1. Код триплетный → кодон состоит из 3 букв и кодируют одну аминокислоту

  2. Код не перекрывающийся

  3. Число бессмысленных кодонов очень маленькое (3 из 64)

  4. Последовательность расположения кодов в гене определяет последовательность положения аминокислотных остатков в полипептидной цепи

  5. Код универсален
Генетическая система обладает уникальными свойствами:

    1. Способность к самоудвоению с помощью механизма саморепликации

    2. Самовыражение (экспрессия) с помощью регулируемого синтеза матричной РНК

    3. Самообновление с помощью мутаций, рекомбинаций и самоподвижных элементов

    4. Самоисправляемая (ревизия, репарация, супрессия)
Ген – структура определяющая последовательность аминокислот в ППЦ.

Гены вирусов и эукариотов состоят из экзона (кодирующий) и интроны (не кодирующие). У вирусов в одном и том же фрагменте могут существовать 2 гена с разными рамками считывания. Ген не всегда строго ограниченный участок хромосомы, есть подвижные участки у бактерий. Ген требует регулирования (регуляторы, промотеры). Ген единственные носитель и хранитель жизни, а белок определяет форму и способ жизни.

Эволюция генетической системы шла в направлении кодон(триплет) → ген → оперон → геном вирусов и плазмид → хромосома прокариотов → хромосома эукариотов (ядро).

Объем генома у представителей различных живых организмов сильно отличается. Можно измерить в следующих единицах: молекулярная масса нуклеиновых кислот либо в количестве нуклеотидных пар либо в количестве генов. Все эти значения сопоставимы ген в среднем включает 1000 пар нуклеотидов (вируса гепатита В – 4 гена; ВИЧ – 9 генов)

Генотип – вся совокупность генов у данного вида организма. 10%-70% не кодирующие гены (повторяющиеся последовательности), они не относятся к генотипу и составляют геном.

Фенотип – внешние проявления генотипа в конкретных условиях внешней среды при изменении внешних условий меняется генотип, но генотип при этом сохраняется.

^ Особенности генетики бактерий.

Хромосомы бактерий располагаются свободно в цитоплазме, не ограничены мембранами, но во всех случаях ДНК бактерии связана с рецепторами на мембране.

Бактерии гаплоидны, содержание ДНК не постоянно, может достигать 2, 4, 6, 8 – хромосом (у других организмов оно постоянно и удваивается только перед делением).

Передача генетической информации идет не только по вертикале (материнская→дочерняя), но и по горизонтали (конъюгация, трансформация)

Помимо хромосомного генома имеется не хромосомный генетический материал, который называется плазмидным геномом (эписомы, внехромосомные факторы наследственности). Это наделяет клетку дополнительными биологическими свойствами.

Содержание ДНК у бактерий зависит от условий их роста или от времени клеточного цикла бактерии, которые осуществляется каждые 20-30 минут, поэтому и количество может соответствовать (4,6,8) и это сопровождается увеличением количества рибосом (этапы транскрипции, трансляции идут одновременно, возможность регулировать скорость размножения главное условие сохранения вида.

^ Особенности репликации.

Вегетативная репликация: обуславливает передачу информации по вертикали, контролируется хромосомными и плазмидными генами.

Конъюгативная репликации: перенос материала по горизонтали и контролируется только плазмидными генами, при этом происходит достройка нити ДНК комплиментарной нити от донора к реципиенту.

Репаративная репликация: механизм при котором устраняется из ДНК поврежденный участок

Стркуктурно-функциональной едициней является оперон – группа структурных генов связанных с особым геном оператором, он управляет всей группой структурных генов и идет как самостоятельная единица, находится под контролем гена модулятора. В хромосоме гены распределяется друг за другом контролируя разные процессы, но законченный результат можно получить выбирая не последовательно (как игра на пианино).

^ Хромосомная карта бактерий

ромосомы бактерий имеют кольцевую форму, гены располагаются линейно, их можно последовательно расположить. Локализация генов определяют в минутах их переноса, и хромосомная карта это 0-100 минут.

Определение локализации гена на хромосоме называется картированием, а их расположение хромосомной картой масштаб которой в минутах. В настоящее время есть карты: кишечной палочки.

^ Изучение организации генома бактерий.

Проводится с помощью ферментов – рестриктаз способные расщепить ДНК в специфических участках, которые они комплиментарны. В настоящее время известно более 100 рестриктаз. С помощью них можно получить рестрикционные фрагменты ДНК → рестрикционный анализ. Сравнение рестрикционных фрагментов и называется рестрикционным анализом, который может быть использован для идентификации. Делают копии цепей ДНК, которые имеют липкие концы с помощью которых фрагменты вновь могут образовывать кольца. Именно за счет липких концов можно получать между разными фрагментами ДНК – рекомбинантные ДНК. Если эти фрагменты получены с помощью одной рестриктазы они могут вступать во взаимодействия между собой.

Метод клонирования. Выделенный фрагмент ДНК с помощью рекомбинантных молекул вводится в самореплицирующую генетическую структуру – в плазмиду, вирус и дальше они выполняют роль вектора для клонирования. Их сшивают с фрагментом ДНК – геномом, который будет размножаться в составе плазмилы или в составе геном бактериальной клетки. Такие гибридные ДНК также можно выделить из клетки за счет рестрикции – вырезания. С помощью клонирования можно получать большое количество копий любого фрагмента ДНК, который можно метить радиоактивной меткой.

Метод сегвинирования. Используют для определения последовательности расположение ДНК в клонируемом фрагменте ДНК. Методы секвинирования и клонирования это методы помогающие изучить геномы в т. ч. геном человека (2004).

^ Плазмидный геном бактериальной клетки.

Плазмиды – фрагменты ДНК с небольшой молекулярной массой, несут от 40 до 50 генов. Они выполняют также регуляторную и структурную функцию. Плазмиды могут располагаться либо в цитоплазме, могут иметь кольцевую структуру. Могут находится в интегрированном состоянии хромосомы (эписомы).

Свойства плазмид:


  1. Не обязательные генетические элементы бактерий (дополнительные).

  2. Обладают саморепликацией и автономностью, независимостью от хромосомы клетки. ДНК бактерии им не управляет.

  3. Склонны к трансмиссии как по вертикали, так и по горизонтали обеспечивая при этом гегетическую изменчивость бактерий.
Виды плазмид:

F-фактор – кольцевая молекула. Ее гены кодируют образование половых ворсинок, размножение бактерий, скорость размножения с ней связывают конъюгацию, участвует в горизонтальной передаче генетического материала и передаются различные свойства: устойчивость к антибиотикам, лактозо положительность.

R-фактор – детерминирует продукцию фермента β-лактамызы → устойчивость к антибиотикам. В составе этой плазмиды может быть специальный tra-оперон (ген отвечающий за перенос) → плазмида легко передается.

Hly – плазмида связана с продукцией гемотоксина → более токсигенные бактерии.

Col-фактор отвечает за продукцию колицинов (антибиотикоподобные вещества) обеспечивающих преимущество бактерий перед другими.

Плазмиды био деградации: участвуют в расщепдлении веществ загрязняющих окружающей среды.

Плазмида умеренного фага - фаг который способен распознать, внедрится, в клетку, но вызвать лизис бактерии вызвать не может. Может покидать клетку, захватывать часть генетического материала клетки и внедряясь в другую клетку участвует в переносе генетического материала (трансдукция)

Плазмиды есть конъюгативные (способные к переносу, имеющие в своем составе ген переноса), неконъюгативные (не участвуют в рекомбинации). По совместимости есть несовместимые друг с другом, совместимые.

^ Транспазоны, IS-последовательности.

Относятся к дополнительным генетичесим элементам

Th-маленькие участки ДНК (прыгающие) - в составе могут быть Rгены. Могут находится как в составе ДНК, так и в составе плазмид. Странспазонами связны мутации бактерии поскольку они могут перемещаться и вызывать мутации типа делеции, инверсии, дупликации.. Транспазоны ограничены с двух сторон IS-последовательностями.

IS-фрагменты – маленькие фрагменты ДНК, повторяющиеся, не способны к репродукции в свободном состоянии не участвуют. Основные функции: регуляторные (способны включить - выключить ген). Координируют взаимодействие транспазонов плазмид, фагов как между собой так и с хромосомой клетки хозяина.

^ Изменчивость бактерий.

Модификационная: адаптивная реакция организмов в ответ на условия внешней среды. Могут изменять морфологические, культуральные, ферментативные свойства.

Генотипическая: затрагивает генотип клетки:


  • Мутационная – изменение первичной структуры ДНК, могут быть связаны с выпадением нуклеатида, делецией могут носить характер инверсии. Могут быть хромосомные, плазмидные. Могут быть спонтанные, индуцированные. Значение эволционные изменение, сопроваждается селекцией.

  • Комбинативная: трансформация – передача генетического материала в виде раствора ДНК донора к реципиенту, трансдукция – перенос генетического материала от донора к реципиенту с помощью умеренных фагов (неспецифическая, специфическая), конъюгация – передача генетического материала от донора имеющего F-фактор к реципиенту через половые ворсинки с образованием новых штаммов.
^ Значение генетики в эволюции бактерии.

Особенности генетики вирусов .


  1. Молекулярная масса геном вирусов 10 6 меньше чем масса эукариотической клетки.

  2. Организация генетического аппарата такая же

  3. Генов от нескольких единиц до десятков.

  4. Принцип 1 ген – молекул РНК – 1 белок у вирусных ДНК нарушен и иРНК вирусов может направлять синтез 2 и более белков.
Способы увеличения генетической информации у вируса .

  1. Двукратное считывание одной и той же и РНК, но с другого кодона.

  2. Сдвиг рамки трансляции

  3. Сплайсинг (вырез интронов)

  4. Транскрипция с перекрывающихся областей нуклеиновой кислоты → размывается границы гена и понятие ген приобретает функциональное значение.
^ Виды изменчивости у вирусов.

Модификационная . В основном для вирусов определяет клетка хозяина. Модификация затрагивает суперкапсид.

Генотипическая . Мутационная, то есть изменение в первичной структуре нуклеотидов.

Рекомбинативная . Происходит при одновременном заражении клетки хозяина двумя или более вирусами, происходит обмен генами → образуются рекомбинантные штаммы вирусов, которые содержат гены 2 и более штаммов.

^ Генетическая реактивация . Процесс при котором вирионы дополняют друг друга в следствии перераспределения генов во время их репликации. Это наблюдается у вирусов с фрагментарным геномом. При скрещивании таких вирусов происходит образование полноценных единиц.

Комплементация (дополнение). Не генетически й процесс при котором вирус снабжает своего партнера (как правило дефектного) недостающими компонентами белка, а не нуклеиновыми кислотами. Характерна для многих вирусов – аденовирусы могут культивироваться только в присутсвии SV 40 – вирус. Вирус гепатита В является помощником для δ - вируса (HDV).

^ Фенотипическое смешивание . Наблюдается при совместном культивировании двух вирусов наблюдаем, что геном одного вируса заключается в капсид другого вируса. Генотип при этом не меняется

^ Генная инженерия.

Биотехнология использование биологических объектов (клеток микроорганизмов, грибов, животных, людей) для получения полезных для человека продуктов, которые не могут быть получены другим путем. Основное направление это генная инженерия. Появилась с 1972 когда появилась первая работа по генной инженерии.

Объект генной инженерии: ген или группа генов.

Источники получения: вирусы, прокарилты

Цель: пересадка гена в другие, гетерогенные системы, экспрессия этого гена и т.о. получать полезные продукты (белки, фермены, гормоны, лекарственные препараты и другие БАВ)

Инструмент генной инженерии: ферменты рестриктазы с помощью которых можно получать фрагменты генома. Рестриктазы имеют липкие концы для сшивания различных генов. Если их нет используют лигазы .

Этапы генной инженерии:


  1. выделение гена из клетки с помощью рестриктаз из генома клетки.

  2. присоединение гена к вектору (переносчику) – плазмиду, ДНК, РНК втрусов, умеренные фаги, искусственные плазмиды. Основные требования к вектору – должен выполнять роль саморепликации. Этот этап сопроваждается образованием рекомбинантной ДНК (ген+вектор)

  3. введение рекомбинантной ДНК в гетерогенную систему. В качестве этой системы выступает клетка прокариотов, эукариотов, соматическая.

  4. экспрессия введенного гена, создаются условия что бы рекомбинантная молекула начала самореплицироваться и заставила клетку продуцировать вещество, которое кодирует перенесенный ген.

  5. клонирование гена и выделение продукта, очитка продукта и выхода продукта
С помощью генной инженерии получают инсулин, интерферон, гормон роста, тромболитики, антикоагулянты, антигены (ВИЧ, малярийного плазмодия, бледной трипанемы) используют для создания диагностических систем, вакцины (против HBV, ВИЧ, малярии).

Генетика микроорганизмов как наука

Замечание 1

Примерно до конца $30$-х годов $XX$ века считалось, что микроорганизмы не имеют ядерного аппарата. Поэтому вопросы наследственности и изменчивости микроорганизмов тщательно не изучались.

Лишь с изобретением электронного микроскопа появилась возможность рассмотреть субмикроскопическую структуру клетки вообще и микроорганизмов в частности.

С начала $40$-х годов ученые-генетики обращают свое внимание на микроорганизмы. Бактерии, микроскопические грибы и вирусы становятся объектами генетических исследований. Формируется новая отрасль микробиологии – генетика микроорганизмов.

Генетика микроорганизмов – это раздел общей генетики, в котором предметом изучения служат микроорганизмы (бактерии, вирусы, микроскопические грибы) и особенности их наследственности и изменчивости.

Характерной особенностью микроорганизмов является гаплоидный набор хромосом или кольцевая молекула ДНК. Это дает возможность мутациям проявиться уже в первом поколении потомков.

Начало микробиологических генетических исследований

Благодаря изучению субмикроскопической структуры клеток микроорганизмов удалось найти ответы на многие вопросы генетики. Американсие генетики О.Т. Эйвери, К. Мак-Леод и М. Маккарти, проводя опыты на пневмококках, получили первые доказательства того, что материальным носителем наследственности является молекула ДНК. Исследования хлебной плесени позволило сформулировать положение, что один ген программирует синтез одной полипептидной цепи (одногобелка).

Но особенно интенсивно стали исследовать микроорганизмы с точки зрения генетики после того, как американскими микробиологами С. Лурия и М. Дельброком на примере кишечной палочки было доказано универсальность закономерностей мутационного процесса. Они доказали, что и бактерии подчиняются мутационным закономерностям.

В науке появился новый принцип изучения изменчивости у бактерий – клональный анализ. Он заключается в тщательном исследовании потомства одной клетки. Эта клетка становится родоначальником клона.

Изучение бактерий

В результате кропотливых исследований американским генетикам Дж. И Э. Ледербергам удалось доказать, что у бактерий мутации возникают независимо от условий их культивирования. Они разработали метод отпечатков, который позволил очень упростить приемы отбора микроорганизмов с желаемыми свойствами для дальнейших исследований. Они доказали, что больших популяциях клеток бактерий мутации происходят неупорядочено – спонтанно.

В $1946$ году было доказано, что бактериям тоже присущ половой процесс, были открыты явления конъюгации хромосом и рекомбинации генов, переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага.

Существует мнение, что в кольцевой молекуле нуклеиновой кислоты клеток прокариот «прочтение информации» зависит от места начала «считывания». В зависимости от того, с какого нуклеотида начался этот процесс, находится и синтез того или иного белка.

Изучение фагов

Изучая особенности взаимоотношений «бактерия – бактериофаг», американские генетики открыли явление трансдукции (переноса генов между бактериальными клетками с помощью фагов) и обнаружили рекомбинацию у фагов. Это дало возможность изучать вопросы наследственности на уровне молекул (молекулярный уровень организации материи).

Немецкие микробиологи исследовали молекулу РНК. Для каждой из групп микроорганизмов была разработана методика исследований.

Генетика грибов и водорослей

Низшие грибы и водоросли имеют половой процесс несколько отличный от полового процесса других организмов. Благодаря их изучению появился новый метод – тетрадный анализ. Исследуя эти организмы, ученые разрабатывали методику объединения ядер генетически различных штаммов микроорганизмов. Все эти методы могут в дальнейшем послужить для выведения организмов с заданными качествами, для разработки новых поколений антибиотиков и биологически активных веществ, а также для борьбы со многими видами заболеваний растений, животных и, конечно же, человека.

Замечание 2

Но вопросы генной инженерии требуют осторожного подхода к изучению и применению полученной информации на практике. Ведь не ясно, к каким последствиям может привести появление генетически модифицированных организмов в природе и в человеческом организме.

Оглавление темы "Оценка роста бактерий. Спорообразование бактериями. Генетика бактерий.":
1. Двухфазный рост бактерий. Диауксия. Рост без деления. Оценка роста бактерий. Количественная оценка роста бактерий.
2. Факторы влияющие на рост бактерий. Культуральные среды для роста бактерий. Простые и сложные культуральные среды. Твердые и жидкие культуральные среды.
3. Температура роста бактерий. Мезофильные бактерии. Термофильные бактерии. Психрофильные бактерии. Аэрация бактерий.
4. Величина рН необходимая для роста бактерий. Пигменты бактерий. Виды пигментов. Функции пигментов бактерий.
5. Спорообразование бактериями. Споры бактерий. Спорангии. Эндоспоры. Экзоспоры.
6. Морфология споры бактерий. Строение споры бактерий. Структура споры бактерий.
7. Споруляция бактерий. Стадии споруляции у бактерий. Расположение спор у бактерий.
8. Прорастание спор бактерий. Активация споры. Покоящиеся (некультивируемые) формы бактерий.

10. Внехромосомные факторы наследственности бактерий. Плазмиды бактерии. Виды плазмид. Функции плазмид бактерий.

В наши дни приоритетным направлением естествознания можно считать молекулярную биологию. Она тесно связана с микробиологией и в известном смысле является её детищем, так как в качестве основных моделей использует бактерии и вирусы, а одно из основных направлений молекулярной биологии - молекулярная генетика - долгое время являлась не чем иным, как генетикой бактерий и бактериофагов.

Изучение генетики бактерий имеет также и несомненный прикладной интерес, например в плане установления механизмов передачи патогенных свойств и устойчивости к лекарственным препаратам.

Бактерии - удобная модель для генетических исследований . Их отличает: относительная простота строения генома, позволяющая выявлять мутанты с частотой 10 -9 и ниже; гаплоидность, исключающая явление доминантности; половая дифференциация в виде донорских и реципиентных клеток; наличие обособленных, и интегрированных фрагментов ДНК (плазмид, транспозонов и т.д.); лёгкость культивирования и возможность получения популяций, содержащих миллиарды микробных тел.

Как и у других организмов, совокупность генов бактериальной клетки - геном - определяет её свойства и признаки (генотип ). Фенотип бактериальной клетки - результат взаимодействий между бактерией и окружающей средой - также контролирует геном (так как сами признаки закодированы в бактериальных генах).

Генетический материал бактерий

Ядерные структуры бактерий имеют характерное строение, отличающее их от ядер эукарио-тических клеток; их образуют так называемые хроматиновые тельца, или нуклеоиды, лишённые оболочки и включающие в себя почти всю ДНК бактерии.

Ядерные структуры можно наблюдать в фазово-контрастный микроскоп, где они выглядят как менее плотные участки цитоплазмы. Для их выявления в фиксированных мазках предложена реакция Фёльгена-Россенбёка.

В растущих бактериальных клетках нуклеоиды активно делятся, их количество иногда достигает 2-4.


Прокариотический геном

У бактерий обычно имеется одна замкнутая кольцевидная хромосома , содержащая до 4000 отдельных генов, необходимых для поддержания жизнедеятельности и размножения бактерий, то есть бактериальная клетка гаплоидна, а удвоение хромосомы обычно сопровождается её делением.

Некоторые виды (например, Brucella melitensis) стабильно содержат две кольцевые хромосомы , другие (Leptospira interrogans) - одну кольцевую хромосому и одну большую плазмиду, третьи - одну линейную хромосому (Streptomyces ambofaciens), то есть обладают сложными геномами.

Бактериальная хромосома содержит до 5*10 6 пар оснований. Для сравнения: геном человека составляет 2,9*10 9 пар оснований. Длина бактериальной хромосомы в развёрнутом состоянии составляет около 1 мм (Escherichia coli).

Некоторые бактерии содержат внехромосомные молекулы ДНК (плазмиды ) и мобильные элементы (либо плазмидные, либо хромосомные).


ТЕМА ЛЕКЦИИ: «Генетика бактерий.»
План лекции:

    Генетика как наука. История становления генетики микроорганизмов.

    Организация генетического аппарата бактериальной клетки.

    Внехромосомные факторы наследственности.

    Понятие о генотипе и фенотипе, видах изменчивости.

Генетика – это наука, изучающая закономерности наследственности и изменчивости живых организмов, в том числе и микроорганизмов.

Наследственность – это свойство живого организма (в том числе и микроорганизма) передавать потомству признаки и особенности развития родителей (видовые признаки).

Изменчивость – это свойство живого организма (в том числе и микроорганизма) изменяться (изменять видовые признаки), обеспечивая разнообразие живого как на уровне одной отдельной клетки , так и на уровне вида.

Исторические этапы становления генетики микроорганизмов.

0. Эвристический (донаучный) период.

Судя по археологическим данным, 6000 лет назад надписи на глиняных табличках гласили: «физические признаки могут передаваться от одного поколения другому»; в частности, вавилонские глиняные таблички указывают на возможные признаки при скрещивании лошадей, улучшение породы других животных и сортов растений.

I . Эмпирический (научный) период (середина XIX века).

Исходной точкой становления генетики как науки послужили труды Г. Менделя. В 1865 г. австрийский монах Грегор Мендель обнародовал труды по скрещиванию сортов гороха: «наследственные признаки не смешиваются, а передаются от родителей к потомкам в виде обособленных (дискретных) единиц». Однако эти работы настолько опередили развитие биологии того времени, что оказались невостребованными.

Однако корни генетики бактерий берут свое начало от первых попыток систематики бактерий. Работы Л. Пастера и Р. Коха побудили открытие новых микроорганизмов, необходимо было их систематизировать, то есть сопоставить сходные признаки и различия. И здесь мнения ученых разделились. Существовало мнение полиморфистов (плеоморфисты) , которые считали, что все свойства бактерий изменяются, и мономорфистов , которые утверждали, что свойства микроорганизмов неизменны. После длительной дискуссии победу одержали плеоморфисты, а результаты почти векового спора двух направлений послужили основой для генетики бактерий.

II . Классический период (начало XX века).

В 1900 г. К. Корренс, Э. фон Чермак, Г. Де Фриз в работах по гибридизации бактерий переоткрывают законы Менделя, которые к тому времени были забыты. С этого момента начинается бурное развитие генетики высших организмов (растений, животных).

В 1903 г. Иогансен предложил термин «ген».

В 1906 г. Бетсон дал определение «генетики».

В 1925 г. Надсон, Филипов изучили действие рентгеновских лучей на дрожжи, в 1927 г. изучены термические мутации.

В 1928 г. Фредерик Гриффитс обнаружил молекулу наследственности, которая передается от бактерии к бактерии.

III . Период молекулярной генетики (с середины XX века).

Основные открытия в генетике бактерий приходятся на середину XIX века, когда у ученых появилась возможность не просто систематизировать сведения об изменчивости и наследственности, но и расшифровать их «тонкие» механизмы. В этот период была проведены расшифровка структуры ДНК, триплетного кода, описание механизмов синтеза белка, обнаружение рестриктаз и секвенирование ДНК.

В 1944 г. О. Эвери, К. Мак Леод, М. Мак Карти изолируют ДНК, осуществив трансформацию бескапсульных пневмококков в капсульные in vitro, тем самым доказав, что материальной единицей наследственности (генетическим материалом) у бактерий является ДНК.

В 1952 г. Чейз доказывает, что генетическая информация бактериофагов содержится также в ДНК.

В 1953 г. Ф. Крик, Д. Уотсон смоделировали структуру и репликацию ДНК, обосновали приложимость этой модели к наследственности и изменчивости микроорганизмов.

В 40-50 гг. – были выявлены системы рекомбинации у бактерий: трансдукция, трансформация и конъюгация. Затем открыты внехромосомные факторы наследственности: плазмиды, транспозоны, Is-элементы и т.д.

В 1958 г. Шталь доказал, что удвоение ДНК у бактерий носит полуконсервативный характер.

В 1961 г. Ф. Крик, Бернет и Д. Уотсон сформулировали общие принципы организации генетического кода на примере генетического кода E. coli (код является триплетным, вырожденным и неперекрывающимся).

В 1970 г. у бактерий палочки инфлюэнцы обнаружены ферменты рестриктазы.

В 1977 г. лаборатория Зангера полностью секвенировала геном бактериофага.

В 1983 г. Кэри Мелис открывает ПЦР для простой и быстрой амплификации ДНК.

В 1995 г. полностью секвенирован геном организма невирусной природы – бактерии Haemophylus influenzae.

В 1996 г. впервые секвенирован геном пекарских дрожжей (Saccharomyces cerevisiae).

В 1998 г. секвенирован геном многоклеточного организма – нематоды.

В 2001 г. сделаны первые «наброски» полной последовательности генома человека.

В 2003 г. секвенировано 99% генома человека.

В настоящее время развивается биотехнология , инженерная энзимология – использование микробных ферментов на носителе (разработан препарат иммобилизованная стрептокиназа – «стрептодеказа», который вводят в сосуд для растворения тромба; растворимая в воде полисахаридная матрица с привязанной стрептокиназой повышает устойчивость фермента, снижает его токсичность, аллергическое действие, повышает способность растворять тромбы). Бурными темпами развивается клеточная инженерия (гибридомы), тканевая инженерия (способ получения кератоноцитов), генная инженерия (получен промышленный штамм микроорганизма-сверхпродуцента, синтезирующего аминокислоту «треонин» для добавления в корм животным с целью наращивания мышечной ткани).

Недостатки высших организмов как моделей для генетических исследований:


    длительность эксперимента (продолжительный срок жизни экспериментального животного);

    ограниченное число особей, используемое в эксперименте;

    диплоидный набор хромосом;

    требования ухода и специального содержания животных;

    экономические затраты.

Преимущества бактерий как моделей для генетических экспериментов:

    сходная с высшими организмами структура наследственности – ДНК;

    возможность получения популяций, содержащих миллиарды микробных клеток, в короткие сроки;

    гаплоидный набор хромосом (исключает явление доминантности и позволяет выявлять мутации с высокой частотой);

    наличие автономных и интегрированных фрагментов ДНК (плазмиды, транспозоны, Is-элементы и др.);

    половая дифференциация в виде донорских и реципиентных клеток.

Организация генетического аппарата бактериальной клетки.

Материальной единицей наследственности , определяющей генетические свойства всех живых организмов, в том числе бактерий и вирусов (исключение РНК-содержащие вирусы), является ДНК .

Хромосома бактериальной клетки представляет собой кольцевую двухцепочечную молекулу ДНК, организованную в нуклеоид.

Молекула ДНК бактерий, как и других организмов, представляет собой длинные двойные цепи мономеров – нуклеотиды . Каждый мононуклеотид содержит одно из азотистых оснований (аденин/гуанин, цитозин/тимин), одну молекулу сахара (дезоксирибозу) и остаток фосфорной кислоты. Нуклеотиды в ДНК соединены между собой фосфодиэфирными связями. Мононуклеотиды формируют полинуклеотиды , а те цепочки ДНК . Две полинуклеотидные цепи, закрученные правильными ветками вокруг общей оси, соединены между собой водородными связями , которые устанавливаются между пуриновым основанием одной цепи и пиримидиновым основанием другой (аденин из одной цепи связывается с тимином другой, а гуанин с цитозином). При этом, суммарное отношение А+Т/Г+Ц является величиной постоянной для каждого вида микроорганизмов (правило Чаргафа ) и колеблется от 0,45 до 2,73.

Информация о видовых признаках и свойствах бактерий заключена в генах.

Ген – это участок молекулы ДНК, несущий информацию о первичной структуре полипептида белка или РНК.

Гены, несущие информацию о синтезируемых микроорганизмами ферментах или структурных белках, называются структурными . Гены, регулирующие функционирование (транскрипцию) структурных генов, называются регуляторными (регуляторные элементы – операторы, промоторы, регуляторы).

До недавнего времени считалось, что последовательность гена непрерывна. Однако исследования показали, что она может прерываться вкрапленными в нее нетранслируемыми участками (интронами ). Соответственно, ген может состоять из отдельных фрагментов, соединяющихся воедино во время генной экспрессии. Таким образом, структура гена сложнее, чем ранее предполагалось.

Отличие генома прокариот от генома эукариот.


Прокариоты

Эукариоты

ДНК не ограничена ядерной мембраной (располагается в цитоплазме свободно)

ДНК ограничена ядерной мембраной

ДНК суперспирализована

ДНК не суперспирализована

Циркулярная ДНК (замкнута в кольцо)

Линейная ДНК

Не содержат гистонные белки

Содержат гистонные белки

Гаплоидный набор хромосом

Диплоидный набор хромосом

Бинарное деление

Делятся митозом

Наличие обособленных фрагментов ДНК (плазмиды, транспозоны, Is-элементы и др.)

Отсутствие обособленных фрагментов ДНК

Передача генетической информации как по вертикали (от материнской клетки – дочерним), так и по горизонтали (от клетки-донора к клетке-реципиенту)

Передача генетической информации только по вертикали (от родителей – детям)

Особенности репликации бактериальной ДНК.

Репликация – это воспроизведение ДНК путем самоудвоения.

Репликация ДНК у бактерий начинается в строго определенной точке хромосомы (локусе – oriC), носит полуконсервативный характер, идет одновременно в двух противоположных направлениях и заканчивается также в строго фиксированной точке (terminus ).

Стадии репликации ДНК:


    Разрезание молекулы ДНК с помощью фермента рестриктазы .

    Раскручивание цепей ДНК с участием изомеразы и их разделение хеликазами с образованием репликаторной вилки.

    Стабилизация однонитевых участков ДНК ДНК-связывающим белком .

    Каждая из спиралей становиться матрицей, на которой достраивается молекула ДНК по закону комплементарности пар оснований:


    особенность репликации ДНК является необходимость в затравке – коротких фрагментов РНК, которые синтезируются с помощью ДНК-праймазы ;

    репликация ДНК осуществляется с помощью фермента ДНК-полимеразы , которая осуществляет синтез ДНК только в направлении 5" → 3", а поскольку цепи ДНК антипараллельны репликация происходит своеобразно: на одной из матричной цепи («ведущей») синтез ДНК идет непрерывно, а на другой («отстающей») цепи ДНК-полимераза должна возвращаться, чтобы наращивать нить тоже в направлении 5" → 3", поэтому репликация идет прерывисто, короткими фрагментами (≈1-2 тыс. пар нуклеотидов, названные по имени открывшего их ученого фрагментами Оказаки ) – участок РНК-затравки вырезается с помощью эндонуклеазы и заменяется сегментами Оказаки, сшивании их с матричной ДНК присходит с помощью лигаз .

Суперспирализация вновь синтезированных нитей ДНК с участием топоизомеразы .

Ревизия ДНК-полимеразой вновь синтезированных фрагментов ДНК (для исключения ошибочного включения нуклеотидов).

Внехромосомные факторы наследственности.

Внехромосомные факторы наследственности входят в состав многих микроорганизмов, особенно бактерий. Они представлены плазмидами и мигрирующими элементами – Is -последовательностями, транспозонами (Tn ), конъюгативными транспозонами (CTn ), интегронами (In ), генными островами (ГО) и бактериофагами , которые являются молекулами ДНК, отличающиеся друг от друга молекулярной массой, объемом закодированной в них информации, способностью к самостоятельной репликации и другими признаками. Они не являются жизненно важными для бактериальной клетки элементами, поскольку не несут информации о синтезе ферментов, участвующих в пластическом или энергетическом метаболизме, но они могут передавать бактериям определенные селективные преимущества, например резистентность к антибиотикам.

Плазмиды – это автономные кольцевые молекулы двунитевой ДНК с молекулярной массой меньше, чем у нуклеоида (размеры варьируют от 1,5 до 200 mD=10 3 -10 6 пар нуклеотидов), способные к саморепликации.

Спонтанная/индуцированная утрата плазмид называется элиминацией.

Особенности:


    саморегулируемая репликация;

    явление поверхностного исключения (не позволяют проникать в клетку, уже содержащую плазмиду, другой родственной ей плазмиде);

    явление несовместимости (две близкородственные плазмиды не могут стабильно сосуществовать в одной клетке);

    контроль числа копий плазмиды на хромосому клетки (реализуется собственными плазмидными генами репликации);

    контроль стабильного сохранения плазмид в клетке;

    контроль равномерного распределения дочерних плазмид в дочерние бактериальные клетки;

    способность к самопереносу у конъюгативных плазмид;

    способность к мобилизации на перенос у неконъюгативных плазмид (способность к передаче только в присутствии трансмиссивных плазмид , используя их аппарат конъюгации);

    способность наделять клетку дополнительными важными для нее биологическими свойствами, способствующими выживанию бактерий.

Функции:

    регуляторная (компенсируют нарушения метаболизма ДНК бактериальной клетки, регулируют саморепликацию, контролируют самоперенос или мобилизацию на самоперенос и другие функции самой плазмиды);

    кодирующая (внесение в бактериальную клетку новой информации, наделяя ее дополнительными свойствами).

Классификация плазмид:

      По молекулярной массе:

        крупные (1-2 на клетку);

        мелкие (до 30).

      По способности передаваться от одной клетки к другой:

    конъюгативные (трансмиссивные);

    неконъюгативные (мобилизуемые).


      По совместимости в одной клетке:

    совместимые;

    несовместимые (близкородственные).


      По фенотипическому проявлению признака:

    криптические (скрытые);

    некриптические.


      По детерминированному признаку:

    R-плазмиды (от англ. resistance – противодействие, содержат гены – r-гены, ответственные за устойчивость к лекарственным препаратам).
Обусловленная R -плазмидами лекарственная устойчивость связана:

      с изменением проницаемости поверхностных структур бактериальной клетки для антибиотиков;

      с синтезом ферментов, разрушающих или модифицирующих антибиотики (β-лактамазы, ацетилирование хлорамфеникола).

    Плазмиды патогенности – Ent и Hly (содержат tox-гены, ответственные за синтез токсинов – энтеротоксинов и гемолизинов соответственно);

    Бактериоциногенные плазмиды (например, Col-плазмида у E. coli содержат гены, ответственные за синтез бактериоцинов).

Бактериоцины – антибиотические вещества белковой природы, синтезируемые бактериями и подавляющие рост и размножение близкородственных микроорганизмов, не лизирую последних. Синтез бактерицинов является для клетки-продуцента летальным, но потенциальные бактерии-продуценты, не продуцирующие их в данный момент, устойчивы к воздействию бактериоцинов. Обозначение бактериоцина определяется видовым название микроорганизма-продуцента:

В отличии от других плазмид, факторы бактериоциногенности реже интегрируются в хромосому, редко элиминируются, многие не обладают конъюгативностью.

    F-плазмида (половой фактор/фактор фертильности, содержит гены, контролирующие конъюгацию).
Варианты F -плазмид:

Состояние F-плазмиды в клетке

Обозначение бактериалной клетки

в автономном состоянии

F + -донор

в интегрированном в хромосому

Hfr-донор

в автономном состоянии с фрагментами хромосомной ДНК

F " -донор

отсутствует в клетке

F – -реципиент

    Плазмиды биодеградации (несут информацию об утилизации некоторых органических соединений, которые бактерии используют в качестве источников углеводов и энергии, например урологические штаммы E. coli содержат плазмиду гидролизации мочевины).
Мигрирующие генетические элементы – отдельные участки ДНК, способные осуществлять собственный перенос (транспозицию) внутри генома. Их транспозиция связана со способностью кодировать специфический фермент рекомбинации – транспозазу. В настоящее время к мигрирующим элементам относят: Is-элементы, транспозоны (Tn), конъюгативные транспозоны (CTn), интегроны (In), генные острова (ГО) и бактериофаги.

Транспозоны (Tn -элементы) – нуклеотидные посдедовательности, включающие 2000-20500 пар нуклеотидов. Состав – фрагмент ДНК (специфический, несущий гены) и два концевых Is-элемента. Могут находиться в свободном состоянии в виде кольцевой молекулы.

Особенности:


    не способны к самостоятельной репликации (воспроизведению), только в составе хромосом;

    несут генетическую информацию, необходимую для транспозиции (перемещение);

    каждый транспозон содержит гены, привносящие важные для бактерий характеристики (устойчивость к антибиотикам, токсинообразование и т.д.);

    содержат гены, определяющие фенотипические признаки (легче выявить).

Функции:

    способны к перемещению с одного репликона (хромосомная ДНК) на другой (плазмиды, хромосома другой бактерии, бактериофаг) и наоборот: при включении в ДНК вызывают дупликации , а при перемещении – делеции и инверсии;

    регуляторная;

    кодирующая.

Is -элементы (от англ. insertion – вставка, sequenc – последовательность) – вставочные (инсерционные) последовательности, величиной до 1500 (800-1400) пар оснований.
Особенности:

    самостоятельно не реплицируются;

    не кодируют распознаваемых фенотипических признаков;

    индукция мутаций типа делеции (выпадение нуклеотидов) или инверсии (поворот участка ДНК на 180 0) при перемещении и дупликации (повтор участка ДНК) при встраивании в хромосому;

    координация взаимодействий плазмид, транспозонов и профагов (между собой и бактериальной хромосомой).

Бактериофаги (умеренные и дефектные) – мигрирующие генетические элементы, могут захватывать участки ДНК и переносить от одной бактериальной клетки к другой, вызывая ее лизогенизацию (приобретение новых свойств).
Понятие о генотипе и фенотипе, видах изменчивости.

Генотип – это совокупность генов, определяющих способность микроорганизмов к фенотипическому проявлению любого их признака.

Различают истинный генотип и плазмотип.

Истинный генотип – совокупность генов, сосредоточенных в бактериальной хромосоме и отвечающих за проявление жизненно важных признаков и свойств.

Плазмотип – совокупность внехромосомных генов, локализованных в плазмидах и транспозонах и отвечающих за нежизненно важные признаки и свойства, но придающие определенные преимущества перед другими особями популяции (устойчивость к антибиотикам).

Фенотип – это совокупность всех внешних и внутренних признаков микроорганизмов, которые проявляются в данных условиях и данный момент.

Ненаследственная (модификационная, фенотипическая) изменчивость – это временные ненаследуемые изменения признаков или свойств, не затрагивающие генотипа (не сопровождаются изменениями в первичной структуре ДНК) и возникающие под действием факторов окружающей среды.

Модификационная изменчивость не играет существенной роли в эволюции бактерий, так как не приводит к появлению новых видов. По существу это адаптивная (приспособительная) реакция бактерий на изменение условий окружающей среды, позволяющая быстро приспосабливаться и сохранять численность популяции. Внешне модификации чаще всего проявляются изменениями морфологических и биохимических свойств. При устранении фактора, вызвавшего изменения, бактерия возвращается к исходному фенотипу.

Например:

Способность патогенных бактерий под действием пенициллина или лизоцима образовывать L-формы, у которых отсутствует клеточная стенка, являющаяся мишенью для пенициллина. После устранения пенициллина L-формы переходят в исходный фенотип – начинают синтезировать клеточную стенку.

Ряд ученых к стандартным проявлениям модификационной изменчивости относят диссоциации.

Диссоциации (от англ. dissociation – расщепление) – это своеобразная форма модификационной изменчивости, проявляющаяся в образовании разных типов колоний на плотных питательных средах под воздействии неблагоприятных факторов (неоптимальная температура, рН, старении культуры, действие сывороток и бактериофагов и т.д.).

Это явление характерно прежде всего для энтеробактерий и в основе диссоциаций лежат мутации , приводящие к утрате генов, контролирующих синтез боковых цепей ЛПС клеточной стенки грамотрицательных бактерий.


    S -колонии (от англ. smooth – гладкий, ровный) – выпуклые, правильной круглой формы с ровным краем и гладкой поверхностью;

    M -колонии (от лат. mucoid – слизистый) – слизистые, вязкой консистенции, часто с концентрическими кольцами на поверхности;

    D -колонии (от англ. dwarf – карлик) – карликовые, мелкие дочерни колонии вокруг основной;

    L -колонии (названы в честь Листера) – микроскопические колонии с нежным кружевным краем и втянутым в среду центром, нередко коричнево-желтого цвета;

    R -колонии (от англ. rough – грубый, неровный, шероховатый) – неправильной формы с неровным изрезанным краем и шероховатой , изрезанной, морщинистой поверперхностью, сухие, крошащиеся.

Большинство патогенных бактерий изначально существуют в S-форме (исключение возбудители чумы, сибирской язвы и туберкулеза, у которых исходная R-форма), поэтому диссоциации, обычно, протекают в направлении от S к R (при полной утрате способности синтезировать боковые цепи ЛПС клеточной стенки возникают R-формы, при частичной – промежуточные). Обратный переход от R- к S-форме наблюдается крайне редко.

Значение диссоциаций: R-формы более устойчивы к действию факторов окружающей среды.

Наследственная (генотипическая) изменчивость – это изменения фенотипа, сопровождающиеся изменениями в структуре генотипа (первичной структуре ДНК) и передающиеся по наследству.

Генотипическая изменчивость не реверсирует к исходному фенотипу после устранения воздействующего фактора и играет важную роль в эволюции бактерий (появление новых видов). В основе генотипической изменчивости лежат мутации и рекомбинации .

Мутации (от лат. mutation – перемена) – изменения первичной структуры ДНК, проявляющиеся наследственно закрепленной утратой или изменением какого-либо признака или свойства. Мутации приводят к гибели 90-95% клеток популяции, однако выжившие клетки приобретают преимущества перед другими клетками популяции.

Факторы, приводящие к мутациям, получили название мутагенов .

Виды мутагенов:


    физические (УФЛ, температура, магнитные поля, УЗ, ионизирующее излучение);

    химические (акридиновые и анилиновые красители, аналоги азотистых оснований – азотная кислота, нитрофураны, нитрозосоединения – нитрозогуанидин, нитромочевина и др.);

    биологические (бактериофаги, фитонциды, антибиотики – саркомицин).

Классификация мутаций:

      По происхождению:

        спонтанные – возникают без видимых вмешательств из вне, т.е. мутагенный фактор остается не установленным (частота ≈ 1:10 6 -10 9);

        индуцированные – возникают под действием различных известных мутагенов.

      По локализации:

      нуклеоидные (ядерные);

      цитоплазматические (плазмидные).


      По количеству мутировавших генов и характеру изменений в первичной структуре ДНК:

      генные (точковые) – затрагивают только один ген и обусловлены заменой, выпадением или вставкой дополнительных оснований:

          простая замена (транзиция) – замена пурина на пурин или пиримидина на пиримидин;

          сложная замена (трансверсия) – замена пурина на пиримидин или наоборот;

          замена одного кодона (аминокислоты) на другой;

          сдвиг рамки считывания, что приводит к изменению всех последующих кодонов (нонсенс мутации);

          возникновение бессмысленных кодонов, что приводит к прекращению трансляции в данной точке;


      хромосомные – затрагивают несколько генов:

    делеции – выпадение фрагмента ДНК;

    инверсии – поворот фрагмента ДНК на 180 0 ;

    дупликации – повторение фрагмента ДНК;

    транслокации – перемещение фрагмента ДНК из одной позиции в другую.


      По направленности:

      прямые – первичные мутации;

      обратные – вторичные мутации, возникающие в этом же гене под действием другого мутагена, в результате чего может произойти восстановление исходного фенотипа (если восстанавливается фенотип без восстановления генотипа, мутация называется супрессорной).


      По последствия для мутировавших клеток:

    нейтральная – мутация произошла, а фенотипически не проявляется;

    условно-летальные – частичная утрата признака или свойства;

    летальные – полная утрата признака или свойства, если признак жизненно важный, то клетка погибает.


      По фенотипическому проявлению:

    морфологические – утрата или изменение морфологических структур клетки (форма, капсула, жгутики и др.);

    биохимические – утрата или изменение способности синтезировать ферменты, аминокислоты и т.д.

Механизм мутаций – известно большое количество мутагенов, что обуславливает многообразие механизмов мутаций , например:

    УФЛ приводят к образованию тиминовых димеров в ДНК (прочных связей между соседними тиминами в одной и той же цепи), которые препятствую работе ДНК-полимеразы, нарушая тем самым репликацию ДНК;

    ионизирующее излучение вызывает одноцепочечные разрывы ДНК;

    акридиновые красители вызывают выпадения или вставки оснований;

    азотистая кислота приводит к дезаминированию азотистых оснований с заменой гуанин+цитозин на аденин+тимин (транзиция) и т.д.

Мутации, приводящие к повреждению исходной структуры ДНК, теоретически, должны привести к вымиранию бактериальной популяции. Однако на практике этого не происходит. Почему? Оказывается, иммунитет существует не только на уровне целостного организма, но и на уровне клетки. Здесь он направлен на защиту (восстановление) самого ценного, что имеется в клетке – ее генома. Процесс восстановления поврежденной ДНК получил название – репарация.

Репарация – это процесс восстановления поврежденной в результате мутации ДНК с помощью специальных ферментативных систем.

В настоящее время известно три основных направления восстановления поврежденной ДНК:


    непосредственная прямая реверсия от поврежденной ДНК к исходной структуре (фотореактивация );

    выпадение (эксцизия) повреждений с последующим восстановлением исходной структуры ДНК (эксцизионная темновая репарация и эксцизионная репарация, опосредованная ДНК-гликозилазой );

    активация механизмов, обеспечивающих устойчивость к повреждениям (пострепликативная рекомбинационная репарация – обеспечивает репарации в процессе рекомбинаций, SOS -репарация – склонная к ошибкам: восполнение дефекта наугад, хаотично, поэтому характерны ошибки, mismatch -репарация – корригирует ошибочные пары оснований).

На сегодняшний момент наиболее изучены фотореактивация и темновая репарация.

Фотореактивация (световая, пострепликативная репарация) – открыта Келнером в 1949 г. , представляет собой наиболее простой механизм, действие которого может распространяться даже на одноцепочечную ДНК. Протекает в одну стадию на свету: при облучении видимым светом происходит активация фермента – фотолиазы , которая расщепляет пиримидиновые димеры до мономеров.

Фотореактивация характеризуется высокой специфичностью и полным восстановлением исходной структуры ДНК без дополнительных ее изменений.

Эксцизионная темновая (дорепликативная) репарация – протекает в несколько стадий без участия света, т.е. в темноте:


    Вырезание и удаление (расщепление) поврежденного участка ДНК с помощью эндо- и экзонуклеазы .

    Зачистка прилегающих участков и восстановление удаленного участка по матрице второй нити ДНК с помощью ДНК-полимеразы I .

    Сшивание вновь синтезированного участка с исходной цепью ДНК с помощью лигазы .

Микроорганизмам, как и клеткам высших организмов свойственны генетические рекомбинации, но у прокариот они имеют свои особенности, зависящие от способа размножения и закономерностей передачи генетического материала.

Рекомбинационная изменчивость – это генотипическая изменчивость, возникающая при встраивании чужеродной ДНК в генном клетки-хозяина (суть – это односторонний обмен генетическим материалом между донором и реципиентом, отличающихся друг от друга по одному или нескольким признаком, для создания нового индивидуума – рекомбинанта, наделенного свойствами и донора и реципиента).

Если генетические рекомбинации у эукариот совершаются в ходе полового размножения с образованием двух рекомбинантных особей, то прокариотам не свойственно половое размножение и рекомбинации у них приводят к образованию только одной рекомбинантной особи, геном которой представлен геномом реципиента с включенным в него фрагментом ДНК донора.

Передача генетического материала от одной бактерии другим происходит путем трансформации , трансдукции и конъюгации.

Трансформация (впервые открыта Ф. Гриффитсом в 1928 г. в опытах с живыми авирулентными (бескапсульными) и убитыми вирулентными (капсульными) пневмококками на белых мышах) – это непосредственная передача генетического материала (предварительно выделенной и очищенной ДНК) от одной бактерии (донор) другой (реципиент) / изменение свойств одной бактериальной клетки под влиянием ДНК, выделенной из другой бактериальной клетки.

Трансформация происходит только в опытах с бактериями одного и того же вида, имеющих разный генотип.

Условия трансформации:


    клетка реципиента должна быть компетентной (иметь на поверхности клеточной стенки рецепторы для адсорбции и проникновения донорской ДНК);

    донорская ДНК должна иметь молекулярную массу не менее 10 6 D;

    наличие двойной спирали ДНК;

    наличие в ДНК донора и реципиента гомологичных участков.

Фазы трансформации:

    Адсорбция двуцепочечной ДНК донора на рецепторах компетентной клетки-реципиента и ферментное расщепление связавшейся ДНК с образованием фрагментов с молекулярной массой 4-5×10 6 D.

    Проникновение фрагментов ДНК донора в клетку-реципиента с разрушением одной из цепей.

    Соединение ДНК донора с гомологичным участком хромосомы реципиента.

Трансдукция (открыта Н. Циндером и Д. Ледербергом в 1951 г. ) – это передача генетического материала от одной бактерии (донор) другой (реципиент) с помощью дефектных бактериофагов (умеренный бактериофаг, у которого в процессе репродукции в момент сборки фаговых частиц в головку вместе с фаговой ДНК проникает какой-либо фрагмент донорской ДНК и при этом утративший часть своего генома).

Различают три типа трансдукции:


    специфическая – бактериофаги переносят от бактерии-донора к бактерии-реципиенту строго определенные гены (гены, расположенные на хромосоме клетки-донора рядом с профагом) и могут встраиваться только в строго определенный локус хромосомы бактерии-реципиента;

    неспецифическая (генерализованная) – вместе с фаговой ДНК в клетку-реципиент могут быть перенесены любые гены донора, способные встраиваться в любую точку ДНК;

    абортивная – принесенный фагом фрагмент ДНК бактерии-донора не включается в хромосому бактерии-реципиента, а располагается в ее цитоплазме и может в таком виде функционировать (при делении бактериальной клетки фрагмент ДНК донора передается только одной из двух дочерних клеток и в конечном итоге утрачивается).

Конъюгация (1946 г. Д. Ледерберг и Э. Тейтмут ) это непосредственная передача генетического материала от донора к реципиенту через конъюгативные мостики (пили II типа).

Клетке-донору необходимо наличие F-плазмиды (полового фактора). Бактерии, не имеющие F-плазмиды, являются реципиентами.

Этапы конъюгации автономных плазмид:


    Прикрепление клетки-донора к клетке-реципиенту при помощи половых ворсинок.

    Образование между клетками конъюгативного мостика.

    Передача через конъюгативный мостик от донора к реципиенту F-плазмиды и других плазмид, находящихся в цитоплазме бактерии-донора в автономном состоянии.

При переносе F-плазмиды в состоянии Hfr (интегрированном в хромосому) сначала происходит разрыв одной из цепей ДНК при помощи эндонуклеаз, дистальный конец которой проникает в клетку-реципиента через конъюгативный мостик и достраивается до двунитевой. Оставшаяся в клетке донора неповрежденная нить ДНК служит матрицей для восстановления поврежденной нити. В этом случае частота переноса полового фактора очень низкая, а частота образования рекомбинантов – высокая, т.к. реципиенту передаются только гены бактериальной хромосомы.