Решение уравнения бернулли. Дифференциальное уравнение бернулли

Очень многое из окружающего нас мира подчиняется законам физики. Этому не стоит удивляться, ведь термин «физика» происходит от греческого слова, в переводе означающего «природа». И одним из таких законов, постоянно работающих вокруг нас, является закон Бернулли.

Сам по себе закон выступает как следствие принципа сохранения энергии. Такая его трактовка позволяет придать новое понимание многим ранее хорошо известным явлениям. Для понимания сути закона просто достаточно вспомнить протекающий ручеек. Вот он течет, бежит между камней, веток и корней. В каких-то местах делается шире, где-то уже. Можно заметить, что там, где ручеек шире, вода течет медленнее, где уже, вода течет быстрее. Вот это и есть принцип Бернулли, который устанавливает зависимость между давлением в потоке жидкости и скоростью движения такого потока.

Правда, учебники физики его формулируют несколько по-другому, и имеет он отношение к гидродинамике, а не к протекающему ручью. В достаточно популярном Бернулли можно изложить в таком варианте - давление жидкости, протекающей в трубе, выше там, где скорость ее движения меньше, и наоборот: там, где скорость больше, давление меньше.

Для подтверждения достаточно провести простейший опыт. Надо взять лист бумаги и подуть вдоль него. Бумага поднимется вверх, в ту сторону, вдоль которой проходит поток воздуха.

Все очень просто. Как говорит закон Бернулли, там, где скорость выше, давление меньше. Значит, вдоль поверхности листа, где проходит поток меньше, а снизу листа, где потока воздуха нет, давление больше. Вот лист и поднимается в ту сторону, где давление меньше, т.е. туда, где проходит поток воздуха.

Описанный эффект находит широкое применение в быту и в технике. Как пример можно рассмотреть краскопульт или аэрограф. В них используются две трубки, одна большего сечения, другая меньшего. Та, которая большего диаметра, присоединена к емкости с краской, по той, что меньшего сечения, проходит с большой скоростью воздух. Благодаря возникающей разности давлений краска попадает в поток воздуха и переносится этим потоком на поверхность, которая должна быть окрашена.

По этому же принципу может работать и насос. Фактически то, что описано выше, и есть насос.

Не менее интересно выглядит закон Бернулли в применении для осушения болот. Как всегда, все очень просто. Заболоченная местность соединяется канавами с рекой. Течение в реке есть, в болоте нет. Опять возникает разность давлений, и река начинает высасывать воду из заболоченной местности. Происходит в чистом виде демонстрация работы закона физики.

Воздействие этого эффекта может носить и разрушительный характер. Например, если два корабля пройдут близко друг от друга, то скорость движения воды между ними будет выше, чем с другой стороны. В результате возникнет дополнительная сила, которая притянет корабли друг к другу, и катастрофа будет неизбежна.

Можно все сказанное изложить в виде формул, но уравнения Бернулли писать совсем не обязательно для понимания физической сути этого явления.

Для лучшего понимания приведем еще один пример использования описываемого закона. Все представляют себе ракету. В специальной камере происходит сгорание топлива, и образуется реактивная струя. Для ее ускорения используется специально суженный участок - сопло. Здесь происходит ускорение струи газов и вследствие этого - рост

Существует еще множество различных вариантов использования закона Бернулли в технике, но все их рассмотреть в рамках настоящей статьи просто невозможно.

Итак, сформулирован закон Бернулли, дано объяснение физической сущности происходящих процессов, на примерах из природы и техники показаны возможные варианты применения этого закона.

Для стабильно текущего потока (газа или жидкости) сумма кинетической и потенциальной энергии, давления на единицу объема является постоянной в любой точке этого потока.

Первое и второе слагаемое в Законе Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. А третье слагаемое в нашей формула является работой сил давления и не запасает какую-либо энергию. Из этого можно сделать вывод, что размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости или газа.

Постоянная в правой части уравнения Бернулли называется полным давлением и зависит в общих случаях, только от линии потока.

Если у вас горизонтальная труба, то Уравнение Бернулли принимает некий другой вид. Так как h=0, то потенциальная энергия будет равняться нулю, и тогда получится:

Из Уравнения Бернулли можно сделать один важный вывод . При уменьшении сечения потока возрастает скорость движения газа или жидкости (возрастает динамическое давление ), но в этот же момент уменьшает статическое давление следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает.

Давайте узнаем, как же летают самолеты. Даниил Бернулли объединил законы механики Ньютона с законом сохранения энергии и условием неразрывности жидкости, и смог вывести уравнение (), согласно которому давление со стороны текучей среды (жидкость или газ) падает с увеличением скорости потока этой среды. В случае с самолетом воздух обтекает крыло самолета снизу медленне, чем сверху. И благодаря этому эффекту обратной зависимости давления от скорости давление воздуха снизу, направленное вверх, оказывается больше давления сверху, напрвленного вниз. В результате, по мере набора самолетом скорости, возрастает направленная вверх разность давлений, и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет в буквальном смысле взмывает в небо. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости и высоте подъемная сила уравновешивает силу тяжести.

В Формуле мы использовали:

Плотность жидкости или воздуха

Дифференциальное уравнение Бернулли — это уравнение вида

где n≠0,n≠1.

Это уравнение может быть преобразовано при помощи подстановки

в линейное уравнение

На практике дифференциальное уравнение Бернулли обычно не приводят к линейному, а сразу решают теми же методами, что и линейное уравнение — либо методом Бернулли, либо методом вариации произвольной постоянной.

Рассмотрим, как решить дифференциальное уравнение Бернулли с помощью замены y=uv (метод Бернулли). Схема решения — как и при .

Примеры. Решить уравнения:

1) y’x+y=-xy².

Это дифференциальное уравнение Бернулли. Приведем его к стандартному виду. Для этого поделим обе части на x: y’+y/x=-y². Здесь p(x)=1/x, q(x)=-1, n=2. Но для решения нам не нужен стандартный вид. Будем работать с той формой записи, которая дана в условии.

1) Замена y=uv, где u=u(x) и v=v(x) — некоторые новые функции от x. Тогда y’=(uv)’=u’v+v’u. Подставляем полученные выражения в условие: (u’v+v’u)x+uv=-xu²v².

2) Раскроем скобки: u’vx+v’ux+uv=-xu²v². Теперь сгруппируем слагаемые с v: v+v’ux=-xu²v² (I) (слагаемое со степенью v, стоящее в правой части уравнения, не трогаем). Теперь требуем, чтобы выражение в скобках равнялось нулю: u’x+u=0. А это — уравнение с разделяющимися переменными u и x. Решив его, мы найдем u. Подставляем u=du/dx и разделяем переменные: x·du/dx=-u. Обе части уравнения умножаем на dx и делим на xu≠0:

(при нахождении u С берем равным нулю).

3) В уравнение (I) подставляем =0 и найденную функцию u=1/x. Имеем уравнение: v’·(1/x)·x=-x·(1/x²)·v². После упрощения: v’=-(1/x)·v². Это уравнение с разделяющимися переменными v и x. Заменяем v’=dv/dx и разделяем переменные: dv/dx=-(1/x)·v². Умножаем обе части уравнения на dx и делим на v²≠0:

(взяли -С, чтобы, умножив обе части на -1, избавиться от минуса). Итак, умножаем на (-1):

(можно было бы взять не С, а ln│C│ и в этом случае было бы v=1/ln│Cx│).

2) 2y’+2y=xy².

Убедимся в том, что это — уравнение Бернулли. Поделив на 2 обе части, получаем y’+y=(x/2) y². Здесь p(x)=1, q(x)=x/2, n=2. Решаем уравнение методом Бернулли.

1) Замена y=uv, y’=u’v+v’u. Подставляем эти выражения в первоначальное условие: 2(u’v+v’u)+2uv=xu²v².

2) Раскрываем скобки: 2u’v+2v’u+2uv=xu²v². Теперь сгруппируем слагаемые, содержащие v: +2v’u=xu²v² (II). Требуем, чтобы выражение в скобках равнялось нулю: 2u’+2u=0, отсюда u’+u=0. Это — уравнение с разделяющимися переменными относительно u и x. Решим его и найдем u. Подставляем u’=du/dx, откуда du/dx=-u. Умножив обе части уравнения на dx и поделив на u≠0, получаем: du/u=-dx. Интегрируем:

3) Подставляем во (II) =0 и

Теперь подставляем v’=dv/dx и разделяем переменные:

Интегрируем:

Левая часть равенства — табличный интеграл, интеграл в правой части находим по формуле интегрирования по частям:

Подставляем найденные v и du по формуле интегрирования по частям имеем:

А так как

Сделаем С=-С:

4) Так как y=uv, подставляем найденные функции u и v:

3) Проинтегрировать уравнение x²(x-1)y’-y²-x(x-2)y=0.

Разделим на x²(x-1)≠0 обе части уравнения и слагаемое с y² перенесем в правую часть:

Это — уравнение Бернулли,

1) Замена y=uv, y’=u’v+v’u. Как обычно, эти выражения подставляем в первоначальное условие: x²(x-1)(u’v+v’u)-u²v²-x(x-2)uv=0.

2) Отсюда x²(x-1)u’v+x²(x-1)v’u-x(x-2)uv=u²v². Группируем слагаемые, содержащие v (v² — не трогаем):

v+x²(x-1)v’u=u²v² (III). Теперь требуем равенства нулю выражения в скобках: x²(x-1)u’-x(x-2)u=0, отсюда x²(x-1)u’=x(x-2)u. В уравнении разделяем переменные u и x, u’=du/dx: x²(x-1)du/dx=x(x-2)u. Обе части уравнения умножаем на dx и делим на x²(x-1)u≠0:

В левой части уравнения — табличный интеграл. Рациональную дробь в правой части надо разложить на простейшие дроби:

При x=1: 1-2=A·0+B·1, откуда B=-1.

При x=0: 0-2=A(0-1)+B·0, откуда A=2.

ln│u│=2ln│x│-ln│x-1│. По свойствам логарифмов: ln│u│=ln│x²/(x-1)│, откуда u=x²/(x-1).

3) В равенство (III) подставляем =0 и u=x²/(x-1). Получаем: 0+x²(x-1)v’u=u²v²,

v’=dv/dx, подставляем:

вместо С возьмем — С, чтобы, умножив обе части на (-1), избавиться от минусов:

Теперь приведем выражения в правой части к общему знаменателю и найдем v:

4) Так как y=uv, подставляя найденные функции u и v, получаем:

Примеры для самопроверки:

1) Убедимся, что это — уравнение Бернулли. Поделив на x обе части, имеем:

1) Замена y=uv, откуда y’=u’v+v’u. Эти y и y’ подставляем в первоначальное условие:

2) Группируем слагаемые с v:

Теперь требуем, чтобы выражение в скобках равнялось нулю и находим из этого условия u:

Интегрируем обе части уравнения:

3) В уравнение (*) подставляем =0 и u=1/x²:

Интегрируем обе части получившегося уравнения.

Бернулли уравнение I Берну́лли уравне́ние

дифференциальное уравнение 1-го порядка вида:

dy/dx + Py = Qy α ,

где Р, Q - заданные непрерывные функции от x ; α - постоянное число. Введением новой функции z = y -- α+1 Б. у. сводится к линейному дифференциальному уравнению (См. Линейные дифференциальные уравнения) относительно z. Б. у. было рассмотрено Я. Бернулли в 1695, метод решения опубликован И. Бернулли в 1697.

II Берну́лли уравне́ние

основное уравнение гидродинамики (См. Гидродинамика), связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в 1738 для струйки идеальной несжимаемой жидкости постоянной плотности ρ, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:

v 2 / 2 + pl ρ + gh = const,

где g - ускорение силы тяжести. Если это уравнение умножить на ρ, то 1-й член будет представлять собой кинетическую энергию единицы объёма жидкости, а др. 2 члена - его потенциальную энергию, часть которой обусловлена силой тяжести (последний член уравнения), а др. часть - давлением p. Б. у. в такой форме выражает закон сохранения энергии. Если вдоль струйки жидкости энергия одного вида, например кинетическая, увеличивается, то потенциальная энергия на столько же уменьшается. Поэтому, например, при сужении потока, текущего по трубопроводу, когда скорость потока увеличивается (т.к. через меньшее сечение за то же время проходит такое же количество жидкости, как и через большее сечение), давление соответственно в нём уменьшается (на этом основан принцип работы расходомера Вентури).

Из Б. у. вытекает ряд важных следствий. Например, при истечении жидкости из открытого сосуда под действием силы тяжести (рис. 1 ) из Б. у. следует:

v 2 /2g = h или

т. е. скорость жидкости в выходном отверстии такова же, как при свободном падении частиц жидкости с высоты h.

Если равномерный поток жидкости, скорость которого v 0 и давление p 0 , встречает на своём пути препятствие (рис. 2 ), то непосредственно перед препятствием происходит подпор - замедление потока; в центре области подпора, в критической точке, скорость потока равна нулю. Из Б. у. следует, что давление в критической точке p 1 = p 0 + ρv 2 0 /2. Приращение давления в этой точке, равное p 1 - p 0 = ρv 2 0 /2, называется динамическим давлением, или скоростным напором. В струйке реальной жидкости её механическая энергия не сохраняется вдоль потока, а расходуется на работу сил трения и рассеивается в виде тепловой энергии, поэтому при применении Б. у. к реальной жидкости необходимо учитывать потери на сопротивление.

Б. у. имеет большое значение в гидравлике (См. Гидравлика) и технической гидродинамике: оно используется при расчётах трубопроводов, насосов, при решении вопросов, связанных с фильтрацией, и т.д. Бернулли уравнение для среды с переменной плотностью р вместе с уравнением неизменяемости массы и уравнением состояния является основой газовой динамики (См. Газовая динамика).

Лит.: Фабрикант Н.Я., Аэродинамика, ч. 1-2, Л.,1949- 64; Угинчус А. А., Гидравлика, гидравлические машины и основы сельскохозяйственного водоснабжения, К.-М., 1957, гл. V.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Бернулли уравнение" в других словарях:

    - (интеграл Бернулли) в гидроаэромеханике (по имени швейц. учёного Д. Бернулли (D. Bernoulli)), одно из осн. ур ний гидромеханики, к рое при установившемся движении несжимаемой идеальной жидкости в однородном поле сил тяжести имеет вид: где v… … Физическая энциклопедия

    Связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Бернулли уравнение выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и технической гидродинамике. Выведено Д.… … Большой Энциклопедический словарь

    В аэро и гидродинамике соотношение, связывающее газо или гидродинамические переменные вдоль линии тока установившегося баротропного течения идеальной жидкости или газа в потенциальном поле массовых сил F = grad(Π), где (Π) потенциал: (Π) + V2/2 + … Энциклопедия техники

    Связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Уравнение Бернулли выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и технической гидродинамике. Выведено… … Энциклопедический словарь

    Обыкновенное дифференциальное уравнение 1 го порядка где. действительное число, не равное нулю и единице. Это уравнение впервые было рассмотрено Я. Бернулли . Подстановкой Б. у. приводится к линейному неоднородному уравнению 1 го порядка (см.… … Математическая энциклопедия

    Бернулли уравнение Энциклопедия «Авиация»

    Бернулли уравнение - в аэро и гидродинамике — соотношение, связывающее газо или гидродинамические переменные вдоль линии тока установившегося баротропного [ρ = ρ(p)] течения идеальной жидкости или газа в потенциальном поле массовых сил (F = ‑gradΠ, где Π —… … Энциклопедия «Авиация»

    - [по имени швейц. учёного Д. Бернулли (D. Bernoulli; 1700 1782)] одно из осн. ур ний гидродинамики, выражающее закон сохранения энергии. 1) Б. у. для элементарной (с малым поперечным сечением) струйки идеальной жидкости: где р, РО и v статич.… … Большой энциклопедический политехнический словарь

    Связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Б. у. выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и техн. гидродинамике. Выведено Д. Бернулли в 1738 … Естествознание. Энциклопедический словарь

    Бернулли уравнение, основное уравнение гидродинамики, связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в … Большая советская энциклопедия

Книги

  • Гидродинамика, или записки о силах и движениях жидкостей , Д. Бернулли. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В 1738 вышла в свет знаменитая работа Даниила Бернулли "Гидродинамика, или Записки о силах и…

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 - 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

- плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .


Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.