Роль микроорганизмов, высших растений и животных в почвообразовательных процессах. Биологический фактор почвообразования Организмы и их роль в почвообразовании

Горные породы, из которых формируется почва, называются почвообразующими, или материнскими.

Почвообразующие породы характеризуются по их происхождению, составу, строению и свойствам. Почвообразующая порода является материальной основой почвы и передает ей свой механический, минералогический и химический состав, а также физические и химические свойства, которые в дальнейшем постепенно изменяются в различной степени под воздействием почвообразовательного процесса.

Свойства и состав материнских пород влияют на состав поселяющейся растительности, ее продуктивность, на скорость разложения органических остатков, качество образующегося гумуса, особенности взаимодействия органических веществ с минералами и другие стороны почвообразовательного процесса.

Главными почвообразующими породами являются рыхлые осадочные.

Осадочные породы - отложения продуктов выветривания массивно кристаллических пород или остатков различных организмов. Они подразделяются на обломочные, химические осадки и биогенные.

К наиболее распространенным осадочным породам относятся континентальные четвертичные отложения: ледниковые, водно-ледниковые, лессы и лессовидные суглинки, элювиальные, аллювиальные, делювиальные, пролювиальные, эоловые, менее распространены озерные, морские. Они различаются по характеру сложения, влагоемкости, водопроницаемости, порозности, что определяет водно-воздушный и тепловой режимы.

Биологический фактор почвообразования

Под биологическим фактором почвообразования понимается многообразное участие живых организмов и продуктов их жизнедеятельности в почвообразовательном процессе.

Наиболее могущественным фактором, оказывающим влияние на направление почвообразовательного процесса, являются живые организмы. Начало почвообразования всегда связано с поселением организмов на минеральном субстрате. В почве обитают представители всех четырех царств живой природы - растения, животные, грибы, прокариоты. Пионерами в освоении и преобразовании косного минерального вещества в почве яляются различные виды микроорганизмов, лишайники, водоросли. Они еще не создают почву, они готовят биогенный мелкозем - субстрат для поселения высших растений - основных продуцентов органического вещества. Именно им, высшим растениям, как главным накопителям вещества и энергии в биосфере, и принадлежит ведущая роль в процессах почвообразования

Роль древесной и травянистой, лесной и степной или луговой растительности в процессах почвообразования существенно различна.

Под лесом опад, являющийся главным источником гумуса, поступает преимущественно на поверхность почвы. В меньшей степени в гумусообразовании участвуют корни древесной растительности.

В хвойном лесу опад, в силу специфики его химического состава и большой механической прочности, очень медленно подвергается процессам разложения. Лесной опад вместе с грубым гумусом образует подстилку типа «мор» той или иной мощности. Процесс разложения в подстилке осуществляется преимущественно грибами; гумус имеет фульватный характер.

В смешанных и, особенно, в широколиственных лесах лиственный опад более мягкий, содержит в своем составе высокое количество оснований, богат азотом. Процесс минерализации ежегодного опада в основном совершается в течение годового цикла. В лесах подобного типа в гумусообразовании принимает большое участия опад травянистой растительности. Освобождающиеся при минерализации опада основания нейтрализуют кислые продукты почвообразования, синтезируется более насыщенный кальцием гумус гуматно-фульватного типа.

Иной характер поступления органических остатков и химических элементов в почву наблюдается под пологом травянистой степной или луговой растительности. Основным источником образования гумуса является масса отмирающих корневых систем и в значительно меньшей степени надземная масса (степной войлок, семена растений и т. д.). Это объясняется тем, что биомасса корней у травянистой растительности (в отличие от древесной) обычно значительно преобладает над надземной биомассой. Опад травянистой растительности в отличие от опада древесных пород характеризуется более тонкой структурой, меньшей механической прочностью, высокой зольностью, богатством азотом и основаниями.

Почвообразовательный процесс, протекающий под влиянием травянистой растительности, носит название дернового процесса.

Наряду с высшей растительностью большое влияние на процессы почвообразования оказывают многочисленные представители почвенной фауны - беспозвоночные и позвоночные, населяющие различные горизонты почвы и живущие на ее поверхности.

Функции беспозвоночных и позвоночных животных важны и разнообразны; одна из них - разрушение, измельчение и поедание органических остатков на поверхности почвы и внутри ее.

Вторая функция почвенных животных выражается в накоплении в их телах элементов питания и главным образом в синтезе азотсодержащих соединений белкового характера. После завершения жизненного цикла животного наступает распад тканей и возврат в почву накопленных в телах животных веществ и энергии.

Деятельность роющих животных оказывает большое влияние на перемещение масс грунта и почвы, на формирование своеобразного микро- и нанорельефа. В некоторых случаях перерытость почв и выбросы на поверхность достигают таких размеров, что возникает необходимость введения в номенклатуру почв специальных определений (например, карбонатный перерытый чернозем). Профиль таких почв имеет рыхлое, кавернозное строение, почвенные горизонты часто перемещены и трансформированы.

Таким образом, в почвообразовании участвуют три группы организмов - зеленые растения, микроорганизмы и животные, образующие на суше сложные биоценозы. Вместе с тем функции каждой из этих групп как почвообразователей различны.

Зеленые растения являются единственным первоисточником органических веществ в почве, и основной функцией их как почвообразователей следует считать биологический круговорот веществ - поступление из почвы элементов питания и воды, синтез органической массы и возврат ее в почву после завершения жизненного цикла.

Основными функциями микроорганизмов как почвообразователей являются разложение растительных остатков и почвенного гумуса до простых солей, используемых растениями, участие в образовании гумусовых веществ, в разрушении и новообразовании почвенных минералов.

Основными функциями почвенных животных является разрыхление почвы и улучшение ее физических и водных свойств, обогащение почвы гумусом и минеральными веществами.


Курс лекций «Почвоведение»

ЛЕКЦИЯ 3.Свойства почв и ее структура

1.Морфологические признаки почв 34

1.1.Строение почвы 34

1.2.Окраска почвы 38

1.3.Гранулометрический состав почв и его агрономическое значение 40

2. Органические и органо-минеральные вещества в почвах 43

2.1.Влияние условий почвообразования на гумусообразование 43

2.2.Состав гумуса 44

2.3. Гумусовое состояние почв 48

Краткий конспект Лекции 3 49

1.Морфологические признаки почв

В процессе почвообразования горная порода приобретает многоуровневую морфологическую организацию. Существуют морфоны 1,2, 3, 4,5 порядков. Для выделения морфонов существует система морфологических признаков почвы.

Морфологические признаки почвы – система показателей, позволяющей отличать морфологические элементы один от другого.

К внешним морфологическим признакам относятся:

строение,

мощность профиля и отдельных горизонтов,

гранулометрический состав,

структура,

сложение,

новообразования,

включения.

1.1.Строение почвы

Всякая почва представляет собой систему последовательно сменяющих друг друга по вертикали генетических горизонтов - слоев, на которые дифференцируется исходная материнская горная порода в процессе почвообразования.

Эта вертикальная последовательность горизонтов получила название почвенного профиля.

Почвенным профилем называется определенная вертикальная последовательность генетических горизонтов в пределах почвенного индивидуума, специфическая для каждого типа почвообразования.

Почвенный профиль представляет первый уровень морфологической организации почвы как природного тела, почвенный горизонт - второй.

Профиль почвы характеризует изменение ее свойств по вертикали, связанное с воздействием почвообразовательного процесса на материнскую горную породу. Главные факторы образования почвенного профиля, т. е. дифференциации исходной почвообразующей породы на генетические горизонты, -

это, во-первых, вертикальные потоки вещества и энергии (нисходящие или восходящие в зависимости от типа почвообразования и его годовой, сезонной или многолетней цикличности)

и, во-вторых, вертикальное распределение живого вещества (корневые системы растений, микроорганизмы, почвообитающие животные).

Строение почвенного профиля, т. е. характер и последовательность составляющих его генетических горизонтов, специфично для каждого типа почвы и служит его основной диагностической характеристикой. При этом имеется в виду, что все горизонты в профиле взаимно связаны и обусловлены.

Почвенный горизонт, в свою очередь, также не является однородным и состоит из морфологических элементов третьего уровня - морфонов, под которыми понимаются внутригоризонтные морфологические элементы.

На четвертом уровне морфологической организации выделяются почвенные агрегаты, на которые естественно распадается почва в пределах генетических горизонтов.

Следующий, пятый уровень морфологической организации почвы можно обнаружить уже только с помощью микроскопа. Это микростроение почвы, изучаемое в рамках микроморфологии почв.

Народнохозяйственное значение почвы как всеобщего средства производства определяется его качествами и свойствами. В сельскохозяйственном производстве большое значение имеет основное качество почвы - плодородие а для промышленных отраслей физические и физикомеханични свойства...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВВЕДЕНИЕ

1 Горные породы как почвообразующих фактор

3. Климат как фактор почвообразования

4. Рельеф как фактор почвообразования

5. Время как фактор почвообразования

6. Производственная деятельность человека как почвообразующих фактор

Заключение

Литература

ВВЕДЕНИЕ

Земля - ​​ бесценное народное багаство и основное средство производства в сельском хозяйстве.

Почва является основным багаством каждого общества, главным средством сельскохозяйственного производства и пространственным базисом размещения и развития всех отраслей народного хозяйства. Народнохозяйственное значение почвы как всеобщего средства производства определяется его качествами и свойствами. В сельскохозяйственном производстве большое значение имеет основное качество почвы - плодородие, а для промышленных отраслей физические и физикомеханични свойства.

Выдающийся русский ученый В.В.Докучаев впервые дал следующее определение почвы[ 2, с.17 ] : "Почвой следует называть "дневные", или наружные, горизонты горных пород (все равно каких), естественно измененные совместным воздействием воды, воздуха и различного рода организмов, живых и мертвых."

Известно, что земля дает все необходимые продукты питания человеку, а также различные виды сырья для промышленности. Земля - это источник жизни. Вот почему землю нужно охранять, сознательно и направлено увеличивать, ее производительность. Она принадлежит не только нам, но и следующему поколению.

В сельском хозяйстве производстве нельзя игнорировать свойства почвы, особенности живых организмов, погодные условия и т.д.. Большое значение имеют глубокие знания почв и их свойств для эффективного осуществления на них агрономических и мелиоративных мероприятий.

Почвенный покров Украины - один из основных показателей ее багаства, базис расселения человеческого общества и главное средство производства в сельском хозяйстве. Количество и качество почвенных ресурсов, их использования определяют уровень благосостояния общества.

Рациональное использование земель и специализации отраслей земледелия возможны только на базе глубоких знаний особенностей почвенного покрова, специфики плодородия почв, их экологических свойств.

С учетом особенностей почв и климатических условий проводятся районирование сельскохозяйственного производства, его специализация. От использования почвенного покрова зависит выполнение социально-экономических задач.

Процесс почвообразования - это процесс преобразования горных пород в качественно новое состояние - грунт под влиянием комплекса факторов.

Учение о факторах почвообразования создал В.В. Докучаев. Он показал, что почва формируется под влиянием климата, растительности, почвообразующих пород, рельефа и времени. Эти факторы действуют на всей территории суши, поэтому они называются глобальными факторами почвообразования. Позже В.Р. Уильямс выделил еще один фактор почвообразования - производственную деятельность человека. Производственная деятельность человека - это локально действующий фактор.

В.В. Докучаев писал, что все агенты - почвообразователи имеют одинаковое значение в процессе почвообразования. Для того, чтобы изучить почву, необходимо знание всех почвообразующих факторов. Развитие почвообразовательного процесса и формирование конкретных типов почв протекает в определенных природных условиях. Условия, от которых зависит почвообразовательный процесс, В. В. Докучаев назвал факторами почвообразования [ 13, с.220 ].

Сочетание факторов почвообразования - это комбинация экологических условий развития почвообразовательного процесса и почв. Изучение каждого фактора почвообразования предусматривает его характеристику по определенным параметрам и оценку его роли в почвообразовании.

  1. Горные породы как почвообразующи й фактор .

Роль почвообразующи х пород как фактора почвообразования состоит в том, что они являются материалом, из которого образуется почва. Материнские породы передают почвам свой ​​ гранулометрический, минералогический и химический состав.

Основными почвообразующих породами являются продукты выветривания горных пород.

Выветривани е (гипергенез ис ) - процесс разрушения горных пород и минералов под влиянием некоторых природных факторов (воздуха, воды, колебания температуры и живых организмов). При этом образуются другие породы и синтезируются новые минералы. Выветривание - это совокупность сложных и разнообразных процессов, количественных и качественных изменений горных пород. Горизонты горных пород, где происходит процесс выветривания, называют корой выветривания. Мощность ее бывает от нескольких сантиметров до 2-10 м.

Характер разрушения горных пород и, как правило, состав продуктов выветривания зависят от условий окружающей среды и от минералогического состава самой породы. Геохимическими исследованиями доказано, что при выветривания кислых пород формируются пески и супеси, средних - суглинки и основных - тяжелые суглинки и глины. Все названные рыхлые отложения имеют определенные физические и физико-механические свойства, позволяющие для протекания процессов почвообразования. Этим отличаются от невивитрених скальных пород.

Как правило, современные почвы формируются на сложных комплексах продуктов выветривания. Самыми распространенными почвообразующих породами являются рыхлые отложения четвертичного периода. Они разнообразны по составу, строению, свойствам, что отражается на почвообразование и уровень плодородия почвы. Ниже рассмотрены наиболее распространенные грунтоутворюючи породы.

Элювиальные отложения - различные по составу продукты выветривания коренных пород, оставшиеся на месте образования.

В. А. Ковда (1973) приводит восемь разновидностей элювиальных пород. Самыми распространенными из них являются дрибноземний карбонатный элювий. Первичный элювий распространен на изверженных породах, в частности, в Монголии, Армении и Крыму; вторичный (неоелювий) - на большой территории Европы и Азии в виде лесса, лессовидных и сыртовых суглинков. Они словно одеялом укрывают подстилая коренные породы и поэтому их называют покровными. Леси имеют палевый или буровато-палевый окрас и пылевато-суглинистый механический состав. Им свойственна карбонатность, пористость, мучнистость, добра водопроницаемость. Химический состав и физические свойства лесу очень благоприятны для роста растений.

Лессовидные суглинки содержат меньше карбонатов, случаются и безкарбонатных. Они крупнозернистые, часто слоистые, с меньшей мучнистость и пористостью. Леси распространены в основном в Украине, южных регионах России, в Средней Азии, в центре Северной Америки; лессовидные суглинки - в Беларуси, Центральной Нечерноземной зоне России и в других районах. На этих породах сформировались черноземные, серые лесные, каштановые и серые пустынно-степные почвы.

Пролювиальных и делювиальные наносы формируются в предгорных районах и у подножия гор. На них формируются различные почвы. В Прикарпатье и в Карпатах на таких отложениях формируются бурые лесные почвы.

Ледниковые отложения (морена) злягають небольшими островами на повышенных элементах рельефа Украинского Полесья. Большие площади эти отложения занимают на севере европейской части России и в Западной Сибири. Ледниковые отложения образованы из неоднородного обломочного материала, преимущественно суглинистого состава с включением гравийного песка, гальки, валунов. По химическому составу морена бывает карбонатная и безкарбонатных. На карбонатной морене образованы дерново-карбонатные, слабо-и средне-подзолистые почвы. На безкарбонатных - средне-и сильно-подзолистые почвы. При наличии большого количества валунов агрономические свойства почвы значительно ухудшаются.

Водно-льодовикови (флювиогляциальных) отложения занимают большую территорию в таежно-лесной зоне европейской части России, Беларуси, Польше, Прибалтике. В Украине они занимают 10,5% территории республики. Их образование связано с деятельностью мощных ледниковых потоков.

Флювиогляциальных отложения представляют собой слоистый сортированный материал песчаные, супесчаные, местами суглинистого механического состава светло-желтого или светло-серой окраски. Основной составной частью их является кварц с примесями зерен полевого шпата. Кое в песчаной массе встречаются слои мелкой гальки и валунчикы кристаллических пород. Механический и химический состав этих отложений является неблагоприятным для формирования высокоплодородных почв.

Озерно-ледниковые отложения распространены в северо-западной части европейской территории России. Они сформировались в понижениях древнего рельефа и имеют глинистый механический состав (слоистые ленточные глины прильодовикових озер). Формирование озерных отложений сопровождалось накоплением водорастворимых солей, карбонатов и гипса. При пересыхании озер образуются солончаки.

Аллювиальные отложения распространены в поймах рек (пойменный аллювий). По возрасту различают современные и древние аллювиальные отложения. Для них характерна дифференцированность по размеру частиц и слоистость. Механический состав аллювиальных отложений зависит от их положения относительно русла реки. Так, в прирусловой части поймы формируются гравийно-галечниковые и песчаные отложения, в центральной части - песчаные, в притеррасной - супесчаные-глинистые. На аллювиальных отложениях формируются высокоплодородных пойменные почвы. В Украине они занимают около 9% территории.

Глины различного происхождения на территории Украины тоже часто есть почвообразующих породами. В основном они распространены на склонах балок, террас, в долинах рек и тому подобное.

Кроме того, почвообразующих породами в Украине являются продукты выветривания твердых карбонатных пород (Южный Берег Крыма), рыхлые продукты выветривания магматических пород (Приазовская и Приднепровская возвышенности), продукты выветривания песчаников (Донбасс, Крым, Карпаты), продукты выветривания глинистых сланцев (Донбасс, Крым, Карпаты)

Механический состав почвообразующих породы имеет важное значение в процессе формирования почвы. Кроме того, минералогический и химический состав непосредственно влияет на ход элементарных процессов, происходящих в почве. В зависимости от этого почва приобретает определенные физические и физико-механических свойств, которые предопределяют его агропроизводственную характеристику .

Механический и химический состав этих отложений является неблагоприятным для Так, песчаные и супесчаные почвы легко обрабатывать сельскохозяйственными машинами. Поэтому их называют легкими почвами. Они имеют благоприятный воздушный режим, высокую водопроницаемость, быстро прогреваются. Одновременно они обладают рядом отрицательных свойств, а именно: низкое содержание гумуса и питательных веществ (вследствие интенсивного промывания), низкая степень оструктурености, незначительную емкость уборки катионов, легко подвергаются эрозии подобное.

Почвы, сформированные на глинистых породах, называют трудными. Они обладают высокой влагоемкостью и водоудерживающую способность. Как правило, они богаты гумусом и легкодоступные элементы питания. В таких почвах при наличии необходимых условий интенсивно происходит процесс формирования структурных агрегатов.

Если глинистые грунты с тем или иным причинам являются бесструктурными, они имеют неблагоприятные физические свойства. Коренное улучшение механического состава почвы осуществляют путем глинування песчаных и пескование глинистых почв с одновременным внесением высоких доз органических удобрений.

Минералогический и химический (элементарный) состав почвообразующих пород в значительной мере влияет на характер и направленность химических реакций, перераспределение химических элементов по профилю почвы, т.е. на геохимию почвообразования. Все это определенным образом влияет и на другие процессы почвообразования. В результате на ограниченной территории, которая имеет участки, покрытые различными почвообразующих породами, формируются различные типы или подтипы почв.

2. Биологические факторы почвообразования

Процесс почвообразования начинается с момента поселения живых организмов на горной породе. Они усваивают элементы литосферы, воду и элементы атмосферы, включают их в метаболизм и возвращают в почву в формах и соотношениях. Итак, в результате жизнедеятельности 1организмив возникают малый биологический круговорот веществ, а также грунтовые циклы круговорота целого ряда химических элементов (C, O, H, N, P, S и др.)..

Жизнедеятельность всех организмов, населяющих почву (микроорганизмы, растения, животные), и продукты их жизнедеятельности осуществляют важнейшие элементарные процессы почвообразования - синтез и разложение органического вещества, разрушения и новообразования минералов, перераспределение и аккумулирование веществ. Все это определяет общий ход процесса почвообразования и формирования плодородия почвы.

Грунт одновременно населяют представители всех четырех царств живой природы - прокариоты, грибы, растения, животные. Однако функции организмов каждого царства в почвообразовании разные.

Микроорганизмы, населяющие почву, очень разнообразны по составу и по характеру биологической деятельности. Поэтому их роль в формировании почв чрезвычайно сложна и многообразна. Микроорганизмы существуют на Земле миллиард лет, они являются самыми древними почвообразователи, ибо появились на земле задолго до появления высших растений и животных. Кроме почвообразования их деятельность во многом определяет свойства осадочных пород, состав атмосферы и природных вод, геохимическую историю многих элементов (C, O, H, N, P, S и др.).. В биосфере они осуществляют такие процессы, как фиксация атмосферного азота, окисления аммиака и сероводорода, восстановления сульфатов и нитратов, аккумуляцию соединений железа и марганца, синтез в почвах биологически активных веществ - ферментов, витаминов, аминокислот и т.д.. Микроорганизмы принимают непосредственное участие в разрушении минералов и горных пород в процессе биологического выветривания.

Однако основной функцией микроорганизмов в почвообразовании является разложение органических остатков растительного и животного происхождения в гумусоутворення и полной минерализации.

Основная масса микроорганизмов сосредоточена в горизонте распространение корневых систем на глубине 10-20 см. Их численность в 1г почвы десятки и сотни миллионов штук. Общая масса микроорганизмов пахотного горизонта (25 -30см) составляет 10 т / га. Высокоплодородных окультуренные почвы содержат больше всего микроорганизмов.

В процессе жизнедеятельности растения осуществляют биогенную миграцию химических элементов в системе почва-растение-почва. При этом значительная часть зольных элементов, а также азота аккумулируется в верхнем горизонте сотни миллионов штук. Общая масса микроорганизмов пахотного горизонта (25 -30см) составляет 10 т / га. Высокоплодородных окультуренные почвы содержат больше всего микроорганизмов.

В процессе почвообразования участвуют бактерии, водоросли, лишайники, амебы, микронематоды, жгутиковые, ресничные, грибы и актиномицеты. Имеются данные о присутствии в почвах неклеточных форм микроорганизмов (вирусов, бактериофагов).

Высшие растения. Ознакомление с ролью микроорганизмов в почвообразовании свидетельствует о том, что они сами по себе еще не создают почву. Формирование почвы возможно только при поселении на материнской породе продуцентов органического вещества. Такими продуцентами на Земном шаре есть высшие растения. Именно этим организмам и принадлежит ведущая роль в процессах почвообразования. Отмершие остатки высших растений, превращенные микроорганизмами и животными, составляют основную массу органической части почвы. Следовательно, зеленые растения - основной источник органических веществ для почвообразования.

Зеленые растения суши ежегодно продуцируют около 5.3  1011 т биомассы. Часть этой биомассы в виде отмерших остатков корней и надземных органов ежегодно поступает в почву. Количество биологической массы, поступающей в почву, зависит от типа растительности и климатических условий. Часть растительного опада разлагается микроорганизмами, а вторая часть накапливается в виде лесной подстилки и степной войлока.

Усвоение химических элементов почвы корнями высших растений, синтез органических веществ, возвращение их в почву и разложения их микроорганизмами являются основными звеньями биологического круговорота веществ. Из ранее указанного видно, что зеленые растения - основной агент биологического круговорота, а почва выступает его ареной. В этом заключается вторая функция растений как почвообразователи.

В процессе жизнедеятельности растения осуществляют биогенную миграцию химических элементов в системе почва-растение-почва. При этом значительная часть зольных элементов, а также азота аккумулируется в верхнем горизонте почвы. В этом случае растения выступают как концентраторы химических элементов. Это функция растений в почвообразовании.

Животные. В процессах почвообразования участвуют представители таких типов животных: простейшие, черви, моллюски, членистоногие и млекопитающие. По размерам почвенную фауну разделяют на четыре группы: нано-, микро-, мезо-и макрофауны. Каждая группа животных приспособлен к определенным условиям жизни, к определенной взаимодействия с окружающей средой. Общие запасы зоомасы в почвах по фитомассы незначительны - в среднем 1-2%.

Главной функцией животных в биосфере и почвообразовании является потребление, первичное и вторичное разрушение органических веществ, перераспределение запаса энергии и превращение ее в тепловую, механическую и химическую.

Среди животных, населяющих почву, преобладают беспозвоночные. Их суммарная биомасса в 1000 раз превышает общую биомассу позвоночных. В почвах обитают дождевые черви, енхитреиды, клещи, ногохвостки и др.. Поедая растительные остатки, они значительно ускоряют биологический круговорот веществ.

Среди беспозвоночных особенно важную роль в почвообразовании играют дождевые черви. Они распространены в почвах различных почвенно-климатических зон. Их количество на 1 га почвы может достигать нескольких миллионов особей.

Деятельность дождевых червей в почвообразовании разнообразна, они образуют в почве густую сеть ходов, улучшает его физические свойства: пористость, аэрацию, влагоемкость. Продукты жизнедеятельности дождевых червей - капролиты улучшают структурность почвы и повышают водомицнисть структурных агрегатов. Почва, богатая на дождевых червей, имеет низкую кислотность, высокое содержание гумуса и другие положительные качества. Подсчитано, что дождевые черви перемешивают весь поверхностный горизонт почвы за 50 лет.

В почвах живет значительное количество личинок разных насекомых, термиты, муравьи и др.. Они также интенсивно перемешивают почвенную массу, образуют в ней большое количество ходов и тем самым улучшают водные и физические свойства почвы.

Среди позвоночных животных активное участие в процессах почвообразования принимают степные грызуны (полевки, сурки, кроты, суслики и др.).. Они строят глубокие норы и длинные ходы в почве. Объем грунта, который они перемешивают, достигает нескольких сотен кубических метров на 1 га. Интенсивное перемешивание почвенной массы землеройными животными приводит не только физические, но и глубокие химические изменения. Почвенная масса, внесенная из глубин на поверхность, изменяет химический состав верхних горизонтов почвы.

1.3 Климат как фактор почвообразования

Климат является одним из основных факторов почвообразования и географического распространения грантов. О разностороннее влияние его на почвообразование отмечал еще В. В. Докучаев. Теперь известно, что климат влияет на почвообразование как прямо (определяет гидротермический режим почвы), так и косвенно - через растительность, микроорганизмы и животных.

Основными климатическими факторами, которые влияют на процессы почвообразования, является солнечная радиация, атмосферные осадки и ветер.

Солнечная радиация. Солнечный свет, который приносит тепловую энергию на поверхность Земного шара, является основным источником энергии для жизни и почвообразования. Солнечная энергия, поглощенных почвой, затрачиваемого на такие процессы, как нагрев, испарение, транспирация, фотосинтез, синтез гумуса подобное.

Тепловые условия почвообразования на нашей планете очень разнообразны, но в общих чертах они обусловлены величинами радиационного баланса, которые коррелируют с такими показателями, как среднегодовая температура и сумма активных температур (табл.1).

Высокие среднегодовые температуры (+32; +35 °С ) характерны для тропиков, самые низкие - для полярных областей. Разница среднегодовых температур на Земле достигает 60-70 °С .

Сумма активных температур используется для агрономической и почвенной оценки территориального термического режима. Для травянистой растительности активными являются температуры выше +5 °С , для лесной - выше +10 °С .

Таблица 1

Планетарн ые терм и ч еские пояс а

Пояс

Среднегодовая

температура

воздуха, °С

Радиационный

баланс,

кДж/(см 2 ·год)

Сума активных температур, °С,за год на южной границе поясов

Полярный

23 - 15

21 - 42

400 – 500

Бореальный

4 + 4

42 - 84

2400

Суббореальный

84 - 210

4000

Субтропический

210 - 252

6000 – 8000

Тропический

252 - 336

8000 - 10000

Среднегодовая температура, величина радиационного баланса и сумма активных температур за год увеличиваются от полярных областей до тропических. Естественно, что в этом же направлении увеличиваются интенсивность выветривания, синтез органической массы, активизируется жизнедеятельность животных и микроорганизмов. В том же направлении повышается интенсивность почвообразующих процессов: разрушение минералов, разложение органических остатков, синтез гумусовых кислот подобное. За высоких среднегодовых температур образуется больше глинистых частиц как продукта интенсивного выветривания.

Температура почвы влияет на скорость химических реакций. Согласно правилу Вант-Гоффа , при повышении температуры на 10 °С скорость химических реакций увеличивается в 2-3 раза. Поэтому в районах с высокой среднегодовой температурой геохимические процессы происходят значительно быстрее, чем в широтах с холодным климатом. Это обусловливает годовую скорость выветривания, формирование различных кор выветривания и, как следствие, разнообразный химический состав почв. Кроме того, от температуры зависит степень диссоциации химических соединений в водных растворах. При повышении температуры от 0 °С до 50 °С диссоциация увеличивается в 8 раз.

Температура влияет на растворение газов в почвенном растворе, на скорость коагуляции и пептизация и другие физико-химические процессы.

Атмосферные осадки Эффективное воздействие тепла и света на биологические и грунтоутворюючи процессы возможна только при наличии достаточного количества влаги. Поэтому значение атмосферных осадков в почвообразовании очень велико. На почвообразование определенным образом влияет как количество, так и сезонное распределение атмосферных осадков.

Атмосферные осадки, поступающие в почву, растворяют минеральные и органические соединения, перемещают их в нижние горизонты (выщелачивают), переносят подвижные формы соединений и механические частицы с повышенных элементов рельефа на снижены. Эти процессы осуществляют воды поверхностного и подземного стоков.

Под воздействием атмосферных осадков происходят процессы гидролиза первичных минералов и формирование вторичных глинистых минералов. Атмосферные осадки приносят на поверхность почвы пылеватые частицы, растворенные соли, кислоты, азот, аммиак, СО2, токсичные соединения. Влага атмосферных осадков удерживается в порах и капиллярах почвы и используется растениями для синтеза органического вещества, которое в будущем расходуется на пополнение запаса гумусных веществ и является источником энергии и питательных веществ для животных и микроорганизмов. Таким образом, атмосферные осадки прямо и опосредованно влияют на процессы гумификации.

Нисходящее движение воды в конце концов формирует генетические горизонты почвы - гумусные, элювиальных, илювий и др.. Интенсивный сток атмосферных осадков вызывает водную эрозию почв.

Характер атмосферных осадков на данной территории влияет на термический режим почв.

Степень увлажнения почв приводит их химический состав. В аридных областях формируются почвы с высоким содержанием карбонатов и водорастворимых солей, с низким содержанием гумуса, с малой емкостью поглощения. В гумидных ландшафтах усиливается промывки почвы, повышается содержание гумуса, глинистых минералов и впитывающие способности грунта. В условиях переувлажнения значительно повышается кислотность почвы, снижаются содержание гумуса и емкость поглощения.

Оценивая роль климата как фактора почвообразования, следует одновременно учитывать влияние атмосферных осадков и температуры. Ученые почвоведы уже давно искали форму выражения совокупного влияния теплоты и осадков на почвообразование. Оригинальным подходом к решению этой проблемы стала концепция гидротермических рядов, разработанной В. Р. Волобуев (1956). Он доказал общепланетарный связь между атмосферными осадками, среднегодовыми температурами, радиационным балансом, испарением и особенностями почвенного покрова. На основе анализа соотношения этих факторов было установлено гидротермические условия формирования основных типов почв и выделены их климатические ареалы.

По гидротермическими условиями почвы разделяют на две категории.

1. Почвы, в которых биологические процессы подавлены. Они образовались в регионах с низким увлажнением (500мм в год), но в разных термических поясах. К этой категории относятся сероземы пустынь, каштановые и тундровые почвы.

2. Почвы, образовавшиеся в теплых и умеренных тропических широтах. Эта категория почв сформировалась в ограниченных термических условиях, но в широком диапазоне количества атмосферных осадков (1000-5000мм в год). Это - бурые лесные почвы, желтоземы субтропиков и латеритные влажных тропиков.

Условно почвы относят к рядам увлажнения (гидроряды) и термических рядов. Гидроряды объединяют почвы, которые формируются в различных термических условиях, но в условиях почти одинакового увлажнения. Терморяды, наоборот, объединяют почвы формирующиеся в условиях разного увлажнения, но в близких термических условиях. Всего обозначено семь гидро рядов (пустынный (А), сероземных (В), каштановый (С), черноземный (D), три подзолистых (E, F, G) и семь терморядив (арктический (И), субарктический (II), умеренно холодный (III), умеренный (IV), умеренно теплый (V), субтропический (VI) и тропический (VII).

Суммарный эффект совокупного воздействия осадков и температуры на почвообразования очень сложный. Характер процесса почвообразования, кроме того, зависит от сочетания гидротермических условий с рельефом, геохимическим балансом веществ и другими факторами.
Ветер. Кроме солнечной радиации и атмосферных осадков на почвообразование оказывает влияние также ветер. Он переносит минеральные и органические частицы из одной территории на другую, перераспределяет осадки, усиливает испарение и таким образом участвует в формировании механического, химического состава и водного режима почвы.

Все процессы разрушения, переноса и отложения механических частиц пород и почв, которые происходят под воздействием ветра, называют эоловыми. Выделяют эоловые дефляцию, эоловые коррозию и эоловые аккумуляцию.

Интенсивность выдувания почвы определяется многими факторами: скоростью ветра, наличием растительного покрова, механическим и структурным составом почвы, рельефом и т.п.. При сильной дефляции возникают пыльные бури.

В результате дефляции выдувается верхний плодородный слой, снижается плодородие почвы. В местах аккумуляции принесенных ветром веществ (балки, овраги, лесополосы, населенные пункты, сельскохозяйственные угодья) погибают многолетние насаждения и посевы, заносятся плодородные земли, оросительные каналы, дороги и т.п..

Итак, эоловые процессы причиняют значительный вред сельскому, водному и другом отраслям народного хозяйства. Как денудация, так и аккумуляция резко нарушают нормальное течение процессов почвообразования.

1.4 Рельеф как фактор почвообразования

Рельеф - своеобразный фактор почвообразования. Его значение в формировании и географическом распространении почв велико и разнообразно. Он выступает как главный фактор перераспределения солнечной радиации и осадков. В зависимости от экспозиции и крутизны склонов влияет на водный, тепловой, питательный и солевой режимы почвы, определяет структуру почвенного покрова и является основой почвенной картографии.

В практике полевых почвенных исследований принято пользоваться такой систематикой типов рельефа:

1) макрорельеф;

2) мезорельефа;

3) микрорельеф;

4) нанорельеф.

Каждый из этих типов рельефа играет определенную роль в почвообразовании и географии почв, в формировании структуры почвенного покрова .

Макрорельеф - крупные формы рельефа, определяющие общий вид большой территории земной поверхности: горные хребты, плоскогорья, долины подобное. Возникновение форм макрорельеф связано главным образом с тектоническими явлениями в земной коре.

Формы макрорельеф влияют прежде всего на перераспределение солнечного тепла и атмосферных осадков на обширных территориях и предопределяют горизонтальную и вертикальную зональность почв.

На больших равнинах происходит смена биоклиматических зон, для которых характерны определенный тип растительности, тип водного и температурного режимов. Таким образом, определенное сочетание факторов почвообразования приобретает зонального характера. В результате формируются почвенные зоны и под зоны, что является проявлением закона горизонтальной зональности.

Горные системы также осуществляют перераспределение атмосферных осадков, что обусловливает изменение растительных и почвенных зон. Высокие горы являются барьером на пути теплых влажных воздушных масс. Поэтому на наветренной склоны выпадает большое количество осадков, а на склонах противоположной экспозиции формируется засушливый климат. Понятно, что почвенный покров влажных и сухих склонов неодинаков.

Кроме перераспределения солнечного тепла и атмосферных осадков в горных районах на почвообразование влияет абсолютная высота местности. С изменением высоты местности меняются все климатические факторы: температура, влажность воздуха, количество осадков, давление, инсоляция подобное. С поднятием в горы разжижается атмосфера, в воздухе уменьшается содержание водяных паров и пылеватых частиц, увеличивается солнечная радиация, поступления ультрафиолетовых лучей и одновременно излучения тепла. Такие климатические изменения обуславливают дифференциацию растительности и почв, то есть возникновения природной зональности. Почвенные зоны, которые закономерно сменяют друг друга, образуют вертикальные грунтовые структуры.

Мезорельефа - это формы средних размеров по высоте и протяженности (несколько квадратных километров). Примером таких форм являются овраги, балки, котловины, террасы, долины ручьев, бугры и т.п.. Возникли они в результате геологических процессов денудации, образования континентальных отложений подобное.

Микрорельеф - это мелкие формы рельефа, которые занимают незначительные площади и является деталями крупных форм. Сюда относятся бугорки, понижения, кочки, небольшие впадины, вспучивание, карстовые воронки, береговые валы и т.д..

Элементы мезо-и микрорельефа перераспределяют солнечную энергию и влагу атмосферных осадков на данной территории.

Перераспределение солнечной энергии определяется наличием склонов неодинаковой крутизны и экспозиции. Северные склоны в любое время года на всей территории Северного полушария получают меньше тепла, чем южные, и поэтому холодные. Разница температуры почвы летом между северным и южными склонами при одинаковой их крутизне может достигать 5-8 °С .

Особенности теплового режима на склонах различных экспозиций неодинаково влияют на их водный режим и характер растительности. Это бусловливает формирование разнотипных почв. На южных склонах почвы формируются в условиях относительно меньшего увлажнения и более контрастного температурного режима. В этой связи на южных склонах, как правило, развиваются земледелие, а северные склоны остаются неосвоенными.

Неровности рельефа предопределяют стока поверхностных вод. Вода атмосферных осадков стекает по склонам с повышенных элементов рельефа в пониженные. В результате повышенные участки теряют часть влаги, а почвы пониженных получают их дополнительно.

С перераспределением влаги по элементам рельефа связана миграция твердых и водорастворимых продуктов выветривания и почвообразования. Стекая по склонам дождевые и талые воды несут с собой частицы почвы и растворенные соединения, которые аккумулируются на пониженных участках. Таким образом, почвообразования на различных элементах рельефа происходит в различных гидротермических и геохимических условиях.

По положению на рельефе и характером перераспределения атмосферных осадков выделяют три группы почв, которые называют генетическими рядами увлажнения.

На повышенных элементах рельефа в условиях свободного стока поверхностных и при глубоком залегании грунтовых вод, то есть в автономных ландшафтно-геохимических условиях, под влиянием нисходящего движения воды по профилю формируются автоморфных почв.

Гигроморфни почвы формируются на пониженных участках рельефа в условиях длительного застоя поверхностных вод или при неглубоком (менее 3 м) залегании грунтовых вод, которые обогащены химическими элементами и соединениями, принесенными с повышенных элементов. Эти почвы формируются в зависимости от ландшафтно-геохимических условий под влиянием восходящего движения воды.

Почвы, формирующиеся в автономных условиях, но их кратковременно затапливают поверхностные воды или они формируются при неглубоком (3 - 6 м) залегании грунтовых вод, называют напивгидроморфнимы (лугово-черноземные почвы).

Почвы, которые формируются в условиях сезонного грунтового увлажнения, называют автоморфных-гидроморфных.

Зависимость гигроморфних почв от химического состава пород и почв повышенных элементов рельефа называют геохимическим сообщением почв.

Тесная связь между элементами рельефа и характерными различиями почв стал основой разработки метода опорных участков ("ключей") при картировании почв. Суть этого метода заключается в том, что на типичной для данного района области устанавливается связь элементов рельефа с растительными группировками, с составом почвообразующих пород и характерными особенностями почв. Для этого закладывают нужное количество почвенных разрезов на разных элементах рельефа и устанавливают приуроченность к ним грунтовых склонений. Добытые данные являются гипсометрические основой для картографирования почв данного района.

1.5 Время как фактор почвообразования

В своих трудах В. В. Докучаев указывал, что современные почвы есть продукт длительной и сложной геологической истории земной поверхности. Почва не может возникнуть мгновенно, длительное время оставаться неизменным, а затем внезапно исчезнуть. Для формирования почвы требуется определенное время.

Процесс почвообразования, как и любой естественный процесс, имеет свое начало, этапы развития, определенную скорость и время завершения.

Почвообразования начинается с момента поселения живых организмов на рыхлой выветренной породе.

По наблюдениям многих ученых 1см гумусного горизонта почвы в условиях умеренного пояса формируется за 100-200 лет, а полный профиль современного грунта - от нескольких сотен до нескольких тысяч лет.

Признаком завершения формирования почвы, достижения им зрелого состояния является четкая дифференциация профиля на генетические горизонты. Грунты, которые не достигли полной дифференциации и полного развития профиля, называют незрелыми (молодыми).

Почвы на земной поверхности начали формироваться с появлением живых организмов. Первыми организмами на Земле были бактерии, которые появились в нижньопалеозойський период (более 500 млн. лет назад). Ученые предполагают, что под их влиянием формировались примитивные почвы, подобные тем, которые формируются в наше время в условиях высокогорья.

В конце силурийского периода, когда на Земле появились растения псилофиты (400 млн. лет назад), на планете начался новый этап почвообразования. Под их влиянием на переувлажненных побережьях морей сформировались влажные почвы. Эти почвы являются старейшими на Земле. До нашего времени дошли ископаемые остатки этих почв (горючие сланцы Ленинградской области и Эстонии).

350-360 млн. лет назад в конце девонского периода псилофиты исчезли и на их смену пришли папоротники и хвощи. Они имели корневую систему и в карбоне занимали большие территории суши с тропическим и субтропическим климатом. В таких условиях формировались ферраллитные почвы, подобные современным субтропических и тропических почв. При добывании угля в Донбассе обнаружены почвы, возраст которых более 300 млн. лет, но они имеют признаки и свойства современных почв.

В пермский период (285 - 240 млн. лет назад) произошли резкие климатические изменения. На значительных территориях суши установился аридный, пустынный климат, а в других - холодный гумидных. Считают, что интенсивное испарение и криогенные процессы обусловили формирование пустынных, засоленных, мерзлотных почв. В условиях умеренно холодного влажного климата начали формироваться почвы, подобные подзолистых. В течение следующих 120-130 млн. лет не было условий для возникновения новых почв. Только в эоцене возникли новые природные ландшафты - степи. В этот период начали формироваться черноземы и каштановые почвы.

В начале четвертичного периода образовалась тундра, а несколько позже возникли сфагновые болота. В этот период начали формироваться тундровые почвы и торфяно-болотные верховых болот.

Таким образом, в процессе эволюции органического мира на Земле прослеживается процесс возникновения новых почв, увеличения их разнообразия.

Современный почвенный покров земли разновозрастный. Нулевой год имеют те участки суши, которые только освободились от воды в результате морской регрессии (Прикаспий, Приаралля), осушение дельт рек, при строительстве польдеров (Голландия). Нулевой возраст имеют также поверхности, покрытые вулканическим пеплом современных вулканических извержений и обнажения карьеров насыпей.

Возраст почв на территории Восточной Европы соответствует периоду окончания последнего материкового зледнення (около 10 тыс. лет назад) и начала Каспийско-Черноморской регрессии. В связи с этим возраст черноземов составляет 8-10 тыс. лет, а возраст каштановых - 5-6-тыс. лет.

1.6 Производственная деятельность человека как почвообразующих фактор .

Рассмотренные ранее факторы почвообразования - горные породы, климат, живые организмы, рельеф и время - являются глобальными. Они влияют на процессы почвообразования на всей территории суши.

Кроме глобальных факторов есть ряд локально действующих. К этим факторам относится производственная деятельность человека.

В процессе производственной деятельности человек с помощью мощных средств влияет на окружающую среду, в том числе на почву, что приводит к значительным изменениям в природных экологических системах, к изменениям в процессе почвообразования.

Осваивая целинные земли, человек создает благоприятные условия для развития культурных растений. Однако при этом нарушается динамическое равновесие всех компонентов природного ландшафта: меняется характер растительности, состав микроорганизмов и зоофауны, характер обмена веществ и энергии в системе почва - растение подобное. Изменяется влияние других факторов почвообразования: климата, рельефа, материнской породы .

Обработка почвы, регулирования водного режима (осушение, орошение, снегозадержание, внесение удобрений, химические и другие виды мелиораций корне меняют химический состав почвы, ее физические, тепловые и водные свойства.

Таким образом, с началом возделывания целинной почвы начинает меняться характер почвообразования. Грунт переходит из природного к культурному фазы своего развития, до культурного процесса почвообразования. Суть этого процесса направляется на образование мощного гумусного горизонта, который должен иметь высокую биологическую активность, высокое содержание гумуса, благоприятный структурный состав, оптимальный питательный, тепловой, водный и воздушный режимы.

Основными факторами влияния на грунт на всех этапах культурного почвообразования являются культурные растения, механический обработка почвы, удобрения и различные мелиоративные мероприятия. Роль данных факторов в почвообразовании детально изучают в курсе агрономического почвоведения.

Систематическое улучшение свойств почвы и повышения ее плодородия путем применения агротехнических мероприятий называют окультуриванием почвы. В окультуренных почвах создаются благоприятные условия для роста и развития растений.

7. Взаимосвязь факторов почвообразования.

Факторы почвообразования оказывают специфическое воздействие на образование почв и не могут быть заменены друг другом. В этом смысле они равнозначимы. Каждый из них играет свою роль в процессах обмена материей и энергией между почвой и окружающей ее природной средой.

Вместе с тем всю сложную совокупность процессов, характеризующих почвообразовательный процесс как следствие взаимодействия факторов почвообразования, можно объединить в 3 группы (по А.А.Роде): протекающие в результате деятельности живых организмов; развивающиеся за счет продукции жизнедеятельности живых организмов и явления абиотического характера, не связанные непосредственно с первыми двумя. При этом первые две группы охватывают самые существенные стороны процесса почвообразования и именно их следствием являются возникновение и развитие специфического свойства почвы - плодородия. Поэтому в природном почвообразовании биологический фактор следует считать ведущим.

Факторы почвообразования в природе в то же время тесно связаны, и приведенное выше их разделение в известной степени абстрагировано для понимания элементарных явлений почвообразования. На самом деле они сочетаются в природе в экологические комплексы, обусловленные сопряженным развитием их компонентов.

Докучаев подчеркивал, что почва образуется в результате взаимодействия факторов почвообразования. При взаимодействии факторов они влияют друг на друга и, как результат этого влияния и взаимодействия, развиваются микро-, мезо- и макропроцессы почвообразования. Под их воздействием формируется почва с набором генетических горизонтов и конкретными свойствами.

Выделяют два главных цикла в развитии природных экосистем, ландшафтов, почв - биоклиматический, биогеоморфологический.

Биоклиматический цикл развития обусловлен космическими и общепланетарными явлениями, распределением на поверхности солнечной радиации и динамикой атмосферы; растительность и почвы в этом цикле эволюционируют вместе с климатом.

Биогеоморфологический цикл развития обусловлен геологическими, геоморфологическими и геохимическими процессами; в нем развитие растительности и почвенного покрова связано с формированием рельефа и поверхностных отложений.

В последнее время в жизни все большее значение приобретает третий цикл - производственная деятельность человека, который, с одной стороны, приспосабливается к главным циклам, а с другой - очень сильно изменяет их через замену естественной растительности культурной и через преобразование почвенного покрова методами агротехники, мелиорации, рекультивации, а также через создание культурных ландшафтов.

Заключение

Таким образом, процесс почвообразования - это совокупность разнообразных элементарных почвенных процессов, формирующих состав твердой фазы почвы, раствора и почвенного воздуха, строение и свойства почвы.

Процессы развития почв и почвенного покрова, как и процесс формирования их плодородия, связаны с природными факторами почвообразования, а также с многообразной деятельностью человеческого общества, с развитием его производительных сил, экологических, экономических и социальных условий. Особая роль в почвообразовании принадлежит живым организмам. В процессе их жизнедеятельности в верхнем слое горной породы образуются органические и органно-минеральные вещества, что создаёт условия для удержания влаги, повышения газообмена с атмосферой, поглощения лучистой энергии Солнца и др.

В масштабе земного шара географические закономерности почвообразования на отдельных его материках связаны с зональным изменением климата и растительности в широтном направлении (север – юг). Различия в почвенном покрове небольших территорий обусловлены влиянием рельефа (возвышенности, долины и др.), состава и свойств пород на растительность и почвообразующие процессы.

Используя почву как средство производства, человек существенно изменяет условия почвообразования, влияя как непосредственно на её свойства, режим и плодородие, так и на природные факторы, определяющие почвообразование. Посадка и вырубка лесов, возделывание сельскохозяйственных культур изменяют облик естественной растительности; осушение и орошение меняют режим увлажнения. Не менее резкие воздействия на почву вызывают приёмы её обработки, применение удобрений и средств химической мелиорации (известкование, гипсование). Следовательно, почва является не только предметом приложения труда, но, в известной степени, и продуктом этого труда. Это непосредственно влияет на экологическую ситуацию на Земле.

Литература

  1. Добровольский В. В. География почв с основами почвоведения:Учеб. для пед. ин-тов.-М.:ВЛАДОС,2001.-384с.:ил.-(Учебник для вузов).
  2. Чорний І.Б. Географія грунтів з основами ґрунтознавства: Навч. посібник. – К.: Вища школа, 1995. – 240 с.
  3. Лозе Ж., Матье К. Толковый словарь по почвоведению: Пер. с франц. – М.: Мир, 1998. – 398 с.
  4. Атлас почв Украинской ССР / Под ред. Н.К.Крупского, Н.И. Полупана. К.: Урожай, 1979.
  5. Веденичев П.Ф. Зкмельные ресурсы Украинской ССР и их хозяйственное использование. – К.: Наукова думка 1979.
  6. Білявський Г.О., Падун М.М., Фурдуй Р.С. Основи загальної екології. – К.: Либідь, 1993. – 300 с.
  7. Білявський Г.О., Фурдуй Н.С. Практикум із загальної екології. – К.: Либідь, 1997.
  8. Сафранов Т.А. Екологічні основи природокористування. Львів: «Новий світ», 2003. – 248 с.
  9. Лабораторний та польовий практикум з екології / Під. ред. В.П. Замостяна, та Я.П. Дідуха. – Київ: Фітосоціоцентр, 2000. – 216 с.
  10. Перельман А.И. Геохимия биосферы. – М.: Наука, 1973. – 168 с.
  11. Якушова А.Ф., Хаин В.Е., Славин В.И. Общая геология. – М.: Изд. МГУ, 1988. – 448 с.
  12. Лапин А.Г.,Усов М.А.Основы агрономии.-Л.:Гидрометеоиздат,1990-292 с.
  13. Правило Вант-Гоффа/| Матеріал з Вікіпедії — вільної енциклопедії. // Електронний ресурс]. – Режим доступу: http://uk.wikipedia.org/wiki/Правило_Вант-Гоффа
  14. Ковриго В.П., Кауричев И.С., Бурлакова Л.М. Почвоведение с основами геологии.К.:Колос, 2000-416 с.

Другие похожие работы, которые могут вас заинтересовать.вшм>

3504. Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики 27.97 KB
Простейший пуассоновский процесс его свойства следствия из них. Сложнопуассоновский составной пуассоновский процесс его вероятностные характеристики. поступают средства t – время Nt – случайная величина колво исков N= сумма индикаторов событий EN = np = ν Nt – представляет собой пуассоновский процесс его значениями явл. Простейший пуассоновский процесс нижний рисунок – процесс с независимыми приращениями обладает свойствами: 1 стационарность т.
613. Химический процесс горения. Факторы, обеспечивающие процесс горения. Основные принципы тушения возгораний 10.69 KB
Химический процесс горения. Факторы обеспечивающие процесс горения. Для протекания процесса горения требуется наличие трех факторов: горючего вещества окислителя и источника зажигания. Полное – при избытке кислорода продукты горения не способны к дальнейшему окислению.
7043. Информационный процесс 20.13 KB
Информационный процесс процесс получения создания сбора обработки накопления хранения поиска распространения и использования информации В результате исполнения информационных процессов осуществляются информационные права и свободы выполняются обязанности соответствующими структурами производить и вводить в обращение информацию затрагивающую права и интересы граждан а также решаются вопросы защиты личности общества государства от ложной информации и дезинформации защиты информации и информационных ресурсов ограниченного доступа...
7658. ПРОЦЕСС РАСШИРЕНИЯ 59.16 KB
Температура в конце выпуска у дизельных двигателей значительно ниже т. Для снижения давления остаточных газов в современных двигателях выпускной клапан открывается во время процесса расширения до прихода поршня в НМТ. Выпуск начинается с момента открытия выпускного клапана за счет давления в конце расширения...
17460. Педагогический процесс 112.83 KB
Сущность педагогического процесса в дошкольном образовательном учреждении. Организация педагогического процесса в дошкольном образовательном учреждении. Особенности педагогического процесса в дошкольном образовательном учреждении. Основная особенность педагогического процесса представляет собой наличие единства обучения воспитания и развития на основе сохранения цельности и общности системы.
2522. Производственный процесс 49.86 KB
От качества разработки технологического процесса в значительной степени зависит рентабельность будущего производства. Производственный процесс включает не только технологические но и вспомогательные процессы в частности транспортировку контроль продукции подготовку производства эксплуатацию зданий и сооружений оборудования. Основное назначение химического производства получение продукта при этом химическое производство является многофункциональным. Общая структура химического производства включает в себя функциональные...
17734. Процесс инновационной деятельности 51.71 KB
По характеру применения: - продуктивные инновации ориентированные на производство и использование новых продуктов; - технологические инновации нацеленные на создание и применение новой технологии: - социальные ориентированные на построение и функционирование новых структур; - комплексные представляющие единство нескольких видов изменений; - рыночные позволяющие реализовать потребности в продуктах услугах на новых рынках. Часто успех деятельности предприятия определяется совместным эффектом получаемых при внедрении нового продукта новой...
7590. Процесс воспитания правдивости 45.49 KB
Социальная основа лжи. Методы воспитания правдивости у детей дошкольного возраста Художественная литература как средство воспитания честности и правдивости у детей старшего дошкольного возраста Практическая часть. Диагностика обследования детей старшего дошкольного возраста на выявление причин детской лжи...
18186. Педагогический процесс школы 101.76 KB
В современных условиях когда динамичная и порой непредсказуемая социально-политическая обстановка в стране значительно усложнила воспитательный процесс когда подрастающее поколение вобрав в себя все недостатки общества в его переломный период становится всё более также непредсказуемым проблемы нравственности нравственной культуры нравственное воспитание выдвигается на одно из первых мест как основа прежде всего гуманистического воспитания молодёжи в обстановке рыночных отношений требующей не только самостоятельности гибкости...
5172. Процесс наружной рекламы 42.46 KB
Цели исследования: проанализировать процесс наружной рекламы. Раскрыть сущность наружной рекламы. С древних времен люди использовали настенные рисунки и надписи и некоторые из них могут рассматриваться как простейшая форма рекламы. Расцвет наружной рекламы произошел в XIX веке.

Глава 2. ФАКТОРЫ ПОЧВООБРАЗОВАНИЯ. ОБЩАЯ СХЕМА ПОЧВООБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

§1. Понятие о факторах почвообразования

Под факторами почвообразования понимаются внешние по отношению к почве компоненты природной среды, под воздействием и при участии которых формируется почвенный покров земной поверхности. Впервые эту тесную причинную взаимосвязь между природными условиями, характером почвообразования и свойствами почвы установил В.В.Докучаев. Он же и выявил основные факторы почвообразования, которыми являются: почвообразующие породы, климат, рельеф, живые организмы, хозяйственная деятельность человека и время. Перечисленные факторы в их разнообразном сочетании создают великое множество типов почв, их комбинаций, неповторимую мозаику почвенного покрова. В.В.Докучаев отмечал, что все агенты-почвообразователи равнозначны и принимают равноправное участие в образовании почвы, отсутствие одного из них исключает возможность почвообразовательного процесса. На определенных стадиях или в специфических условиях развития почвы в качестве определяющего может выступать какой-либо один из факторов.

Почвообразующие породы. Значение почвообразующей, или материнской, породы как фактора почвообразования заключается в том, что она является тем исходным материалом, из которого формируются почвы, и той средой, где проявляется деятельность живых организмов. Однако почвообразующая порода не есть инертный скелет почвы. Она принимает прямое участие в развивающихся на ней процессах, обусловливая гранулометрический, минералогический и химический состав почв и влияя тем самым на физические, физико-химические, водно-воздушные свойства, тепловой, питательный и водный режимы почвы. Все эти свойства непосредственно влияют на скорость, направленность и характер почвообразовательных процессов: минерализацию и гумификацию растительных остатков, скорость накопления и передвижения веществ в почвенной толще, а также на формирование и уровень почвенного плодородия.

В одних и тех же природных условиях, но на различных почвообразующих породах могут формироваться совершенно разные почвы. Так, например, в таежно-лесной зоне на алюмосиликатной морене формируются малоплодородные, подзолистые почвы, а на карбонатной морене – плодородные почвы с высоким содержанием гумуса, агрономически ценной структурой и благоприятной нейтральной реакцией. В этой же зоне на флювиогляциальных песках формируются бедные и сухие песчаные почвы, а на аллювии – пойменные дерновые, плодородные почвы.

По происхождению горные породы подразделяются на три группы:

1) магматические, образующиеся при внедрении в земную кору или извержении на поверхность магмы (основные – базальт, габбро; кислые – гранит; ультраосновные – перидонит, дунит);

2) осадочные горные породы, образующиеся путем механического или химического осаждения продуктов разрушения магматических и метаморфических пород, а также жизнедеятельности организмов;

3) метаморфические породы, образующиеся из ранее существовавших пород под воздействием факторов метаморфизма (высоких температур, давления, действия газов). Наиболее распространены сланцы, филлиты, гнейсы, кварциты, мраморы.

На большей части Земли почвы сформировались на осадочных породах. Они покрывают около 75 %поверхности континентов. По генетическим признакам среди осадочных горных пород выделяют: обломочные, или механические, химические и органогенные.

Механические, или обломочные, отложения образовались при механическом измельчении (дроблении) различных горных пород под влиянием термического выветривания, а также разрушения их ледниками и снеговыми водами.

Элювий – продукты выветривания, остающиеся на месте их образования. Этот материал состоит из обломков разного размера. В условиях горного рельефа элювий встречается на повышениях. Почвы, образующиеся на элювиальных отложениях, характеризуются низким плодородием, малой мощностью, а также щебнистостью и каменистостью.

Делювий – это рыхлые продукты выветривания, переносимые временными незначительными водными потоками, стекающими вниз по склонам во время дождей и весеннего снеготаяния. Этот мелкозёмистый материал откладывается у основания и в нижней части склонов. На делювиальных отложениях формируются почвы довольно высокого плодородия.

Аллювий – отложения речных постоянных водных потоков. Эти отложения формируются в долинах рек во время паводков, характеризуются слоистостью и сортированностью. Могут быть разные по содержанию частиц – песчаные в околоречной части поймы и илистые в притеррасной части.

Озерные отложения – сапропель, озерные илы, мергель. Для них характерны глинистый, реже тонкопесчаный состав со значительным количеством ила, карбонатов или легкорастворимых солей. Формируются довольно плодородные почвы.

Болотные отложения состоят из торфа и болотногo ила.

Морские отложения встречаются в Прикаспийской низменности, на побережье северных морей. Эти породы сортированы, разного гранулометрического состава, слоисты и содержат соли. На морских отложениях образуются засоленные почвы.

Эоловые отложения образуются при переносе и отложении песчаного материала ветром. Песчаные наносы занимают большие территории в пустынях. Образуют такие формы рельефа, как дюны, барханы, бугры.

На обширных равнинах в основном распространены отложения четвертичного периода – ледниковые отложения , продукты выветривания различных пород, перемещенные и отложенные ледником. Они преобладают и в составе почвообразующих пород Беларуси и делятся на моренные, водно-ледниковые, озерно-ледниковые. Для морены характерны несортированность, неоднородный механический состав, завалуненность, обогащенность первичными минералами, красно-бурая, желто-бурая окраски. Водно-ледниковые отложения связаны с перемещением и переотложением моренного материала ледниковыми потоками за краем ледника. Характеризуются сортированностью, ровным рельефом, безвалунностью, бедны по химическому составу, преимущественно песчаные. Озерно-ледниковые являются отложениями мелководных приледниковых озер. Характерно большое содержание пылеватых фракций, безвалунность, богатство химического состава, суглинки и супеси по механическому составу, часто карбонатные, уплотненные, склонны к заболачиванию.

Лёссовидные суглинки и лёсс имеют различный генезис. Для них характерны палевая или буровато-палевая окраски, карбонатность, рыхлое сложение, они богаты по химическому составу, чаще легкие суглинки, склонны к размыванию и образованию оврагов.

Химические осадочные породы возникают путем отложения вещества на дне водоемов из растворов в результате химических реакций или изменения температуры воды. Карбонатные породы образуются на дне морей частично при осаждении из воды углекислой кальциевой соли, поступающей вместе с речной водой. Большая же часть углекислого кальция, осевшего на морском дне, является продуктом деятельности некоторых организмов. Так, в меловом периоде мезозойской эры происходило накопление залежей мела за счет микроскопических раковинных амеб (фораминифер и др.).

Органогенные породы состоят из продуктов жизнедеятельности животных и растений, а также из их неразложившихся остатков (торф). Многие карбонатные породы (известняки коралловые, ракушечные и др.) образуются с участием организмов, в скелетной или защитной части которых содержится карбонат кальция.

При оценке почв все материнские породы делят (рис. 2) на засоленные и незасоленные . Засоленными породами являются отложения давно высохших морских бассейнов или озер, на них могут развиваться засоленные почвы (солончаки, солонцы). На карбонатных породах развиваются почвы с нейтральной реакцией среды, способствующей накоплению гумуса в почве (дерново-карбонатные и др.).

Наиболее ценные почвообразующие породы – лёссы, лёссовидные суглинки и другие карбонатные породы (ледниковые и озерные отложения), а также аллювиальные суглинки в поймах рек. К менее ценным относятся бескарбонатные покровные суглинки, а к самым бедным – кварцевые пески (эоловые отложения).

Исходя из особенностей материнской породы, П.С.Косович (1911) сделал два вывода:

1. На одних и тех же породах могут формироваться разные почвы, если другие факторы почвообразования отличаются между собой. На суглинистой породе под травянистой растительностью формируется дерновая почва, под лесом – дерново-подзолистая или иная лесная почва.

2. Одни и те же почвы могут формироваться на разных породах, если иные факторы почвообразования одинаковы. Под смешанным хвойно-лиственным лесом на песчаных, супесчаных, суглинистых породах образуются дерново-подзолистые почвы.

Однако возможны исключения: чем активнее идет процесс почвообразования, тем слабее влияет горная порода, но в случае, если химический состав и физические свойства породы выражены резко (карбонатная порода), она оказывает длительное влияние.

Климат – многолетний режим погоды той или иной местности. В различных природных условиях климат подчиняется закону зональности. Он зависит от географической широты, высоты над уровнем моря, форм рельефа и удаленности от морей и океанов. Сильнее всего на почвообразование влияют температура, атмосферные осадки, ветер и влажность воздуха. Эти элементы в сочетании с другими факторами почвообразования обусловливают определенную закономерность в распространении почвенного покрова.

С климатом связано обеспечение почвы энергией – теплом и в значительной мере водой. От величины годового количества поступающего тепла и влаги, особенностей их суточного и сезонного распределения зависят активность биологических процессов и развитие почвообразовательного процесса.

Большое значение имеет характеристика климата по температурным показателям и условиям увлажнения. Выделяются следующие климатические группировки по показателям суммы температур выше 10 о С за вегетационный период: холодные полярные < 600 о, холодно-умеренные – 600 – 2000 о, тепло-умеренные – 2000 – 3800 о, теплые субтропические – 3800 – 8000 о, жаркие тропические > 8000 о . Эти группы климата располагаются в виде широтных поясов и называются почвенно-биотермическими поясами, которые характеризуется определенными типами растительности и почв. По условиям увлажнения выделяются климатические группировки: очень влажные – коэффициент увлажнения > 1,33, влажные гумидные – 1,00 – 1,33, полувлажные – 0 ,55 – 1 ,00, полусухие – 0,33 – 0,55, сухие аридные – 0,12 – 0,33, очень сухие – < 0,12. Коэффициент увлажнения (ГТК) – это отношение количества осадков к испаряемости. Обилие осадков способствует промыванию почвы и выносу в нижние горизонты легкорастворимых солей, в том числе и минеральных веществ, образующихся при разложении органических остатков. При засушливом климате эти соединения не только не выносятся, но, наоборот, способны накапливаться в верхних слоях почвы, приводя к её засолению.

Климат оказывает прямое и косвенное влияние на характер почвообразовательного процесса. Прямое влияние связано с непосредственным воздействием на почву осадков, нагревания и охлаждения. Косвенное влияние климата проявляется через воздействие на растительность и животный мир.

Таким образом, климат сильно влияет на тепловой, воздушный и другие режимы почв. От сочетания температурных условий и увлажнения зависят тип растительности и состав фитоценозов, скорость образования и трансформации органического вещества, скорость ферментативных реакций, метаболическая и функциональная активность микробиоты, растений и животных, процессы ветровой и водной эрозии.

Рельеф. Влияние рельефа на почвообразовательный процесс главным образом косвенное, через перераспределение тепла и воды, которые поступают на поверхность суши. Значительное изменение высоты местности влечет за собой существенное изменение температурных условий и изменения в увлажнении. Воздушные массы, поднимаясь в горы, охлаждаются, что вызывает выпадение осадков, а воздух, перевалив через горы, опять нагревается и становится сухим. С этим связано явление вертикальной зональности климата, растительности и почв в горах.

Рельеф влияет на перераспределение солнечной энергии и осадков в зависимости от экспозиции, крутизны и формы склонов. Склоны разной крутизны и формы перераспределяют влагу, регулируют соотношение стекающих, просачивающихся и накапливающихся осадков. С повышенных элементов рельефа вода стекает по склонам и накапливается в понижениях. На вогнутом склоне вода собирается в почве, с выпуклого – стекает. Склоны разной экспозиции получают неодинаковое количество солнечной энергии. Южные склоны всегда более теплые и сухие, чем северные. В лучших условиях находятся юго-восточные склоны, которые прогреваются солнцем при влажной почве. Самые большие отличия температур наблюдаются летом и могут достигать на разных склонах 5 – 7 о С. Максимальные температуры наблюдаются на юго-западных склонах, так как солнце нагревает уже высохшую почву. Наветренные склоны получают больше влаги, чем подветренные. Все это создает различия в увлажнении и влияет на характер водного, питательного и воздушного режимов. Эти факторы создают различные условия для роста растительности, к отличиям в синтезе и разложении органического вещества, превращении почвенных минералов, что приводит к образованию разных почв в разных условиях рельефа.

Рельеф влияет и на интенсивность эрозии. При промывном водном режиме склоновые формы рельефа являются условием для возникновения водной эрозии почв, в засушливом климате равнинные формы благоприятствуют возникновению ветровой эрозии.

Различают три группы формы рельефа: макрорельеф – равнины, горные системы, плато, определяющие общий облик и влияющие на климат большой территории, мезорельеф – средние формы рельефа на общем фоне макрорельефа: холмы, овраги, долины, склоны, под воздействием которых формируется местный климат и определяется структура почвенного покрова в пределах конкретного ландшафта, микрорельеф – формы рельефа с колебаниями высот около 1 м: бугорки, кочки, западины, блюдца, создающие пятнистость почвенного покрова.

Биологические факторы . Ведущая роль в почвообразовании и формировании плодородия почв принадлежит растениям, микроорганизмам и животным. Каждая из этих группировок выполняет свою роль, но только при их совместной деятельности материнская порода превращается в почву.

Роль растений в формировании почв многогранна. Во-первых, зеленые растения синтезируют органическое вещество. После завершения жизненного цикла растений часть биомассы в виде корневых остатков и наземного опада ежегодно возвращается в почву. В верхних горизонтах идут процессы трансформации органического вещества и накапливаются элементы питания, развивается почвенный профиль и формируется почвенное плодородие. Для каждой природной зоны характерны специфические сочетания травянистой, кустарниковой и древесной растительности, которые сильно различаются как по продуктивности, так и по соотношению и количеству химических элементов в растительном материале. Поэтому роли древесной и травянистой растительности в процессах почвообразования существенно отличаются.

В лесах общая биомасса наибольшая, однако ежегодный прирост, а следовательно, и опад в них значительно меньше, чем в луговых степях, где основным источником органического вещества является масса отмирающих корневых систем и в меньшей степени надземная масса. Опад древесной растительности попадает преимущественно на поверхность почвы, тогда как травянистой – в почву, что предотвращает его потери и обусловливает лучшее и более быстрое взаимодействие с минеральной частью почвы и микроорганизмами. Хвойный опад в силу своих химических особенностей (малая зольность в сочетании с небольшим количеством кальция, содержание большого количества трудноразлагаемых соединений типа лигнина, дубильных веществ, смол) очень медленно подвергается разложению, преимущественно грибной микрофлорой. Формируется грубый гумус фульватного типа. Опад травянистой растительности характеризуется более тонкой структурой, меньшей механической прочностью, высокой зольностью (10 – 12 %), богатством азотом и основаниями, быстро разлагается, в основном бактериями. Формируется «мягкий» насыщенный кальцием гумус преимущественно гуматного типа. Эти факторы являются причиной низкого плодородия лесных почв, тогда как биомасса, возвращающаяся в почву в луговых фитоценозах, формирует мощный гумусовый горизонт и плодородную почву.

Процесс почвообразования под хвойными лесами в условиях промывного водного режима чаще всего идет по типу подзолообразования . Формирующиеся почвы характеризуются высокой кислотностью, малой гумусностью, ненасыщенностью основаниями, низким содержанием питательных элементов, пониженной биологической активностью и низким уровнем плодородия (подзолистые, дерново-подзолистые). Почвообразовательный процесс, протекающий под влиянием травянистой растительности, называется дерновым. В результате такого процесса формируются почвы с высоким содержанием гумуса, насыщенные кальцием, с нейтральной или близкой к нейтральной реакцией среды, богатые питательными веществами, отличаются высоким естественным плодородием (черноземы, дерновые и различные луговые почвы). Под покровом смешанных и широколиственных лесов формируются серые лесные или бурые лесные почвы с менее кислой реакцией, чем у подзолистых почв, возрастает степень насыщенности основаниями, повышается содержание азота, увеличивается плодородие.

Благодаря корневым выделениям растения усиливают процесс разрушения и трансформации труднорастворимых минералов и способствуют образованию в почвенной толще легкоподвижных соединений. Все это есть результат прямого влияния растительности на почвообразовательный процесс. Косвенное влияние на почву проявляется в изменении теплового и водного режима.

Существенную роль в почвообразовании играет многочисленная и разнообразная почвенная фауна. Это простейшие (жгутиковые, инфузории, корненожки), беспозвоночные (членистоногие (клещи, ногохвостки и др.), дождевые черви), насекомые (жуки, муравьи и др.), позвоночные (грызуны). Они измельчают органические остатки, изменяют их химические и физические свойства, ускоряя их разложение. Животные, живущие в почве, проделывая различные ходы и, смешивая органические и минеральные вещества, повышают воздухо- и водопроницаемость почвы, формируют структуру почвы.

Совершенно своеобразную и исключительно важную роль в процессах почвообразования играют микроорганизмы, которые являются основными разрушителями мертвого органического вещества до простых конечных продуктов (вода, газы, минеральные соединения). Микроорганизмы участвуют в образовании солей из органоминеральных комплексов, в разрушении и новообразовании минералов, в передвижении и аккумуляции продуктов почвообразования. Микроорганизмы являются важным фактором биологического круговорота веществ, их метаболическая активность влияет на процессы трансформации органической массы, регулирует питательный и воздушный режим почвы, обусловливает развитие почвенного плодородия. По количеству, видовому составу микроорганизмов судят о биологической активности почв, запасах органического вещества, содержании питательных элементов, воздухо- и влагообеспеченности. Наибольшее количество их в черноземных почвах, наименьшее – в почвах тундры. Каждому типу почв свойственно свое специфическое профильное распределение микроорганизмов, основная масса сосредоточена в верхних гумусовых слоях в пределах 25 – 35 см. Биомасса грибов и бактерий в пахотном слое составляет 3 – 5 т/га, численность бактерий достигает 5 – 8 млрд. КОЕ/г почвы, актиномицетов – десятки миллионов в грамме почвы, длина грибных гиф – до 1000 м/га.

Различные группы микроорганизмов дифференцированно влияют на почвообразование. Бактерии – наиболее распространенная группа, осуществляющая разнообразные превращения органического вещества в почве, активно разлагая богатые белком остатки, и фиксацию газообразного азота. По потребности в свободном кислороде воздуха выделяются аэробные, анаэробные и факультативные, по способу питания – автотрофные и гетеротрофные бактерии. Автотрофные бактерии по способу получения энергии делятся на фотосинтезирующие и хемосинтезирующие (нитрифицирующие, серобактерии, железобактерии) . Гетеротрофные бактерии для питания используют готовое органическое вещество, под их влиянием происходят важнейшие процессы почвообразования – разложение органических остатков и биосинтез гумуса. Актиномицеты и грибы разлагают клетчатку, лигнин, воски, смолы, активно участвуют в образовании гумуса.

Водоросли – автотрофные фотосинтезирующие организмы, участвуют в процессах выветривания и первичном почвообразовательном процессе. Лишайники – симбиотические организмы, гифами внедряются в горные породы, в результате начинается более интенсивное биологическое выветривание и первичное почвообразование, образуются примитивные почвы.

Возраст. Поскольку природный процесс почвообразования совершается во времени, то возраст почв имеет большое значение в их эволюции. Само время не может изменить характер почвообразования, но эффект воздействия каждого фактора или их совокупности проявляется именно во временном аспекте. Таким образом, почва как природно-историческое тело имеет возраст. Различают абсолютный и относительный возраст почв. Абсолютный возраст – это время, прошедшее от начала формирования почвы до стадии ее развития. Чем раньше территория освободилась от моря или ледника и, следовательно, чем раньше материнская порода этой местности стала подвергаться разрушению, тем больший возраст будут иметь почвы. И наоборот, молодыми будут почвы, где почвообразовательный процесс начался относительно позже. Наиболее древние – это почвы южных широт (Южной Америки, Юго-Восточной Азии – 2 – 30 млн. лет), более молодые – средних и северных широт (10 тыс. лет), самыми молодыми являются почвы на аллювиальных отложениях по берегам рек, на отмелях. Относительный возраст характеризует различия в скорости почвообразования почв одной территории с одинаковым абсолютным возрастом в зависимости от рельефа и характера материнских пород, от целенаправленного воздействия антропогенного фактора. Поэтому они могут быть на разных стадиях развития.

Производственная деятельность человека. Пути и способы воздействия на почву чрезвычайно разнообразны. Механическая обработка тяжелыми сельскохозяйственными машинами, внесение органических и минеральных удобрений, средств защиты растений, осушение и орошение, техногенные нарушения – все это приводит к изменению физических, химических, биологических и даже морфологических свойств, причем эти изменения происходят гораздо быстрее, чем в естественных условиях. Меняются водный, воздушный, пищевой режим обрабатываемых почв. В целом деятельность человека направлена на создание культурных высокоплодородных почв там, где их естественное плодородие невелико, и поддержание высокой продуктивности почв с высоким плодородием, которое исчерпаемо. Если же производственная деятельность осуществляется без учета условий развития и свойств почв, то возникают такие отрицательные последствия, как засоление, эрозия, заболачивание, загрязнение, дегумификация почв и т.д.

Все факторы почвообразования оказывают специфическое действие на почву и не могут быть заменены друг другом, т.е. они равнозначны. Каждый из них играет свою роль в процессах обмена материей и энергией между почвой и окружающей средой. Однако ведущим фактором в образовании почв следует всё же считать биологический. Кроме того, сама почва оказывает определенное влияние на факторы почвообразования, вызывая в них те или иные изменения.

§2. Геологический и биологический круговороты веществ

Образование и жизнь почвы неразрывно связаны с процессами круговорота веществ. До появления зеленых растений на планете происходили различные геологические процессы и существовал геологический круговорот веществ, который представляет собой совокупность процессов обмена веществом между сушей и морем и состоит из:

1) континентального выветривания горных пород, в результате чего образуются подвижные соединения; 2) переноса этих соединений с суши в моря и океаны; 3) отложения осадочных пород на дне океанов морей с их последующим преобразованием; 4) нового выхода морских осадочных и метаморфических пород на дневную поверхность.

Геологический круговорот идет миллионы и миллиарды лет, охватывает до нескольких километров литосферы. Движущей силой его является выветривание. Процесс механического разрушения и химического изменения горных пород и составляющих их минералов под воздействием атмосферы, гидросферы и биосферы называется выветриванием. На горную породу совместно воздействуют живые организмы, атмосферная вода, газы и температура. Все эти факторы оказывают на нее разрушающее действие одновременно. В зависимости от преобладающего фактора различают три формы выветривания: физическое, химическое и биологическое.

Физическое выветривание – это механическое разрушение горных пород на обломки различной величины без изменения химического состава образующих их минералов. Главный фактор физического выветривания - колебание суточных и сезонных температур, действие замерзающей воды, ветра. При нагревании происходит расширение минералов, входящих в горную породу. А поскольку различные минералы имеют разные коэффициенты объемного и линейного расширения, возникают местные давления, разрушающие породу. Этот процесс происходит в местах контакта различных минералов и пород. При чередовании нагревания и охлаждения между кристаллами образуются трещины. Проникая в мелкие трещины, вода создает такое капиллярное давление, при котором даже самые твердые породы разрушаются. При замерзании вода увеличивает эти трещины. В условиях жаркого климата в трещины попадает вода вместе с растворенными солями, кристаллы которых также разрушающе действуют на породу. Таким образом, в течение длительного времени образуется множество трещин, приводящих к ее полному механическому разрушению. Разрушенные породы приобретают способность пропускать и удерживать воду. В результате раздробления массивных пород сильно увеличивается общая поверхность, с которой соприкасаются вода и газы. А это обусловливает протекание химических процессов.

Химическое выветривание приводит к образованию новых соединений и минералов, отличающихся по химическому составу от минералов первичных. Факторы этого вида выветривания – вода с растворенными в ней солями и углекислым газом, а также кислород воздуха. Химическое выветривание включает следующие процессы: растворение, гидролиз, гидратацию, окисление. Растворяющее действие воды усиливается с повышением температуры. Если в воде содержится углекислый газ, то в кислой среде минералы разрушаются быстрее. В результате выветривания магматических пород получаются остаточные образования, переотложенные осадки и растворимые соли.

До возникновения жизни на Земном шаре разрушение горных пород шло только двумя вышеназванными путями, но с появлением органической жизни возникли новые процессы выветривания – биологические.

Биологическое выветривание – это механическое разрушение и химическое изменение горных пород под воздействием живых организмов и продуктов их жизнедеятельности. Этот вид выветривания связан с почвообразованием. Если при физическом и химическом выветривании происходит только превращение магматических горных пород в осадочные, то при биологическом выветривании образуется почва, и в ней накапливаются элементы питания для растений и органическое вещество.

В почвообразовательном процессе участвуют бактерии, грибы, актиномицеты, зеленые растения, а также различные животные. Многочисленные микроорганизмы, особенно хемосинтезирующие, разлагают горные породы. Так, нитрифицирующие бактерии образуют сильную азотную кислоту, а серобактерии – серную кислоту, которые энергично разлагают алюмосиликаты и другие минералы. Силикатные бактерии, выделяя органические кислоты и углекислый газ, разрушают полевые шпаты, фосфориты и переводят калий и фосфор в доступную растениям форму. Водоросли (диатомовые, сине-зеленые, зеленые и др.), мхи и лишайники также разрушают горные породы.

Зеленые растения выделяют органические кислоты и другие биогенные вещества, которые взаимодействуют с минеральной частью, образуя сложные органо-минеральные соединения. Корневые системы избирательно усваивают зольные элементы, а после отмирания растений происходит накопление в верхних почвенных горизонтах азота, фосфора, калия, кальция, серы и других биогенных элементов. Кроме того, корни растений, особенно древесных, проникая в глубь горных пород по трещинам, оказывают давление на породы и разрушают их механически. Таким образом, под влиянием физического, химического и биологического выветривания горные породы, разрушаясь, обогащаются мелкоземом, глинистыми и коллоидными частицами, приобретают влагоемкость, поглотительную способность, становятся водо- и воздухопроницаемыми; в них накапливаются элементы питания растений и органическое вещество. Это приводит к возникновению существенного свойства почвы – плодородия, которого не имеют горные породы.

На фоне большого геологического круговорота веществ идет малый биологический круговорот веществ, который представляет собой обмен веществом в системе «почва – растение». Особенностью этого круговорота является избирательность поглощения организмами веществ, цикличность, непродолжительность, охватывает метровые слои литосферы, движущей силой является почвообразование. Биологический круговорот веществ лежит в основе сельскохозяйственного производства.

Круговороты веществ между собой взаимосвязаны, биологический идет на фоне геологического, поэтому вещества могут попадать из одного круговорота в другой. Для поддержания почвенного плодородия необходимо создавать такие условия, при которых биологический круговорот получал бы наиболее полное выражение, а геологический – ограничивался в своем проявлении.

§3. Общая схема почвообразовательного процесса

Почвообразовательный процесс – это совокупность явлений превращения и передвижения веществ и энергии, протекающих в почвенной толще (А.А.Роде). Почвообразование начинается с момента поселения живых организмов на скальных породах или продуктах их выветривания. Любой почвообразовательный процесс, по А.А.Роде, слагается из совокупности элементарных почвообразовательных процессов (ЭПП) первого и второго порядка. К ЭПП первого порядка, или общим почвообразовательным процессам, относятся:

1) синтез органического вещества ↔ разрушение и минерализация органического вещества;

2) синтез вторичных минералов и органоминеральных комплексов ↔ разрушение минеральных соединений;

3) биологическая аккумуляция элементов ↔ вымывание минеральных и органических соединений;

4) поступление в почву влаги ↔ расход влаги из почвы;

5) поступление на поверхность почвы лучистой энергии и нагревание ↔ излучение почвой энергии и охлаждение.

Первых три пары элементарных процессов обусловливают пищевой, четвертая пара – водный, пятая пара – тепловой режимы почвы. Почвообразовательный процесс качественно одинаков во всех почвах, но количественно (скоростью протекания) различается, т.е. в разных почвах процесс почвообразования различен, и даже в одной и той же почве на разной глубине он идет по-разному. Поэтому всякая почва представляет собой ряд последовательно сменяющих друг друга по вертикали генетических горизонтов – слоев, на которые разделяется материнская порода в процессе почвообразования. Вся совокупная последовательность горизонтов называется почвенным профилем . Горизонты называются генетическими, поскольку связаны общностью происхождения.

ЭПП имеют свои особенности на разных этапах возникновения и развития почвы, что позволяет говорить о ряде стадий почвообразовательного процесса. Генезис любой почвы состоит из трех последовательных стадий:

1) начальное почвообразование (первичный почвообразовательный процесс). Он совпадает с поселением на горной породе первых живых организмов, характеризуется низкой активностью и объемом биологического круговорота, активными небиологическими ЭПП первого порядка (растворение, осаждение, гидратация, диффузия и др.), слабой связью этих процессов между собой, поэтому материнская порода на этой стадии не имеет ярко выраженных почвенных признаков, и профиль очень слабо разделяется на горизонты;

2) стадия развития почвы характеризуется увеличением активности и объема биологического круговорота через деятельность высших растений, накапливаются питательные вещества. Поэтому интенсивность и направление развития процессов почвообразования зависит здесь в первую очередь от характера растительности. На этой стадии преобладают ЭПП второго порядка, или частные почвообразовательные процессы (мезо- и макропроцессы). Под их влиянием формируются специфический вещественный состав почвы и ее физические свойства. К концу этой стадии процесс постепенно замедляется (приходит к некоторому равновесному состоянию), формируется зрелая почва с характерным профилем и комплексом свойств. Стадия развития может продолжаться сотни, тысячи и более лет.

К основным частным почвообразовательным процессам относятся:

дерновый – процесс интенсивного гумусообразования и аккумуляции биогенных элементов. Развивается под многолетней травянистой растительностью в условиях умеренно влажного климата, наиболее интенсивно при непромывном типе водного режима на карбонатных породах в степной зоне, где формируются обыкновенные черноземы. В лесостепи формируются типичные черноземы, в таежно-лесной зоне на заливных лугах речной поймы – дерновые пойменные, вне пойм на карбонатных породах – дерново-карбонатные, на бескарбонатных – дерново-подзолистые почвы;

оподзоливание – процесс выноса из верхних горизонтов почвы продуктов разрушения первичных и вторичных минералов в нижележащие или грунтовые воды с относительным накоплением кремнезема. В чистом виде развивается под пологом хвойного леса с бедным травянистым покровом в условиях влажного климата при промывном типе водного режима на бескарбонатных породах и обусловливает образование подзолистых почв;

лессиваж – связанный с оподзоливанием сложный процесс выноса илистых веществ без разрушения в виде суспензий из верхних горизонтов с их накоплением в нижних. Протекает под лиственными лесами;

болотный – развивается под влиянием болотной растительности в условиях постоянного избыточного увлажнения с протеканием процесса торфообразования и оглеения. В условиях Беларуси в результате болотного процесса образуются болотно-подзолистые, торфяно-болотные, дерновые и дерново-подзолистые заболоченные, аллювиальные болотные. Процесс протекает в анаэробных условиях при обязательном участии грибов и бактерий;

торфообразование – биохимический процесспреобразования и консервации органических остатков при их незначительной гумификации и минерализации, ведущий к образованию поверхностных горизонтов торфа различной степени мощности;

оглеение – процесс биохимического восстановления соединений железа и марганца, сопровождающийся их переходом в подвижную форму при переувлажнении почв в анаэробных условиях при участии микроорганизмов. Почва приобретает голубоватый, сизый, зеленоватый оттенки и, если окраска характерна для всего горизонта, то такой горизонт называется глеевым, если окраска только пятнами – глееватым;

латеритный – процесс накопления в почве соединений железа и алюминия и выщелачивания кремнезема в условиях влажного и теплого климата. На таких почвах идет также интенсивный дерновый процесс с образованием краснозёмов и желтозёмов в субтропиках и ферраллитных почв во влажных тропиках;

солонцовый – процесс накопления в почвенном профиле легкорастворимых солей (хлоридов, сульфатов и др.) при выпотном типе водного режима в условиях минерализованных грунтовых вод или засоленных почвообразовательных пород. Образуются солончаки, при рассолении – солонцы, при дальнейшем промывании – солоди;

3) стадия равновесного функционирования (сформированной почвы) наступает тогда, когда по главным параметрам (количество гумуса, мощность генетических горизонтов, количество основных элементов питания и др.) достигается динамическое равновесие с существующим комплексом факторов почвообразования, длится неопределенно долго. На этой стадии биологический круговорот протекает так, что каждый следующий цикл практически повторяет предыдущий. Все микро-, мезо- и макропроцессы согласованы во времени и пространстве и формируют сложный биогеохимический круговорот, который способствует возобновлению природных свойств почвы.

§4. Морфологические признаки почв как отражение процессов их формирования и развития

В процессе развития почва приобретает ряд внешних, или морфологических, признаков, которыми она отличается от материнской породы. Они указывают на направление и степень выраженности почвообразовательного процесса. К таким признакам относятся: 1) строение и мощность профиля; 2) характер перехода горизонтов; 3) вскипание от 10 % НСl; 4) гранулометрический состав; 5) окраска; 6) влажность; 7) структура; 8) сложение; 9) новообразования и включения.

Строение и мощность почвенного профиля. Каждый почвенный тип имеет определенную вертикальную последовательность генетических горизонтов, вся совокупность которых называется почвенным профилем. Формирование горизонтов связано с передвижением различных веществ (восходящий или нисходящий ток) по почвенной толще и послойным распределением живых организмов. Генетические горизонты представлены однородными горизонтальными слоями почвы, различающимися между собой морфологическими признаками, составом и свойствами. Каждый горизонт имеет свое название и обозначается начальными буквами латинского алфавита. Горизонт может подразделяться на подгоризонты, для обозначения которых и отражения их специфических свойств используют дополнительные цифровые и буквенные индексы.

Ниже приведена система выделения основных видов почвенных горизонтов.

А – гумусовый – поверхностный горизонт аккумуляции органического вещества, в нем накапливаются гумус и элементы питания. В зависимости от его характера выделяются:

А О – лесная подстилка, состоящая из разлагающегося лесного опада (листья, хвоя, ветки и т.д.);

А д – дернина – поверхностный горизонт, сильно переплетенный и скрепленный корнями травянистой растительности;

А 1 – гумусово-элювиальный горизонт, в котором наряду с накоплением гумуса происходит разрушение и частичное вымывание органических и минеральных веществ;

А пах – пахотный – поверхностный гумусовый горизонт, преобразованный периодической обработкой в земледелии.

В болотных почвах верхний горизонт состоит из торфа – массы полуразложившихся растений.

Т 1 – торфяной неразложенный – растительные остатки полностью сохранили свою исходную форму;

Т 2 – торфяной среднеразложенный – растительные остатки лишь частично сохранили свою форму в виде обрывков тканей;

Т 3 – торфяной разложенный – сплошная органическая мажущаяся масса без видимых следов растительных остатков;

ТА – торфяной минерализованный – пахотный торфяной горизонт, измененный осушением и обработкой.

А 2 – подзолистый (элювиальный) – горизонт интенсивного разрушения минеральной части почвы и вымывания продуктов разрушения. Он располагается под гумусовым горизонтом и имеет светлую окраску (серую, белесую, палевую); по происхождению может быть подзолистый (кислотный гидролиз минералов и вынос продуктов разрушения), осолоделый (щелочной гидролиз минералов). Под горизонтом А 2 (в подзолистых, серых лесных почвах, солодях) формируется горизонт В, отличающийся по своим свойствам от любого поверхностного горизонта.

В – иллювиальный горизонт, в который вмываются и где частично накапливаются продукты почвообразования. В зависимости от вмытых веществ различают следующие виды иллювиального горизонта:

B h – иллювиально-гумусовый горизонт кофейного цвета из-за содержания железисто-гумусовых веществ;

B f – иллювиально-железистый горизонт охристого или коричневого цвета, содержащий железистые продукты разрушения минеральной части верхнего горизонта;

В Са – иллювиально-карбонатный горизонт, часто содержащий карбонатные новообразования в виде рыхлого скопления карбонатов кальция.

В почвах без элювиального горизонта (в черноземах, каштановых почвах), в которых не проявляется вертикальное перемещение веществ, горизонт В называется переходным от гумусово-аккумулятивного к материнской породе.

G – глеевый горизонт – формируется в болотных и заболоченных почвах в условиях постоянного избыточного увлажнения. Он окрашен в сизоватые, голубоватые тона образующимися здесь закисными соединениями железа (II) и марганца. Отличается бесструктурностью и низкой пористостью.

В условиях временного избыточного увлажнения глееватость может проявляться и в других горизонтах профиля. В этом случае к основному индексу добавляют букву «g», например A 2 g , B g .

С – материнская горная порода – горизонт, слабо затронутый почвообразовательными процессами и не имеющий признаков описанных выше почвенных горизонтов.

D – подстилающая порода – выделяется в том случае, когда почвенные горизонты образовались на одной породе, а ниже лежит другая порода, отличающаяся литологическими свойствами.

Переход одного горизонта в другой в различных почвах может быть разным: резким, ясным, заметным или постепенным. Поэтому характер перехода между почвенными горизонтами в профиле имеет диагностическое значение и часто указывает на направление и интенсивность почвообразования.

Мощность почвы – это вертикальная протяженность ее горизонтов от поверхности до материнской породы. У различных типов почв средняя мощность колеблется от 40 – 50 до 100 – 150 см. В суровых природных условиях тундры почвообразовательный процесс может протекать только в верхней части пород, выше вечной мерзлоты, поэтому мощность всей почвы здесь незначительна (20 –30 см). В степях под пышной травянистой растительностью мощность черноземов может достигать 200 – 300 см.

Мощность отдельных горизонтов характеризует генезис и агрономическую ценность почв. Так, мощный гумусовый горизонт свидетельствует о значительном развитии аккумуляции, слабом вымывании и, следовательно, о больших запасах питательных веществ. Бедность и низкая производственная ценность, например, подзолистых почв определяется по резко выраженному элювиальному горизонту, из которого вымыты элементы питания.

При полевых исследованиях можно выявить наличие карбонатов в почве и глубину их залегания с помощью 10 % НС1. Для этого на стенку почвенного разреза капают раствором кислоты и определяют глубину, с которой начинается вскипание, и ее интенсивность.

Окраска почвы имеет большое диагностическое значение, поскольку отражает ее химический и минералогический состав, является основой для деления почвенной толщи на горизонты. Все разнообразие почвенной окраски можно свести к трем основным цветам: черному, белому и красному.

Черная и темная окраска обусловлена содержанием гумуса: чем больше гумуса, тем темнее окраска почвы. При 9 – 12 % содержании гумуса почва черного цвета, при 4 – 6 % – темно-серого, темно-бурого или каштанового. Почвы с низким содержанием гумуса имеют окраску, свойственную почвообразующей породе. На интенсивность черного цвета будет сказываться и тип гумуса, почвы с одинаковым количественным содержанием гумуса с фульватным типом будут более светлые, чем почвы с гуматным типом. Некоторым почвам черную окраску придают темные первичные минералы, сульфиды, гидроксиды марганца.

Белая окраска и светлые тона других окрасок обусловлены присутствием в почве кварца, извести, гидратов глинозема и солей. Красный цвет почвы вызван накоплением оксидов железа (III). При большом его содержании почва имеет красную, ржавую или красно-бурую окраску, при небольшом – желтую или оранжевую. Сизоватые, голубоватые и зеленоватые тона окраски вызваны образованием соединений двухвалентного железа в анаэробных условиях при избыточном увлажнении. Почвы такого цвета относятся к глеевым или оглеенным. Неоднородная, пятнистая окраска - следствие чередования процессов окисления и восстановления. При описании морфологических признаков обычно указывают степень окраски (темно-бурая, светло-каштановая) или отмечают оттенок (белесая с желтоватым оттенком). Следует иметь в виду, что она зависит от влажности: влажная почва более темная, чем сухая. По влажности почва может быть сухая (пылит), свежая (холодит руку),влажная (при сжатии в руке чувствуется влага, прижатая к почве бумага намокает) и мокрая (течет вода). С количеством воды связаны все процессы, идущие в почве, и оттенок цвета.

Способность почвыраспадаться на отдельные агрегаты называется структурностью , а совокупность агрегатов – почвенной структурой. Различают почвы бесструктурные (механические элементы не соединены в агрегаты) и структурные. Бесструктурные почвы обладают многими неблагоприятными свойствами: низкой водо- и воздухопроницаемостью, при дождях заплывают, становятся вязкими, при высыхании быстро теряют влагу, сливаются в одну массу, трудно поддающуюся обработке. Структурной в агрономическом понятии являются почва, в которой преобладают (не меньше 55 %) агрегаты среднего размера (0,25 – 10 мм), характеризуется свойствами, противоположными бесструктурной почве.

По форме агрегатов выделяют три типа структуры:

1) кубовидная – агрегаты развиты одинаково по всем трем осям и напоминают куб, делится на ореховидную, комковатую, зернистую, глыбистую;

2) призмовидная – агрегаты развиты по вертикальной оси и напоминают призму, подразделяется на столбовидную и призматическую;

3) плитовидная – агрегаты развиты по горизонтальной оси, бывает плитчатой и чешуйчатой.

Агрономически более ценной является кубовидная структура, так как создает наиболее ценный водно-воздушный режим. Одним из главных условий образования структурной почвы является присутствие в ней достаточного количества илистых и коллоидных частиц и гумуса. Первые являются «клеем», вторые придают водопрочность почвенным агрегатам.

Каждому типу почв и даже каждому почвенному горизонту характерна своя структура. Для кислых почв присуща плитовидная структура, для щелочных – призмовидная, для нейтральных и близких к нейтральным – кубовидная.

Сложение – это внешние признаки характера пористости и степени плотности почв. Оно зависит от свойств материнской породы, гранулометрического состава, структуры почвы, а также деятельности почвенной фауны и корней растений. По степени плотности различают очень плотное, плотное, рыхлое и рассыпчатое сложение.

Рассыпчатое сложение свойственно лишенным гумуса песчаным почвам. При механическом воздействии, даже небольшом, для них характерна сыпучесть, т.е. распадаются на отдельные элементы.

Рыхлое сложение присуще суглинистым и глинистым почвам с хорошо выраженной структурой, а также верхним горизонтам песчаных и супесчаных почв, обогащенных гумусом. Такое сложение имеют пахотные горизонты после обработки их в спелом состоянии. Лопата в такие почвы входит легко.

Плотное сложение характерно для иллювиальных горизонтов большинства суглинистых и глинистых почв. При копании лопатой требуется значительное усилие.

Очень плотное, или слитое, сложение свойственно связным глинистым бесструктурным почвам, а также иллювиальным горизонтам некоторых солонцовых почв. Такие почвы копать лопатой невозможно, приходится применять лом или кирку.

Сложение почвы – важный агрономический признак, определяющий скважность и, следовательно, аэрируемость, водопроницаемость, а также сопротивление почвы при обработке.

Новообразования это скопления веществ, отличающиеся от вмещающего их почвенного материала по составу и сложению. Они формируются в результате физических, химических и биологических почвообразовательных процессов. К химическим новообразованиям относят легкорастворимые соли, гипс, углекислую известь, соединения железа, кремнезем и другие вещества.

Легкорастворимые соли характерны для засоленных почв. Они встречаются в виде белых корочек на поверхности почвы или в форме налетов, прожилок, крупинок в толще профиля. Гипс встречается в каштановых, бурых, засоленных почвах и сероземах в виде белых, серых и желтоватых прожилок, скоплений кристаллов на поверхности почв. Новообразования CaCO 3 белого цвета встречаются в виде резко очерченных белых пятен, в виде плесени, плотных скоплений извести различной формы. Их определяют по вскипанию с 10 % раствором соляной кислоты.

Гидроксиды железа встречаются в подзолистых, дерново-подзолистых и заболоченных почвах в виде темно-бурых округлых твердых конкреций, пятен расплывчатой формы. Для песчаных почв характерны ортзанды – коричневые сцементированные прослойки гидроксида железа. Соединения железа сизоватого, голубоватого или зеленоватого цвета свойственны глееватым и глеевым почвам.

Кремнезем образует присыпку белого цвета на поверхности структурных отдельностей серых лесных почв, оподзоленных черноземов и солонцов

К новообразованиям биологического происхождения относят: копролиты – экскременты червей и личинок в виде склеенных водопрочных комочков; кротовины – ходы кротов, сусликов, сурков, хомяков, засыпанные почвой; корневины – следы сгнивших крупных корней; червороины – ходы червей; дендриты – темные отпечатки мелких корней в виде узора.

Каждая почва имеет свой особый набор новообразований с их специфическим положением в профиле

Включения – это различные предметы (обломки камней, валуны, куски кирпича, стекла, раковины, кости животных и др.), генетически не связанные с почвообразовательным процессом.

Роль микроорганизмов в формировании почв и почвенного плодородия необычайно сложна и разнообразна; микробы, будучи древнейшими организмами на земном шаре, существующими миллиарды лет, являются самыми древними почвообразователями, действовавшими задолго до появления высших растений и животных. Последствия жизнедеятельности микроорганизмов выходят далеко за пределы обитаемых ими почв и определяют во многом свойства осадочных пород, состав атмосферы и природных вод, геохимическую историю таких элементов, как углерод, азот, сера, фосфор, кислород, водород, кальций, калий, железо.
Микроорганизмы по свойствам полифункциональны в биохимическом отношении и способны осуществлять в биосфере и почвах такие процессы, которые недоступны растениям и животным, но которые являются существенной частью биологического круговорота энергии и веществ. Таковы процессы фиксации азота, окисления аммиака и сероводорода, восстановление сернокислых и азотнокислых солей, осаждение из раствора соединений железа и марганца. Сюда же относится микробный синтез в почве многих витаминов, энзим, аминокислот и других физиологически активных соединений.
Осуществляя эти поразительные реакции, автотрофные бактерии, подобно растениям, могут сами синтезировать органическое вещество, но не используя при этом энергию Солнца. Именно поэтому есть все основания считать, что первичный почвообразовательный процесс на Земле, осуществлялся сообществами автотрофных и гетеротрофных микроорганизмов задолго до появления зеленых растений. Следует отметить, что бактерии и грибы являются весьма сильными разрушителями первичных минералов и гарных пород, агентами так называемого биологического выветривания.
Однако главнейшей особенностью микроорганизмов является их способность доводить процессы разложения растительного и животного органического вещества до полной минерализации. Без этого звена нормальная спиралевидная цикличность биологических процессов в биосфере не могла бы существовать и сама жизнь не была бы возможной. В этом заключается глубокая принципиальная разница между ролью в биосфере микроорганизмов и ролью растений и животных. Растения синтезируют органическое вещество, животные выполняют первичное механическое и биохимическое разрушение органики и подготовку ее для будущего гумусообразования. Микроорганизмы, завершая разложение органического вещества, синтезируют почвенный гумус, а затем разрушают. Синтез физиологически активных соединений, гумусообразование и полная минерализация органических остатков - главная функция микроорганизмов в почвенных процессах и биологическом круговороте.
Микроорганизмы встречаются иногда на глубине десятков и сотен метров. Ho главная их масса сосредоточена в корнеобитаемых горизонтах почвы и особенно в верхних 10-20 см. Общий вес сырой массы различных микроорганизмов может составлять в верхнем 25-сантиметровом слое почвы до 10 т/га. Macca микроорганизмов составляет 0,5-2,5% от веса гумуса в почвах. При этом в расчете на 1 г почвы численность микроорганизмов составляет десятки и сотни миллионов экземпляров, а в ризосфере растений - десятки миллиардов. Чем выше уровень плодородия естественных почв, тем богаче и разнообразнее представлены в них микроорганизмы. Высокоплодородные культурные почвы наиболее богаты разнообразными микроорганизмами. По мере развития новых методов изучения микроорганизмов выясняется, что современные наши знания еще крайне недостаточны. По-видимому, роль, численность и функции микроорганизмов в почвообразовании значительно больше, чем мы представляем теперь.
В числе почвенных микроорганизмов имеются как представители растительного мира, так и представители животного мира (рис. 52). В микрофлоре наиболее многочисленные грибы, актиномицеты и бактерии. Водоросли распространены значительно меньше. В микрофауне преобладают амебы и жгутиковые. Реснитчатые и микронематоды в почвах также иногда встречаются в большом числе. Все больше накапливается данных о присутствии в почвах неклеточных форм микроорганизмов (бактериофаги, вирусы).

Почвенные водоросли


Почвенные водоросли - это одно- и многоклеточные микроорганизмы (иногда подвижные), обладающие специфическими пигментами типа хлорофилла, обеспечивающими ассимиляцию углекислоты и фотосинтез органического вещества. Водоросли в отличие от большинства остальных микроорганизмов способствуют обогащению почв органическим веществом и кислородом.
Водоросли населяют главным образом верхние освещенные горизонты почв, хотя единично могут быть встречены и на глубине до 30-50 см. В зависимости от типа пигментов различают водоросли зеленые, сине-зеленые, пурпуровые, желтые. В 1 г почвы может быть до 300 тыс. одноклеточных водорослей. Роль одноклеточных микроводорослей особенно проявляется на поверхности бесплодных глинистых почв пустынь - такыров, на солонцах, на свежих аллювиальных отложениях в мелководьях. Используя появляющуюся влагу, микроводоросли обогащают поверхность свежим органическим веществом, вызывают усиленное разрушение первичных минералов, повышают дисперсность твердой фазы. Некоторые водоросли играют существенную роль в превращениях соединений кремнезема (диатомовые) и кальция в почве, другие обладают способностью фиксировать азот.
Особенно важны в балансе почвенного азота синезеленые водоросли (Индия, Япония, Индонезия), живущие на рисовых полях и на аллювиальных почвах речных долин в тропиках. Они снабжают азотом и кислородом почвы и растения этих угодий в значительном количестве, поддерживая их плодородие. В сравнении с другими микроорганизмами значение водорослей в почвообразовании все же сравнительно ограниченное. Это объясняется тем, что суммарная величина биомассы водорослей составляет в среднем 0,5-1 т/га.

Почвенные грибы

Бактерии


Бактерии - это наиболее многочисленные и наиболее разнообразные мельчайшие одноклеточные организмы, населяющие почвы. Размер их очень мал - 0,5-2 мк.
Бактерии вместе с водорослями, грибами и протозоа в почвах выполняют функцию гумусообразования и полной минерализации органических веществ. Описано около 50 родов и до 250 видов почвенных бактерий. В числе множества групп бактерий две-три имеют специальное значение в почвообразовании: истинные бактерии, актиномицеты и миксобактерии. Истинные бактерии подразделяются на две группы - неспоровые и споровые. В группу неспоровых входят автотрофные бактерии, которые сами синтезируют органическое вещество и поэтому могут существовать в среде, где полностью отсутствуют какие-либо формы органического вещества. Таковы бактерии, окисляющие водород (Bacterium hydrogenius), соединения углерода (Bact. methanicus), железобактерии и серобактерии, окисляющие железо и серу, бактерии-нитрификаторы, окисляющие аммиак в нитриты и последние в нитраты (табл. 29). Роль автотрофных бактерий была особенно существенной до возникновения водорослей и зеленых растений, синтезирующих органические вещества.

К этой же группе неспоровых бактерий принадлежат так называемые семиавтотрофы, которые фиксируют азот из почвенного воздуха, но при этом нуждаются в органическом веществе. Бактерии, фиксирующие азот, живут или свободно, или в симбиозе с бобовыми растениями, образуя на корешках своеобразные узелки, клубеньки. Бактерии рода Phizobium Azotobactcr и Clostridium живут свободно в почве и фиксируют азот почвенного воздуха. На протяжении года эти микроорганизмы могут накопить в почве до 50-300 кг/га азота, разрушая и окисляя пропорциональное количество органического вещества. На этом основана практика внесения в почвы растительных масс (соломы, листьев, зеленых удобрений и др.), что обеспечивает «подкормку» азотфиксаторов и активирует их деятельность. Для усиления фиксации азота на полях применяются специальные бактериальные удобрения.
Актиномицеты рассматриваются как организмы, переходные между бактериями и грибами. Они являются типичными организмами-гетеротрофами. По форме они представляют ветвистые одноклеточные организмы, несколько большего размера, чем истинные бактерии. Тончайшие гифы (меньше 1 мк) довольно длинны. Из этой группы бактерий Ваксман выделил штаммы стрептомицетов, которые продуцируют известный антибиотик стрептомицин, обладающий огромной активностью. Некоторые разновидности актиномицетов используются для производства витаминов. Актиномицеты сообщают почвам характерный запах свежераспаханной земли. В почве актиномицеты тесно связаны с разлагающимся органическим веществом, разрушая и потребляя клетчатку, гемицеллюлозу, белки и, по-видимому, даже лигнин. Актиномицеты являются аэробными микроорганизмами и играют основную роль в почвах сухого жаркого климата.
Спороносные бактерии являются, по С.Н. Мишустину, чутким индикатором направления почвообразовательного процесса, возраста почв, степени их окультуренности. Некоторые микробиологи ввели понятие о биогенности почв и о биооргано-минеральном комплексе почв. Последний включает поверхностные слои минералов, органические и органо-минеральные коллоиды, микроорганизмы, воду и газы. Чем выше биогенность почв, тем выше их плодородие. Окультуренные и поливные почвы всегда отличаются относительно более высокой биогенностью. Активная продукция углекислоты в почвах - один из показателей их биогенности. Углекислота является универсальным продуктом метаболизма почвенных организмов, Ежегодная продукция CO2 в почве может достигать в 3-4 и даже 8 тыс. л/га. Углекислота в приземном воздухе - продукт метаболизма почвенных организмов и результат минерализации органических соединений.
Сельскохозяйственные растения на таких высокобиогенных почвах, как черноземы, луговые почвы долин, благодаря работе микроорганизмов обеспечены физиологически активными соединениями, азотным и фосфорным питанием и относительно повышенной концентрацией углекислоты, столь необходимой для фотосинтеза. Культурные почвы, как правило, богаты бактериальными микроорганизмами, содержат активные формы азотобактера и обогащены физиологически активными соединениями. В мерзлотных кислых почвах севера, в торфах вследствие низкой активности микроорганизмов растения мало обеспечены гормональным и витаминным питанием, а также минеральными соединениями азота и фосфора. Приземный воздух в Арктике имеет в 2 раза меньшую концентрацию углекислоты (по А.А. Григорьеву - 0,16% вместо 0,03%). Это значительно снижает плодородие почв севера в целом. Почвы пустынь, особенно субтропических и тропических, вследствие сухости и нагрева до 70-80° С также обеднены бактериями.

Вирусы (бактериофаг)


Микроорганизмы невидимы для глаза, и поэтому человек склонен недооценивать их роль в биосфере и почвообразовании. Между тем из того, что изложено выше, следует с очевидностью, что микроорганизмы являются обязательным компонентом всякого природного биогеоценоза. И трофические цепи, и экологические пирамиды, иллюстрирующие процесс разрушения биомассы и перераспределения энергии, аккумулированной в фитомассе и зоомассе каждого ландшафта, включают сложные звенья мира микроорганизмов.
В отличие от мира животных многие микроорганизмы-автотрофы при этом пополняют в какой-то мере биомассу и запасы аккумулированной энергии, удлиняя биогенный круговорот веществ биосферы в его почвенной части. Микробиомасса в почвах суши по весу составляет в абсолютных цифрах величину порядка 1*10 9 т, что в отношении к фитобиомассе равно лишь 0,0001%, однако поразительная скорость размножения и смен поколений у микроорганизмов столь велика, что геохимическое и почвенное значение деятельности микроорганизмов в биосфере является эквивалентным значению деятельности растений и, может быть, даже превышает его.

18. Роль высших растений в почвообразовании

Высшие растения играют колоссальную роль в почвообразовании. Биологический круговорот. Растения усваивают питательные элементы на ионом уровне, усваивают питательные элементы из водных растворов.

Роль высших растений в почвообразовании

Основную часть живого вещества суши образуют высшие растения, среди которых древесная растительность. Высшие растения как генератор органического вещества. Образование органического вещества в основном связано с фо­тосинтезом - процессом, осуществляющимся в зеленых частях растений при участии хлорофилла. Растения, поглощая углекис­лый газ из атмосферы и воду, синтезируют органическое вещест­во согласно схеме:

Свет, хлорофилл

6СО 2 + 6Н 2 О + 674 ккал → С 6 Н 12 О 6 + 6 O 2

Для осуществления этой сложной реакции используется энергия солнечных лучей. В клетках растений создаются разно­образные соединения-углеводы, жиры, белки и др. Ежегодно высшие растения суши синтезируют около 10 10 т сухого органи­ческого вещества. Величина годовой продуктивности раститель­ности сильно колеблется в зависимости от географических условий. При этом пространственная и генетическая связь меж­ду сообществами высших растений и определенными почвами давно обращала на себя внимание и была отмечена еще М. В. Ломоносовым.

От многолетних древесных пород каждый год поступает в почву лишь незначительная часть их биологической массы в виде опада отмирающих частей, преимущественно наземных. Кустарничковая растительность ежегодно теряет значительно большую часть своей биомассы, а травянистая отмирает почти полностью.

Для оценки динамики органического вещества в системе рас­тения - почва применяются следующие показатели:

Биологическая масса (биомасса) - общее количе­ство живого органического вещества растительных сообществ. Важное значение имеет структура биомассы - соотношение ор­ганического вещества в надземных частях и корнях растений.

Мертвое органическое вещество - количество органического вещества, содержащегося в отмерших частях рас­тений, а также в накопившихся на почве продуктах опада (лес­ная подстилка, степной войлок, торфяной горизонт).

Годовой прирост - масса органического вещества, на­растающая в подземных и надземных частях растений за год.

Опад -количество ежегодно отмирающего органического вещества на единицу площади (обычно в центнерах на гектар).

Отмирающее органическое вещество лес­ных сообществ представлено преимущественно надземными ча­стями (хвоя, сучья, кора), в то время как в составе опада тра­вянистых сообществ важное значение имеют корни.

Отношение опада к биомассе показывает, насколько прочно удерживается данным растительным сообществом органическое вещество. Расчеты показывают, что наиболее прочно удержива­ют органическое вещество леса умеренного пояса. Например, ельники северной тайги расходуют на опад 4% органиче­ского вещества биомассы, ельники южной тайги - около 2%, а дубравы-только 1,5%. Во влажных тропических лесах в опад уходит 5% биомассы, в саваннах- 17%, травянистая рас­тительность степей расходует на опад 43-46% всей биомассы.

Высшие растения как концентраторы зольных элементов и азота. Своей жизнедеятельностью растения обусловливают чрезвычайно важный процесс - биогенную миграцию химиче­ских элементов.

(Основные химические элементы всех органических ве­ществ - углерод, кислород и водород, составляющие около 90% веса сухого вещества растений. Эти элементы растения по­лучают из атмосферы и воды. Но в составе растений имеются азот, фосфор, калий, кальций, натрий, магний, хлор, сера и мно­гие другие, т. е. почти все известные в настоящее время химиче­ские элементы. Они не являются случайными примесями и за­грязнениями, а имеют определенное физиологическое значение. Химические элементы, содержащиеся в растениях в довольно значительном количестве, входят в состав распространенных органических соединений. В отличие от углерода, кислорода, водорода и азота большая часть химических элементов, содержащихся в растениях, при сжигании остается в золе и поэтому называется зольными эле­ментами. Зольные элементы извлекаются растениями из почвы и входят в состав органического вещества. После отмирания ор­ганическое вещество поступает в почву, где под воздействием микроорганизмов подвергается глубокому преобразованию. При этом значительная часть зольных элементов переходит в формы, доступные для усвоения растениями, и частично вновь входит в состав нарастающего органического вещества, а часть задерживается в почве или удаляется с фильтрующимися вода­ми. В результате происходит закономерная миграция зольных химических элементов в системе почва - растительность - поч­ва, названная В. Р. Вильямсом биологическим (или ма­лым) круговоротом.

В процессе длительной эволюции у различных групп расте­ний выработалась способность поглощать определенные химиче­ские элементы. Поэтому химический состав золы различных рас­тений имеет существенные различия. Например, в золе зла­ков обнаружена повышенная аккумуляция кремния, в золе зон­тичных и бобовых - калия, в золе лебедовых - натрия и хлора. Известный советский почвовед-геохимик В. А. Ковда рассчитал состав зольных элементов различных групп растений..

Неодинаковый химический состав золы растений обусловли­вает различия в составе зольных элементов опада основных рас­тительных сообществ.

Как ни важно для почвообразования перераспределение хи­мических элементов в системе биологического круговорота, од­нако этим роль высших растений в формировании почв не ограничивается. Известно, какое важное значение имеет расти­тельность для регулирования стока, эрозии почв! хотя различные растительные группировки не в одинаковой мере предохраняют почву от водной и ветровой эрозии.

Участие животных в почвообразовании. Основной функцией почвенных животных является преобразо­вание органического вещества. Этот процесс осуществляется благодаря пищевым цепям. Травоядные животные синтезируют зоомассу, которую последовательно по­требляют хищники и животные, существующие за счет исполь­зования продуктов метаболизма и отмирания. Так как на каж­дом звене пищевой цепи теряется от 50 до 90% энергии, заклю­ченной в потребляемой биомассе, то образуются так называемые экологические пираЩ1ды. Поэтому количество зоомассы значи­тельно меньше количества фитомассы и составляет несколько миллиардов тонн.

Чем меньше размеры организмов, тем больше их количество в почве. Простейшие содержатся в количестве более миллиона экземпляров в 1 г почвы.

Роющая деятельность почвенных животных также имеет важ­ное значение для почвообразования.

Черви - одна из наиболее распространенных групп почвен­ных животных. Они содержатся в количестве многих тысяч и да­же до нескольких миллионов особей на 1 га. Большое значение деятельности червей придавал Ч. Дарвин. Согласно его подсче­там, почвенная масса в течение нескольких лет полностью про­ходит через организмы червей. Установлено, что черви на про­тяжении года могут переработать на 1 га до 50-380 т почвы, создавая мелко-комковатую структуру и определенным образом изменяя растительные остатки в количестве до 5 т/га.

В степных почвах значительную работу производят грызуны -землеройки. В некоторых случаях ходы землероек так многочис­ленны, что в литературе упоминаются «кротовинные черноземы».

Микроэлементы в растительных и животных организмах

Некоторые химические элементы входят в состав особых со­единений, которые способны регулировать жизненно важные био­химические процессы. Таковы витамины, ферменты и гормоны. Эти вещества играют в живых организмах роль природных ката­лизаторов. Ряд важнейших биологических процессов возможен только в присутствии этих соединений. Благодаря именно этим элементам витамины, ферменты и гормоны приобретают свои особые активирующие свойства.

Химические элементы, входящие в состав органических соеди­нений в качестве биохимических активаторов, называются мик­роэлементами. Среди них известны как многие рассеянные эле­менты (молибден, медь, кобальт и др.), так и химические элементы, содержащиеся в земной коре в количестве значитель­но большем 0,01% (например, железо).

Энергичное поглощение растениями рассеянных элементов сказывается в повышенном содержании их в верхней части поч­вы, обогащенной отмершими остатками растительных и живот­ных организмов.

Не только растительность, но и почвенные животные способ­ствуют накоплению некоторых химических элементов в почве. Проведенные анализы показали, что почвенная фауна аккумули­рует определенные элементы