Жидкий кислород температура по цельсию. Значение словосочетания «жидкий кислород. Выгоды использования жидкого кислорода

Жидкий кислород – это агрегатное состояние кислорода, в котором он представляет собой бледно-синюю жидкость. Он относится к категории веществ, которые одними из первых стали использоваться в разных областях промышленности. Жидкий О 2 используется с двумя целями: для усиления процессов горения и для окисления химических процессов. Именно необходимость решения этих задач стала причиной популярности воздухоразделительного оборудования.

Физические свойства жидкого кислорода

В жидком состоянии кислород имеет бледно-голубой оттенок. При переливании из одной емкости в другую жидкий кислород выделяет водяные пары, поглощая тепло из окружающего воздуха. При этом температура воздуха резко снижается, что приводит к образованию тумана.

Этот вид кислорода способен закипать при температуре 183°С. Если в это время поместить его в среду, в которой температура воздуха составляет около 30-40°С, то кипение лишь усилится. При комнатной температуре жидкость быстро испаряется.

Для того чтобы снизить скорость испарения кислорода жидкого, его помещают в специальные баллоны. Баллон для хранения О 2 представляет собой двухслойный сосуд. Внутренняя стенка баллона покрыта слоем серебра, а между ней и внешней стенкой полностью выкачан весь воздух. Слой серебра необходим для того, чтобы отражать тепло. В таком баллоне кислород может храниться на протяжении нескольких суток.

К другим физическим свойствам жидкого кислорода можно отнести следующие:

  • температура кипения – -183°С,
  • критическое давление – 497 атмосфер,
  • температура плавления – -219°С,
  • температура затвердевания – -220°С.

Как получают жидкий кислород?

Кислород, которым мы дышим, – это своеобразный «микс» из азота, кислорода и аргона. Смесь также содержит углекислый газ (0,03%), водород, закись азота и другие редкие газы. Для того чтобы перевести кислород в жидкое состояние, необходимо охладить воздух. При давлении в 50 атмосфер и температуре воздуха от -191,8 до -193,7 достигается глубокое охлаждение воздуха и его переход в жидкое состояние.

После этого проводят ректификацию, то есть отделение азота от кислорода. Этого добиваются путем многократного нагревания жидкости, в ходе которого первым делом испаряется азот, а оставшаяся жидкость обогащается О 2 .

В каких областях используют жидкий кислород?

В настоящее время жидкому кислороду находится применение в разных областях промышленности:

  • химической,
  • стекольной,
  • металлургической,
  • фармацевтической,
  • целлюлозно-бумажной.

Жидкий О 2 служит в качестве сырья для получения других химических соединений, вроде двуокиси титана или окиси этилена. С его помощью также можно повысить производительность большинства окислительных процессов.

В стекольной промышленности кислород применяется для интенсификации процессов горения, необходимых для поддержания работы стеклоплавильных печей. Помимо этого, он помогает снизить выбросы оксида азота и увеличить эффективность стекольного производства.

С этой же целью жидкий О 2 используется в металлургии, где он обогащает воздух и повышает эффективность процесса горения.

С жидким кислородом связано ускорение процессов роста клеток, поэтому в фармацевтике его добавляют в ферментеры и биореакторы.

В целлюлозно-бумажной отрасли промышленности с помощью этого вида кислорода осуществляется окислительное экстрагирование, обработка сточных вод и делигнификация (процесс получения целлюлозы).

Помимо этого, кислородом жидким пользуются в автомобилестроении и машиностроении, где он применяется в качестве вспомогательного газа во время лазерной резки. Его также добавляют в состав защитных газовых смесей.

Техника безопасности при работе с жидким кислородом

При работе с жидким кислородом нет угрозы отравления, но все же некоторые требования безопасности необходимо строго соблюдать:

  • надевать специальную одежду для защиты участков тела от обморожения,
  • избегать контакта с открытым пламенем во время и через 20-30 минут после работы с О 2 ,
  • проводить сварочные и ремонтные работы только через 2-3 часа после окончания манипуляций с этим видом газа,
  • перед перекачкой О 2 необходимо слегка охладить систему путем небольшого расхода продукта.

Преимущества сотрудничества с НПК «Грасис»

Научно-производственная компания «Грасис» осуществляет поставки оборудования, которое позволит вам самостоятельно получать газообразный кислород из атмосферного воздуха.

Наша компания более 10 лет занимается разработкой и производством газо- и воздухоразделительного оборудования, а также инжинирингом, проектированием и выполнением комплексных работ «под ключ». Мы поможем вам решить любые задачи, связанные с газо- и воздухоразделением, утилизацией попутного нефтяного газа и подготовкой природного газа.

В процессе производства оборудования мы используем нанотехнологии и высококачественные комплектующие, благодаря которым улучшаются технико-эксплуатационные свойства продукции. Свяжитесь с представителями компании «Грасис», чтобы получить развернутую информацию о заинтересовавшей вас установке!

Более подробно Вы можете ознакомиться с кислородным оборудованием (кислородные генераторы, кислородные установки, кислородные станции) на странице

СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ

Кислород О 2 является наиболее распространенным элементом на земле. Он находится в большом количестве в виде химических соединений с различными веществами в земной коре (до 50% вес.), в соединении с водородом в воде (около 86% вес.) и в свободном состоянии в атмосферном воздухе в смеси главным образом с азотом в количестве 20,93% об. (23,15% вес.).

Кислород имеет большое значение в народном хозяйстве. Он широко применяется в металлургии; химической промышленности; для газопламенной обработки металлов, огневого бурения твердых горных пород, подземной газификации углей; в медицине и различных дыхательных аппаратах, например для высотных полетов, и в других областях.

В нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса, не горючий, но активно поддерживающий горение. При весьма низких температурах кислород превращается в жидкость и даже твердое вещество.

Важнейшие физические константы кислорода следующие:

Молекулярный вес 32
Вес 1 м 3 при 0° С и 760 мм рт. ст. в кг 1,43
То же при 20° С и 760 мм рт. ст. в кг 1,33
Критическая температура в °С -118
Критическое давление в кгс/м 3 51,35
Температура кипения при 760 мм рт. ст. в °С -182,97
Вес 1 л жидкого кислорода при -182, 97 °С и 760 мм рт. ст. в кг.
1,13
Количество газообразного кислорода, получающегося из 1 л жидкого при 20 °С и 760 мм рт. ст. в л
850
Температура затвердевания при 760 мм рт. ст. в °С -218,4

Кислород обладает большой химической активностью и образует соединения со всеми химическими элементами, кроме редких газов. Реакции кислорода с органическими веществами имеют резко выраженный экзотермический характер. Так, при взаимодействии сжатого кислорода с жировыми или находящимися в мелкодисперсном состоянии твердыми горючими веществами происходит мгновенное их окисление и выделяющееся тепло способствует самовозгоранию этих веществ, что может быть причиной пожара или взрыва. Это свойство особенно необходимо учитывать при обращении с кислородной аппаратурой.

Одним из важных свойств кислорода является способность его образовывать в широких пределах взрывчатые смеси с горючими газами и парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры. Взрывчатыми являются и смеси воздуха с газо- или парообразными горючими.

Кислород может быть получен: 1) химическими способами; 2) электролизом воды; 3) физическим способом из воздуха.

Химические способы, заключающиеся в получении кислорода из различных веществ, малопроизводительны и в настоящее время имеют лишь лабораторное значение.

Электролиз воды, т. е. разложение ее на составляющие - водород и кислород, осуществляется в аппаратах, называемых электролизерами. Через воду, в которую для повышения электропроводности добавляется едкий натр NaOH, пропускается постоянный ток; кислород собирается на аноде, а водород - на катоде. Недостатком способа является большой расход электроэнергии: на 1 м 3 0 2 (кроме того, получается 2 м 3 Н 2) расходуется 12-15 квт. ч. Этот способ рационален при наличии дешевой электроэнергии, а также при получении электролитического водорода, когда кислород является отходом производства.

Физический способ заключается в разделении воздуха на составляющие методом глубокого охлаждения. Этот способ позволяет получать кислород практически в неограниченном количестве и имеет основное промышленное значение. Расход электроэнергии на 1 м 3 О 2 составляет 0,4-1,6 квт. ч, в зависимости от типа установки.

ПОЛУЧЕНИЕ КИСЛОРОДА ИЗ ВОЗДУХА

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем объемном их содержании: азота - 78,09%, кислорода - 20,93%, аргона - 0,93%. Кроме того, в нем содержится около 0,03% углекислого газа и малые количества редких газов, водорода, закиси азота и др.

Главная задача при получении кислорода из воздуха заключается в разделении воздуха на кислород и азот. Попутно производится отделение аргона,-применение которого в специальных способах сварки непрерывно возрастает, а также и редких газов, играющих важную роль в ряде производств. Азот имеет некоторое применение в сварке как защитный газ, в медицине и других областях.

Сущность способа заключается в глубоком охлаждении воздуха с обращением его в жидкое состояние, что при нормальном атмосферном давлении может быть достигнуто в интервале температур от —191,8° С (начало сжижения) до -193,7° С (окончание сжижения).

Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Т кип. о2 = -182,97° С; Т кип.N2 = -195,8° С (при 760 мм рт. ст.).

При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения и по мере его выделения жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией.

Для производства кислорода из воздуха имеются специализированные предприятия, оснащенные высокопроизводительными установками. Кроме того, на крупных металлообрабатывающих предприятиях имеются свои кислородные станции.

Низкие температуры, необходимые для сжижения воздуха, получают с помощью так называемых холодильных циклов. Ниже кратко рассматриваются основные холодильные циклы, используемые в современных установках.

Холодильный цикл с дросселированием воздуха основан на эффекте Джоуля—Томсона, т. е. резком снижении температуры газа при свободном его расширении. Схема цикла приведена на рис. 2.

Воздух сжимается в многоступенчатом компрессоре 1 до 200 кгс/см 2 и затем проходит через холодильник 2 с проточной водой. Глубокое охлаждение воздуха происходит в теплообменнике 3 обратным потоком холодного газа из сборника жидкости (ожижителя) 4. В результате расширения воздуха в дроссельном вентиле 5 он дополнительно охлаждается и частично сжижается.

Давление в сборнике 4 регулируется в пределах 1—2 кгс/см 2 . Жидкость периодически сливается из сборника в специальные емкости через вентиль 6. Несжиженная часть воздуха отводится через теплообменник, производя охлаждение новых порций поступающего воздуха.

Охлаждение воздуха до температуры сжижения происходит постепенно; при включении установки имеется пусковой период, в течение которого сжижения воздуха не наблюдается, а происходит лишь охлаждение установки. Этот период занимает несколько часов.

Достоинством цикла является его простота, а недостатком — относительно высокий расход электроэнергии — до 4,1 квт. ч на 1 кг сжиженного воздуха при давлении в компрессоре 200 кгс/см 2 ; при меньшем давлении удельный расход электроэнергии резко возрастает. Данный цикл применяется в установках малой и средней производительности для получения газообразного кислорода.

Несколько более сложным является цикл с дросселированием и предварительным аммиачным охлаждением воздуха.

Холодильный цикл среднего давления с расширением в детандере основан на понижении температуры газа при расширении с отдачей внешней работы. Кроме того, используется и эффект Джоуля— Томсона. Схема цикла приведена на рис. 3.

Воздух сжимается в компрессоре 1 до 20-40 кгс/см 2 , проходит через холодильник 2 и затем через теплообменники 3 и 4. После теплообменника 3 большая часть воздуха (70-80%) направляется в поршневую расширительную машину-детандер 6, а меньшая часть воздуха (20-30%) идет на свободное расширение в дроссельный вентиль 5 и далее сборник 7, имеющий кран 8 для слива жидкости. В детандере 6

воздух, уже охлажденный в первом теплообменнике, производит работу - толкает поршень машины, давление его падает до 1 кгс/см 2 , за счет чего резко снижается температура. Из детандера холодный воздух, имеющий температуру около —100° С, выводится наружу через теплообменники 4 и 3, охлаждая поступающий воздух. Таким образом, детандер обеспечивает весьма эффективное охлаждение установки при сравнительно небольшом давлении в компрессоре. Работа детандера используется полезно и это частично компенсирует затрату энергии на сжатие воздуха в компрессоре.

Достоинствами цикла являются: сравнительно небольшое давление сжатия, что упрощает конструкцию компрессора и повышенная холодопроизводительность (благодаря детандеру), что обеспечивает устойчивую работу установки при отборе кислорода в жидком виде.

Холодильный цикл низкого давления с расширением в турбодетандере, разработанный акад. П. Л. Капицей, основан на применении воздуха низкого давления с получением холода только за счет расширения этого воздуха в воздушной турбине (турбодетандере) с производством внешней работы. Схема цикла приведена на рис. 4.

Воздух сжимается турбокомпрессором 1 до 6-7 кгс/см 2 , охлаждается водой в холодильнике 2 и поступает в регенераторы 3 (теплообменники), где охлаждается обратным потоком холодного воздуха. До 95% воздуха после регенераторов направляется в турбодетандер 4, расширяется до абсолютного давления 1 кгс/см 2 с выполнением внешней работы и при этом резко охлаждается, после чего он подается в трубное пространство конденсатора 5 и конденсирует остальную часть сжатого воздуха (5%), поступающую в межтрубное пространство. Из конденсатора 5 основной поток воздуха направляется в регенераторы и охлаждает поступающий воздух, а жидкий воздух пропускается через дроссельный вентиль 6 в сборник 7, из которого сливается через вентиль 8. На схеме показан один регенератор, а в действительности их ставят несколько и включают поочередно.

Достоинствами цикла низкого давления с турбодетандером являются: более высокий к. п. д. турбомашин по сравнению с машинами поршневого типа, упрощение технологической схемы, повышение надежности и взрывобезопасности установки. Цикл применяется в установках большой производительности.

Разделение жидкого воздуха на составляющие осуществляется посредством процесса ректификации, сущность которого состоит в том, что образующуюся при испарении жидкого воздуха парообразную смесь азота и кислорода пропускают через жидкость с меньшим содержанием кислорода. Поскольку кислорода в жидкости меньше, а азота больше, то она имеет более низкую температуру, чем проходящий через нее пар, а это вызывает конденсацию кислорода из пара и обогащение им жидкости с одновременным испарением из жидкости азота, т. е. обогащение им паров над жидкостью.

Представление о сущности процесса ректификации может дать приведенная на рис. 5 упрощенная схема процесса многократного испарения и конденсации жидкого воздуха.

Принимаем, что воздух состоит только из азота и кислорода. Представим, что имеется несколько соединенных друг с другом сосудов (I—V), в верхнем находится жидкий воздух с содержанием 21% кислорода. Благодаря ступенчатому расположению сосудов жидкость будет стекать вниз и при этом постепенно обогащаться кислородом, а температура ее будет повышаться.

Допустим, что в сосуде II находится жидкость, содержащая 30% 0 2 , в сосуде III — 40%, в сосуде IV — 50% и в сосуде V — 60% кислорода.

Для определения содержания кислорода в паровой фазе воспользуемся специальным графиком — рис. 6, кривые которого указывают содержание кислорода в жидкости и паре при различных давлениях.

Начнем испарять жидкость в сосуде V при абсолютном давлении 1 кгс/см 2 . Как видно из рис. 6, над жидкостью в этом сосуде, состоящей из 60% 0 2 и 40% N 2 , может находиться равновесный по составу пар, содержащий 26,5% 0 2 и 73,5% N 2 , имеющий такую же температуру, что и жидкость. Подаем этот пар в сосуд IV, где жидкость содержит только 50% 0 2 и 50% N 2 и поэтому будет более холодной. Из рис. 6 видно, что над этой жидкостью пар может содержать лишь 19% 0 2 и 81% N 2 , и только в этом случае его температура будет равна температуре жидкости в данном сосуде.

Следовательно, подводимый в сосуд IV из сосуда V пар, содержащий 26,5% О 2 , имеет более высокую температуру, чем жидкость в сосуде IV; поэтому кислород пара конденсируется в жидкости сосуда IV, а часть азота из нее будет испаряться. В результате жидкость в сосуде IV обогатится кислородом, а пар над нею - азотом.

Аналогично будет происходить процесс и в других сосудах и, таким образом, при сливе из верхних сосудов в нижние жидкость обогащается кислородом, конденсируя его из поднимающихся паров и отдавая им свой азот.

Продолжая процесс вверх, можно получить пар, состоящий почти из чистого азота, а в нижней части - чистый жидкий кислород. В действительности процесс ректификации, протекающий в ректификационных колоннах кислородных установок, значительно сложнее описанного, но принципиальное его содержание такое же.

Независимо от технологической схемы установки и вида холодильного цикла процесс производства кислорода из воздуха включает следующие стадии:

1) очистка воздуха от пыли, паров воды и углекислоты. Связывание СО 2 достигается пропусканием воздуха через водный раствор NaOH;

2) сжатие воздуха в компрессоре с последующим охлаждением в холодильниках;

3) охлаждение сжатого воздуха в теплообменниках;

4) расширение сжатого воздуха в дроссельном вентиле или детандере для его охлаждения и сжижения;

5) сжижение и ректификация воздуха с получением кислорода и азота;

6) слив жидкого кислорода в стационарные цистерны и отвод газообразного в газгольдеры;

7) контроль качества получаемого кислорода;

8) наполнение жидким кислородом транспортных резервуаров и наполнение баллонов газообразным кислородом.

Качество газообразного и жидкого кислорода регламентируется соответствующими ГОСТами.

По ГОСТу 5583-58 выпускается газообразный технический кислород трех сортов: высший — с содержанием не менее 99,5% О 2 , 1-й — не менее 99,2% О 2 и 2-й — не менее 98,5% О 2 , остальное — аргон и азот (0,5—1,5%). Содержание влаги не должно превышать 0,07 г/ж 3 . Кислород, получаемый электролизом воды, не должен содержать водорода более 0,7% по объему.

По ГОСТу 6331-52 выпускается жидкий кислород двух сортов: сорт А с содержанием не менее 99,2% О 2 и сорт Б с содержанием не менее 98,5% О 2 . Содержание ацетилена в жидком кислороде не должно превышать 0,3 см 3 /л.

Применяемый для интенсификации различных процессов на предприятиях металлургической, химической и других отраслей промышленности технологический кислород содержит 90—98% О 2 .

Контроль качества газообразного, а также и жидкого кислорода производится непосредственно в процессе производства с помощью специальных приборов.

Администрация Общая оценка статьи: Опубликовано: 2012.06.01

Жидкий кислород представляет собой одно из четырех агрегатных состояний О 2 . Вещество имеет бледно-голубой оттенок, обладает плотностью 1,141 г/см³, благодаря чему свободно переливается из одного сосуда в другой. Жидкая форма кислорода – нетипичное состояние элемента. О 2 становится таким при ректификации воздуха, а также при намеренном охлаждении кислорода до температуры -183°С.

По сравнению с газообразным кислородом, жидкий кислород имеет не такую широкую сферу применения. Он используется в космической, а также газовой отраслях. Однако чаще всего кислород переводят в жидкое состояние для более рационального хранения и транспортировки к месту использования, где вещество перед применением газифицируют.

В таком виде элемент используется в различных сферах промышленности: в медицине, экологии, в химической, нефтедобывающей, горнодобывающей, металлургической, пищевой и многих других отраслях. Применяется кислород и при осуществлении сварочно-режущих работ по металлу.

Свойства вещества

Разнообразие сфер использования газообразного вещества – следствие уникальных физических и химических свойств элемента. Кислород проявляет активность при вступлении в реакцию практически со всеми химическими элементами, кроме золота и инертных газов. Такое свойство сохраняет и материал в жидком виде.

Так, например, при контакте с органическими веществами, маслами и жирами даже с минимальным тепловым воздействием кислород способен создать горючие смеси, которые могут быть взрывоопасными. Такие свойства кислорода обусловливают создание строгих мер безопасности при транспортировке, хранении и работе с веществом.

Способы добычи жидкого кислорода

Основной метод получения жидкого кислорода заключается в переработке воздуха. Такой способ представляет собой комплексный процесс, состоящий из нескольких этапов:

  • прежде всего воздух переводят в жидкое состояние, что достигается при снижении температуры вещества до -193,7°С;
  • после сжижения воздуха происходит постепенное повышение температуры: на этом этапе начинается разделение вещества на N 2 и жидкий О 2 ;
  • ректификация воздуха осуществляется за счет разных температур кипения азота и кислорода: первым в газообразное состояние переходит азот, а жидкий О 2 не меняет своей формы до температуры -182,97° С.

Получение жидкого вещества путем разделения воздуха осуществляется преимущественно на специализированных предприятиях, имеющих комплекс необходимого оборудования. После этого элемент размещается в сосудах Дьюара или же в других криогенных резервуарах для более удобной и безопасной транспортировки.

Добыча кислорода может осуществляться и непосредственно на месте использования. Такие работы стали возможными благодаря специальным кислородным адсорбционным станциям по переработке воздуха, что уменьшает затраты на транспортировку элемента и делает процесс использования более безопасным.

Особенности использования жидкого кислорода

Хотя О 2 в жидком состоянии не обладает токсическими свойствами, существует строгий перечень мер безопасности по работе с элементом:

  • контактируя с жидким кислородом, а также с кислородными резервуарами, необходимо использовать специальные защитные средства; к ним относятся комбинезоны, рукавицы, кожаная обувь, которые могут варьироваться в зависимости от времени года;
  • при работе с жидким веществом защитные средства должны предварительно обрабатываться для исключения контакта элемента с жирами и маслами, в противном случае реакция может создать взрывоопасную смесь;
  • при выполнении сварочных или ремонтных работ в помещениях, где хранится О 2 , необходимо регулярно осуществлять проветривания теплым воздухом;
  • при заливке О 2 в резервуары для хранения или транспортировки емкости следует предварительно обезжирить;
  • при перекачке вещества выполняется предварительное охлаждение системы на жидком кислороде с малым числом вещества: это необходимо для того, чтобы исключить возгорание оборудования при резких перепадах давления.

Все эти проблемы использования О 2 в жидком состоянии не нужно решать, если использовать кислород в газообразном виде.

Компания «Сварочные технологии» осуществляет поставки кислородного оборудования , которое позволит вам самостоятельно получать кислород (O 2) в газообразном состоянии.

Чтобы задать дополнительные вопросы относительно продукции и услуг компании, свяжитесь с нашими специалистами любыми удобными для Вас способами.

По вопросам заказа оборудования просим Вас заполнить Запрос на оборудование
или отправить Вашу заявку на электронный адрес: .

Жидкий кислород (ЖК, англ. Liquid oxygen, LOX) - жидкость бледно-синего цвета, которая относится к сильным парамагнетикам. Является одним из четырёх агрегатных состояний кислорода. ЖК обладает удельной плотностью 1,141 г/см³ и имеет умеренно криогенные свойства с точкой замерзания 50,5 K (−222,65 °C) и точкой кипения 90,188 K (−182,96 °C).
Жидкий кислород активно используется в космической и газовой отраслях, при эксплуатации подводных лодок, широко используется в медицине. Обычно промышленное получение основывается на фракционной перегонке воздуха. Коэффициент расширения (англ. expansion ratio) кислорода при смене агрегатного состояния на газообразное составляет 860:1 при 20 °C, что иногда используется в системах снабжения кислородом для дыхания в коммерческих и военных самолётах. Основным и практически неисчерпаемым источником получения жидкого кислорода является атмосферный воздух: производится сжижение воздуха и последующее разделение его на кислород и азот.

Общие сведения.

В периодической системе химических элементов Менделеева кислород обозначается символом 0 (от латинского Oxygenium). В нормальных условиях кислород представляет собой очень активный газ, не ощутимый органами чувств человека (т.е. не имеющий запаха, вкуса или цвета). Молекула кислорода обычно двухатомная (формула ее О2), реже трехатомная (О3, такое молекулярное состояние кислорода называют озоном, этот газ обладает весьма специфическим запахом). Кислород является самым распространенным в пределах планеты химическим элементом. Он не только на четверть заполняет атмосферу Земли, но и присутствует во всех внутренних оболочках планеты в составе силикатов (оксиды кремния, из которых состоит вулканическая магма).

История открытия

Существует точная дата экспериментального обнаружения кислорода – 1 августа 1774 года, о чем заявил англичанин Джозеф Пристли. Однако, как часто бывает в химии, всю сущность своего открытия он не осознал, тем самым частично отдав лавры первооткрывателя своим коллегам.
По факту, первым открыл кислород тремя годами ранее шведский естествоиспытатель и фармацевт Карл Шееле (1771 год), когда поставил эксперимент по прокаливанию селитры серной кислотой и последующим разложением оксида азота на составляющие: азот и кислород. Шееле дал новому газу имя «огненный воздух», но опубликовал свои эксперименты только в 1777 году. К этому времени Джозеф Пристли уже провел свои опыты и заявил о своем открытии, хотя и неправильно интерпретировал результаты своего эксперимента. Оба ученых рассказали о своих опытах величайшему химику того времени Антуану Лавуазье. Именно последний в 1775 году установил, что кислород является отдельным химическим элементом, а его двухатомная молекула входит в состав атмосферного воздуха. Труды Лавуазье навсегда опровергли одно из главных заблуждений в химии того времени, теорию флогистона, которой пытались объяснить процессы горения и окисления веществ.
А «официальный» первооткрыватель Джозеф Пристли прославился тем, что в рамках своих многочисленных экспериментов открыл для науки сразу несколько важных химических соединений, среди которых оксиды углерода и серы, аммиак и хлор.

Свойства кислорода

Физические свойства кислорода в нормальных условиях характеризуют его как бесцветный газ, не ощутимый человеком. Обладает плотностью 1,429 кг/м3. Слабо растворяется в воде. При нагревании молекула О2 начинает обратимо диссоциировать на атомы: от 0,03 % всех молекул при +2000 °C до 99,5% при +6000 °C.
В жидком состоянии кислород представляет собой бледно-голубую жидкость, закипающую при 182,9 °C. Твердый кислород имеет вид кристаллов синего цвета, температура плавления которых -218,7°С.
Кислород встречается в составе свыше 1500 соединений земной коры. Атом кислорода присутствует в воде и в живых клетках всех организмов планеты. Кислород является чрезвычайно сильным окислителем и вступает в реакции практическими со всеми другими элементами. Исключение составляют инертные газы и золото, которые не окисляются. В результате реакций взаимодействия с кислородом появляются оксиды. Реакции протекают с выделением тепла и катализируются с повышением температуры, что приводит к процессу горения.

Применение кислорода.

Применение кислорода в промышленном производстве стало возможным с изобретением детандеров в середине прошлого столетия. Детандеры преобразуют потенциальную энергию газа в механическую, при этом газ совершает работу и охлаждается. Таким образом проводят сжижение и разделение воздуха, получая в итоге азот и кислород.
Кислород, будучи сильнейшим окислителем, способствует полному сгоранию топлива, что используется в разных отраслях промышленности. Выплавка металла из руды невозможна без использования кислорода. Жидкий кислород применяется как окислитель для ракетного топлива, особенно в смеси с озоном. Не только космические корабли, но и все современные самолеты не могут обойтись без кислорода во время полета. За один трансокеанический перелет сжигается свыше 10 тонн жидкого кислорода.
В металлургии кислород применяется при конвертерном производстве стали и прокатных изделий. Также он необходим при газопламенной сварке и резке металлов. Используется в качестве реактива-окислителя при синтезе спиртов, альдегидов, аммиака в химической промышленности.
В пищевой промышленности выступает в роли пропеллента (для распыления других веществ), в качестве упаковочного газа и даже как пищевая добавка (Е 948).
В медицине применяется в специальных баллонах в сжиженном состоянии для разных целей: применим в качестве ингалятора, устраняет гипоксию, обогащает дыхательные смеси при наркозе, восстанавливает работу желудочно-кишечного тракта (т.н. кислородные коктейли).
В рыбоводстве кислородом насыщают водную среду для увеличения продуктивности (в теплой воде содержание кислорода ниже, чем в холодной, но большая часть промысловых рыб не способна жить при низких температурах водной среды).

Интересные факты

Содержание кислорода в современной атмосфере — 21% — является необходимым и достаточным для функционирования человека как живого существа. Однако в крупных городах количество кислорода снижено до 17-18%. Это объясняется нехваткой зеленых растений, фотосинтезирующая деятельность которых как раз и восполняет баланс газообразного кислорода в атмосфере. При неблагоприятных метеорологических условиях содержание кислорода в городской черте может опуститься и до 10%, что критично для нашей жизнедеятельности. Ведь при 7%-ном содержании кислорода в воздухе человек погибает. Синдром нехватки кислорода называется гипоксией и проявляется в общей слабости, быстрой утомляемости, бессоннице, снижении внимания, частыми головными болями и повышенной восприимчивости к инфекциям. Считается, что именно нехватка кислорода в мозге обуславливает депрессию.
У человека есть рефлекторный прием кратковременного увеличения количества кислорода в организме – зевота. Считается, что мы зеваем именно в том случае, когда содержание кислорода в головном мозге падает ниже нормального уровня.
В горных местностях воздух более разрежен и содержание в нем кислорода понижено. В ходе эволюции у коренных жителей таких территорий порог чувствительности к нехватке кислорода снизился. Поэтому, жители Непала, Бутана, Боливии, Грузии прекрасно себя чувствуют на высотах свыше 3-4 километров, в то время как представители других национальностей чувствуют усталость, тошноту, а при подъеме выше вынуждены пользоваться кислородными масками.Кислород применяется в самых различных сферах науки, промышленности и сельского хозяйства.

Компания ООО «Спецсервис» осуществляет доставку жидкого кислорода в любой город России.

Исходя из условий поставки и необходимого объема продукции мы сможем предложить Вам оптимальную цену.

Кислород химический элемент, атомный номер 8, атомная масса 15,9994. Обычно концентрация кислорода (в виде молекул O 2) в атмосфере на уровне моря составляет по объему 21%. Кислород немного тяжелее воздуха, вес 1 м 3 кислорода при 0° и 760 мм рт. ст. равен 1,43 кг. Плотность по отношению к воздуху 1,1. При температуре -182,97°C и давлении 760 мм рт. ст. кислород превращается в голубоватую легко подвижную жидкость, энергично испаряющуюся при нормальной температуре. При этом занимаемый газом объем уменьшается примерно в 850 раз. При нагревании жидкий кислород снова превращается в газ. Вес 1 л жидкого кислорода при температуре -183°C равен 1,14 кг. Жидкий кислород при атмосферном давлении затвердевает при температуре -218,4°C и образует кристаллы голубоватого цвета. Химическая формула – O. В обычных условиях молекула кислорода двухатомная - O 2 .

Кислород при нормальных условиях (температуре и давлении) представляет собой прозрачный газ без запаха, вкуса и цвета. Не относится к горючим газам, но способен активно поддерживать горение.

По химической активности среди неметаллов кислород занимает второе место после фтора.

Все элементы, кроме благородных металлов (платина, золото, серебро, родий, палладий и др.) и ( , ксенон, криптон и неон), вступают в реакцию с кислородом (окисление) и образовывают оксиды. Процесс окисления элементов, как правило, носит экзотермический (с выделением теплоты) характер. Также необходимо учитывать тот факт, что при повышении температуры, давления или использовании катализаторов – скорость реакции окисления резко возрастает.

История открытия кислорода

Открытие кислорода приписывают Джозефу Пристли (Joseph Priestley). У него была лаборатория, оборудованная приборами для собирания газов. Пристли испытывал физиологическое действие кислорода на себе и на мышах. Он устанавливал, что после вдыхания кислорода некоторое время ощущается приятная легкость. Мыши в герметически закрытой банке с воздухом задыхаются быстрей, чем в банке с кислородом. Поскольку Пристли был приверженцем флогистонной теории он так и не узнал, что оказалось у него в руках. Он только описал кислород, даже не догадываясь, что он описал. Открыл кислород и дал ему имя Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier).

Лавуазье, поставил свой знаменитый опыт, продолжавшийся 12 дней.

Он нагревал ртуть в реторте. При кипении образовывалась ее красная окись. Когда реторту охладили, оказалось, что воздуха в ней убыло почти на 1/6 его объема, а остаток ртути весил меньше, чем перед нагревом. Но когда разложили окись ртути сильным прокаливанием, все вернулось: и недостача ртути, и «исчезнувший» кислород.

Впоследствии Лавуазье установил, что этот газ входит в состав азотной, серной, фосфорной кислот. Он ошибочно полагал, что кислород обязательно входит в состав кислот, и поэтому назвал его «оксигениум», что значит «рождающий кислоты». Теперь хорошо известны кислоты, лишенные кислорода (например: соляная, сероводородная, синильная и др.).

Получение кислорода

Кислород получают тремя способами:

  • разделение воздуха путем низкотемпературной ректификации (глубокого охлаждения);
  • разложение воды путем электролиза (пропускание электрического тока);
  • химический способ.

Из атмосферного воздуха кислород получают методом глубокого охлаждения, как побочный продукт при получении азота. Данный способ мы рассмотрели в статье

Производство кислорода путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода мы рассматривали в статье

Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.

Кислород газообразный технический и медицинский выпускают по . Хранят и транспортируют его в стальных баллонах под давлением 15 МПа. Кислородные окрашены в синий цвет с надписью черными буквами «КИСЛОРОД».

Жидкий кислород выпускается по . Кислород находится в жидком состоянии только при получении, хранении и транспортировке. Для газовой или газовой резки его необходимо снова превратить в газообразное состояние.