Как формулируется закон бойля мариотта. Смотреть что такое "закон бойля-мариотта" в других словарях

) Другие источники : МЭСБЕ


Бойля-Мариотта закон , связывающий изменения объема газа при постоянной температуре с изменениями его упругости. Этот закон, открытый в 1660 г. англ. физиком Бойлем и позже, но, независимо от него, Мариоттом во Франции, по своей простоте и определенности занимает весьма важное место в науке, хотя позднейшие исследования показали существование отступлений от него и что закон относится собственно к так называемому идеальному газу. История открытия его весьма поучительна. Франциск Лин (Franciscus Linus), профессор математики в Люттихе (1595-1675), не признавал, чтобы воздух, столь подвижное и легкое вещество, мог поддерживать ртутный столб в барометрической трубке, хотя ученик Галилея Евангелиста Торричелли (1608-1647) несомненно доказал, что именно давление атмосферы есть причина этого явления. До того времени все допускали, что природа не терпит пустоты (horror vacui) и что поэтому в пустые трубки устремляется ртуть, вода и вообще всякие жидкости. Когда же оказалось, что вода в трубке следует за поршнем насоса только до высоты несколько более 30 футов, то Галилей положил, что боязнь пустоты имеет предел. Лин же объяснял, что ртуть держится в трубке невидимыми нитями (funiculus) и что он сам чувствовал эти нити, когда закрывал пальцем верхнее отверстие трубки, которая была потом наполнена ртутью и опрокинута нижним концом в чашечку со ртутью же; при этом ртуть в достаточно длинной трубке опускалась, но останавливалась на известной высоте. Такое толкование опыта Торричелли Лином побудило Бойля сделать несколько новых опытов, которые им описаны в его «A defense of the doctrine touching spring and weight of the air» (Лондон, 1662). Чтобы доказать, что воздух обладает способностью сопротивления, Бойль взял сифонообразную трубку, запаянную на коротком конце (черт. 1). Когда в длинное колено наливали ртуть, то она сжимала воздух, заключенный в коротком колене, тем значительнее, чем более налито было ртути в другом. Когда ртуть в коротком колене доходила до уровня AB, в длинном она была на уровне CD, значит, упругость сжатого воздуха была такова, что он мог поддерживать давление ртутного столба высотою от AB до CD. А так как эта высота в первых опытах Б. была равна высоте ртути в барометре, то этим доказывалось, что в барометре ртутный столб поддерживался атмосферным воздухом. Наливая различные, все большие и большие количества ртути в длинное колено трубки, Б. записывал высоты ртутного столба и соответственные объемы сжатого воздуха, но сначала не обратил внимания на численные их соотношения. Его ученик Ричард Тоунлей (Richard Townley), просматривая числа таблицы, заметил, что объемы запертого воздуха обратно пропорциональны давлениям, на него производимым. Если воздух занимал сначала 12 дюймов длины в трубке, причем ртуть в обоих коленах была на одной высоте, то когда в длинное колено было прилито столько ртути, что воздух занял только 6 дюймов длины, оказалось, что высота поддерживаемого столба ртути была 29 англ. дюймов. Вначале воздух, запертый в коротком колене, имел упругость одинаковую с атмосферой, которая могла поддерживать в барометре ртуть на 29 дюймов высоты, а во втором случае запертый воздух подвержен был давлению атмосферы и давлению ртутного столба в 29 дюйм., т. е. в сумме - давлению 29 x 2 дюйма: значит, когда объем воздуха стал вдвое меньше, его упругость сделалась вдвое больше. После этого Бойль многократно повторял и разнообразил опыты и доказал, что тот же закон приложим к случаям увеличения объема воздуха.

Для этого он пользовался цилиндрическим сосудом (черт. 2), который был наполнен ртутью; погружая туда трубку А с открытыми концами до тех пор, пока над ртутью оставалась часть AB, длиною равная 1 дюйму, Б. закрывал и заклеивал отверстие А и затем поднимал трубку. При этом объем AB увеличивался и наконец обращался в объем AD - вдвое больший; ртуть же поднималась на высоту В"D, которая была почти вдвое менее, 29¾ дюйма, тогдашней высоты ртути в барометре. Очевидно, что воздух, заключавшийся в DA, не имел достаточной упругости, чтобы давить на поверхность D с такою силою, как он прежде давил на В; разность упругостей в обоих положениях трубки имеет мерою столб DB", которого длина оказалась 15⅜ дюйма. Поэтому упругость воздуха в удвоенном объеме AD составляет 29¾ без 15⅜, т. е. 14⅜ или почти ровно половину прежней. Когда трубка была поднята настолько, что объем AD занял длину в 10 дюймов, то высота ртути DB" оказалась в 26¾, следовательно, упругость воздуха измерялась разностью 29¾-26¾, т. е. 3 дюйма, что составляет почти точно 1 / 10 первоначальной упругости. Описание этих опытов находится в «New Experiments touching the spring of the air» (Оксф., 1660); «Continuation of Experiments» (Оксф., 1669), «On the rarefaction of air» (Лондон, 1671); «Second continuation» (Лондон, 1681), «General history of the air» (Лондон, 1692). Французский ученый Мариотт (Edme Mariotte, 1620-1684) произвел ряд опытов совершенно таким же образом и нашел тот же закон, который обыкновенно и называется его именем; только англичане называют его законом Бойля. См. сочинения Мариотта: «Essay sur la nature de l’Air» (Париж, 1676), «Du mouvement des eaux et des autres fluides» (part. II, disc. 2). Знал ли Мариотт об опытах Бойля - на это положительного ответа нельзя дать, хотя известно, что Мариотт находился в сношениях с английскими учеными уже в 1668 году. Как бы то ни было, Мариотт произвел такие же опыты и измерения, как и Бойль, только с большею точностью, и его опыты сделались более известны. Трубка (черт. 1) получила, как прибор, название Мариоттовой, и закон назван его именем, хотя с некоторого времени по справедливости его называют законом Бойля-Мариотта ; может быть, еще справедливее было бы присоединить имя и Тоунлея. Во всяком случае, Мариотт так известен своими другими трудами, что, несмотря на свидетельство цифр, трудно его подозревать в несамостоятельности работ, приведших ко вторичному открытию важного физического закона. История физики показывает, что очень важные законы, открытые в одной стране, могли долгое время быть неизвестными в другой; так, важный закон, касающийся силы гальванического тока, открытый Омом в Германии, был через несколько лет вторично открыт во Франции физиком Пулье.

С уменьшением объема воздуха вдвое-втрое необходимо увеличивается и плотность его в таком же отношении; температура газа при измерении его объема должна быть постоянною, а иначе охлаждение его или нагревание само по себе может изменить объем и упругость; кроме того, воздух не должен содержать воды или иных жидкостей. С соблюдением всех этих условий закон Бойля-Мариотта должен быть выражен таким образом: объемы некоторого определенного количества сухого воздуха при постоянной температуре обратно пропорциональны давлениям, на него произ­водимым, а следовательно, и упругостям его , плотность же воздуха прямо пропорциональна этому давлению; или, вкратце, объем воздуха обратно пропорционален давлению, на него производимому. Если обозначить начальный объем газа буквою v, а давление, под которым он находится, - буквою р, если сжатый объем газа будет v", а давление, всегда измеряемое высотою ртутного столба, будет р"; то закон Б.-М. выразится пропорцией: v: v" = р":р; откуда pv = p"v", т. е. произведение объема газа на соответственное давление есть величина постоянная при не изменяющейся температуре. Другие газы, как будет объяснено далее, следуют тому же закону. Как ни просты кажутся опыты Бойля и Мариотта, однако и при той малой степени точности устройства приборов, какая была доступна в то время, они требовали соблюдения многих экспериментальных предосторожностей. Несоблюдение надлежащих правил было, вероятно, причиною различных разноречивых показаний позднейших наблюдателей. Например, Без наблюдал под экватором в своих опытах уменьшение объема воздуха в меньшем отношении, чем увеличение его упругости. Многочисленные опыты Бугара в тех же широтах, напротив, подтверждали закон Б.-М.; кроме того, опыты Амонтона, Сгравезанда, Фонтаны, Шукбурга привели к тому же заключению.

Но все опыты того времени не доходили до больших давлений и не были так точны, чтобы не оставалось сомнений в верности закона. Зульцер («Mém. de Berlin», т. IX, 1753), а потом и Робизон заключили из своих опытов, что при давлениях, в 7 или 8 раз превосходивших атмосферное, упругость увеличивается в значительно меньшем отношении, чем уменьшается объем; но опыты Винклера (1765) опять доказывают приложимость закона Б.-М. до 8 атмос. давления. В нынешнем столетии (1826) датские ученые Эрстедт со Свенсеном еще раз подтвердили верность закона до 8 атм. давления; другие их опыты, простиравшиеся до 70 атмосф., сделаны по методе, менее заслуживающей доверия. Но и в этих недалеких пределах (до 8 атм) некоторые газы не следуют закону Б.-М. Во второй половине XVIII стол. Ван Марум удостоверился, что аммиачный газ уменьшается в объеме гораздо быстрее воздуха; подобное тому Эрстедт и Свендсен гораздо позже нашли для газа сернистой кислоты. Вдобавок было открыто, что и тот и другой газы при несколько большем давлении переходят в жидкое состояние; это свойство потом было доказано и для других газов. Депре (Despretz) еще более точными опытами («Ann. de Chim. et de phys.», 2, XXXIV, 1827) убедился, что очень многие газы не следуют закону Б.-М. даже при таких давлениях, которые далеки от тех, при которых происходит сжижение газов. Депре делал опыты по способу, сходному с употребленным впервые Ван Марумом. Две стеклянные, с одного конца запаянные трубки, из которых одна была наполнена воздухом, а другая иным газом, были погружены открытыми концами в наполненную ртутью ванночку, помещенную на дне стеклянного цилиндра, наполненного водою. Давление производилось на воду посредством поршня, помещенного в верхнем дне цилиндра, вода давила на ртуть, которая, входя в трубочки, сжимала газы. Опыты, сделанные таким прибором, привели Депре к заключению, что аммиачный, сернистый, сероводородный и синеродистый газы при одинаковой величине давления занимают меньший объем, чем воздух. Точность измерений была настолько велика, что разность между сжатием этих газов и воздуха была заметна уже при уменьшении объема последнего только вдвое; при этом объемы названных газов составляли менее половины начального объема. По опытам Депре, водородный газ сжимается одинаково с воздухом до 1 / 15 первоначального объема, но при двадцати атмосферах давления объем водорода был более соответственного объема воздуха. Дюлонг и Араго («Mémoires de l’Académie des Sciences», т. X, «Annales de Chim. et de Phys.», т. XLIII, 1830) измеряли сжатие воздуха до 27 атмосфер давления; их прибор состоял из трубки длиною в 1,7 м, в которой был сжимаем воздух, и соединенной с ней другой, составленной из 13 частей, каждая в 2 метра длины. Эта длинная составная трубка была прикреплена к деревянной мачте, установленной внутри высокой башни. Дюлонг и Араго нашли, что закон Б.-М. верен для воздуха даже при сжатии его до 1 / 24 первоначального объема. Позже французский физик Пулье делал опыты по способу, сходному с тем, которым пользовались Эрстедт и Депре, но при больших давлениях, и заключил, что кислород, азот, водород, окись углерода и окись азота следуют до 100 атмосфер тому же закону сжатия, как и воздух, но что шесть нижепоименованных газов сжимаются более воздуха и что разность между их объемами и объемом воздуха растет с увеличением давления. Эти газы суть: сернистая кислота, аммиак, углекислота, закись азота, маслородный и болотный газы.

В 1847 г. были опубликованы («Mémoires de l’Académie des sciences de Paris», XXI, 1847) обширные и точные исследования Реньо по этому предмету, которые вместе с прочими физическими работами, исполненными по поручению французского правительства, описаны в указанных мемуарах под заглавием «Relation des expériences entreprises par ordre de M. le ministre des travaux publics etc». Воспользовавшись усовершенствованиями в приборах и способах наблюдения, введенными его предшественниками, Реньо прибавил новые существенные улучшения, устранив главное затруднение в точности измерения постепенно уменьшающихся объемов газа. Как ни значительна была длина трубки, в которой сжимался газ в опытах Араго и Дюлонга (1,7 метра), все же при сильных давлениях объем газа становился очень малым, и тогда всякая маленькая неточность в измерении положения ртути, запирающей газ, становится все более и более ощутительною относительно измеряемого постоянно уменьшающегося объема. Реньо употребил в своих опытах трубку в 3 метра длины для сжатия газов и после измерения полного объема газа и потом сжатого до половины объема при некотором соответственном давлении снова накачивал в эту трубку газ до совершенного ее наполнения. Полученный таким образом опять большой объем газа, находившийся под давлением, бо льшим первоначального, был приводим опять к половинному объему посредством увеличения высоты ртутного столба в длинной трубке. Пользуясь этим способом, Реньо при весьма больших давлениях (для 25 атмосфер для воздуха) измерял всегда большие объемы; кроме того, он принял во внимание много других экспериментальных предосторожностей, обеспечивших ему точность заключений. Опытами Реньо доказано, что важный закон природы, указанный Бойлем и Мариоттом, не формулируется математически точно теми простыми отношениями, которые они дали ему, что сжатие или уменьшение объема воздуха и азота происходит в несколько большем отношении, чем увеличение давления на газ или чем упругости последнего, и что для водорода сжатие, напротив, несколько слабее, чем бы следовало ожидать в случае точной применимости к нему закона Б.-М. Несколько чисел, взятых из мемуаров Реньо, помещенных в следующей табличке, показывают, что замеченные отступления вообще малы, но явно возрастают с увеличением давления. В первых двух столбцах таблицы показаны высоты давящего на газ ртутного столба, выраженные в атмосферах (у Реньо в миллиметрах), причем мерою нормального давления атмосферы принимается высота в 760 млн. ртутного столба. Цифры третьего столбца показывают частные, полученные от разделения отношения первоначального объема газа к объему, уменьшенному сжатием, на отношение последнего давления к первоначальному. Если назвать буквами v, v 1 объемы газа первоначальный и уменьшенный, а букв. р и р 1 - соответственные давления на газ, то по закону Б.-М. должно быть: v: v 1 = р 1: р, отсюда (v: v 1): (р 1: р) = 1, т. е., если оба написанные отношения действительно равны, то частное от разделения одного отношения на другое должно быть равно 1. Но цифры третьего столбца все больше 1 и медленно, но постоянно возрастают:

Всякое число третьего столбца показывает частное, относящееся к уменьшению объема воздуха вдвое при переходе давления от р (число первого столбца) к р 1 (втор. столб.). Из этих чисел видно, что уменьшение объема воздуха происходит в большем отношении, чем возрастание соответственного давления или упругости газа. Сначала оба отношения мало отличаются между собою, но при переходе от 12 атм. к 24 уменьшение объема в 1,006366 раз значительнее увеличения давления. Небольшое вычисление позволяет заключить, что 10000 куб. сант. воздуха при давлении в 0,972 атм, будучи подвергнуты давлению в 24,9 раз большему, займут объем в 396 куб. сант. вместо 401 к. с., как бы то следовало, если б закон Б.-М. точным образом выражал закон природы.

Сжатие азота представляет подобные же, но несколько меньшие отступления от закона Б.-М., а так как атмосферный воздух состоит из кислорода и азота, то Реньо заключил, что кислород сжимается более, чем азот и воздух. Следующая табличка содержит в себе числа, полученные при опытах I с водородом; цифры столбцов имеют то же значение, как и в таблице А.

Так как все числа третьего столбца меньше единицы и постоянно уменьшаются, то объем сжатого водорода постоянно более, чем бы то следовало по закону Б.-М., и с увеличением давления это отступление возрастает. По уподоблению Реньо, водород сжимается как пружина, все меньше и меньше с возрастанием давления. Что же касается углекислого газа, сравнительно легко сжимающегося, который представляет, подобно воздуху, более быстрое уменьшение объема, чем увеличение упругости, то он отступает от закона уже при сравнительно слабых давлениях при обыкновенной температуре, но, будучи нагрет до температуры кипения воды (100° Ц.), показывает гораздо меньшие отступления. Если из чрезвычайно точных опытов Реньо и следует заключить, что закон Б.-М. с весьма неощутительными отступлениями применяется только к некоторым газам при давлениях, далеких от точки сжижения, и при значительно высокой температуре, то этими результатами изучение вопроса не исчерпывается. Опыты Бойля и Реньо разделены промежутком времени без малого в 200 лет. Свойства газов изучены во многих отношениях в этот промежуток времени, список сжижающихся газов постоянно увеличивался, а несколько лет тому назад трудами Пикте и Кальете (Cailletet) сделано окончательное обобщение, что с уменьшением объема газов посредством давления и с понижением их температуры все они обращаются в жидкость. Вместе с тем исследования над сжатием газов пополнены другими учеными, которые сжимали газ давлениями, далеко превосходящими 25 и 30 атмосфер, на которых остановился Реньо и его ближайшие предшественники. Было упомянуто выше, что уже Пулье доводил давления до 100 атм., но его опыты не так были расположены, чтобы в них можно было найти ответ на значение закона Б.-М. при высоких давлениях. Такой ответ дают опыты Наттерера, Кальете и Амага для сильных давлений и опыты Д. И. Менделеева - для слабых. Амага установил свой прибор на дне шахты, имевшей около 400 метров (около 190 саж.) глубины. Измерения объема газа на такой глубине и огромной высоты давящего ртутного столба сопровождались такими большими техническими затруднениями, что непосредственно была изучена сжимаемость только азота. Закон сжатия других газов по сравнению с азотом был найден Амага по способу Депре и Пулье. В опытах Амага давление достигало 430¾ атмосферы, причем объем азота уменьшился только в 335¾ раза. Кальете опускал свой прибор в артезианский колодец глубиною в 500 метров (около 230 саж.); высота давящего ртутного столба постепенно была увеличиваема по мере опускания прибора. Трубка, в которой сжимался газ, была внутри вызолочена; ртуть, входя в нее, амальгамировала золото, так что на позолоте оставался след, предел между газом и ртутью, по которому и можно было измерять объем, занятый сжатым газом. Кроме того, Кальете производил опыты над сжиманием воздуха и водорода в особом приборе, в котором давления доводились до 605 атмосфер. Этим опытам предшествовали еще исследования Наттерера (1851-1854), который при помощи особого устройства нагнетательного насоса доводил давление на газ до 2790 атмосфер. Газ был сгущаем в толстостенном стальном сосуде, который был снабжен хорошо сделанным клапаном, постепенно нагружаемым по мере увеличения упругости газа, которая и измерялась весом груза на клапане. По окончании сжатия газа он был перепускаем по частям в другой сосуд определенного объема, где он принимал упругость, равную одной атмосфере, причем определялось последовательное уменьшение упругости сжатого газа, сначала быстрое, потом все более и более замедлявшееся. Числа, полученные при этих измерениях, дали средство определить упругости газов, соответственные его сжатию. Совокупность всех этих опытов по сравнению с опытами Реньо привела к тому заключению, что все газы, за исключением водорода, подвергаются таким изменениям объема v и упругости р, начиная с одной атмосферы, что произведение vp уменьшается, пока давление или упругость не достигнет некоторого предела, и что с дальнейшим увеличением давления это произведение vp увеличивается. В первом периоде газы сжимаются более, чем следует по закону Б.-М., во втором периоде - менее. Пределы, т. е. число атмосфер давления, при котором величина сжатия должна получаться согласно закону Б.-М., показаны различными исследователями не одинаково, но несомненно, что для каждого газа есть особый такой предел; только водород при всех испытанных давлениях сжимается меньше, чем следует по закону Б.-М. Оставалось пополнить эти исследования еще изучением связи между упругостью и объемом газов при давлениях, меньших атмосферного, т. е. в разреженном воздухе; по малоточным опытам Бойля и Мариотта, и для разреженного воздуха их закон верен. Точное исследование закона сжатия разреженных газов сделано Д. И. Менделеевым при сотрудничестве М. Л. Кирпичева (опыты Императорского русского технического общества, «Об упругости газов» Д. Менделеева, часть 1, СПб., 1875, in 4°). Эта работа и другие, к ней соприкасающиеся, были произведены на средства Технического общества; на те же средства было напечатано названное сочинение, в котором описаны приемы и приборы автора для измерения упругости и объемов газов. Опыты были произведены над воздухом, водородом и углекислотою. Ниже помещен один ряд опытов, из которых видны соотношения между объемами весьма разреженного воздуха и его упругостью.

Отсюда видно, что с уменьшением давления на газ его объем увеличивается в меньшем отношении, чем уменьшается упругость, следоват., и наоборот: с увеличением давления объем уменьшается в меньшем отношении. В самом деле: второе давление в 7,71 раза менее первого, а второй объем только в 7,38 раза более первого; третье давление в 2,35 раза менее второго, а третий объем в 1,92 раза более второго. Значит, сжатие и расширение воздуха при весьма малых давлениях отступает от закона Б.-М. в ту же сторону, как при весьма сильных давлениях; подобное тому получилось и для углекислоты. По этому же вопросу работали Амага и Зильештром, Реньо тоже сделал несколько измерений с воздухом при упругости в 300 миллим. Реньо и Зильештром пришли к тому заключению, что разреженный воздух отступает от закона Б.-М. в ту же сторону, как и при давлениях несколько выше атмосферного; опыты Амага не привели его к достоверным результатам (см. критическую оценку опытов Р. и З., сделанную Д. И. Менделеевым в сочинении «Об упругости газов», §§ 82, 92, 94.)

Резюмируя все сказанное относительно воздуха, можно видеть, что в разреженном состоянии он сжимается менее , чем следует по закону Б.-М., что при плотности около атмосферной и большей ее воздух сжимается более , чем по закону Б.-М., и, наконец, при весьма большой плотности он опять отступает в ту же сторону, как при весьма малой. При переходе от отступлений в одну сторону к отступлениям в другую воздух необходимо должен сжиматься согласно закону Б.-М., и это происходит всего два раза в пределах от наименьшей исследованной упругости (около ⅓ милл.) до наибольшей (2700 атмосфер). Другие газы, вероятно, следуют тому же закону переменного сжатия, кроме водорода, который постоянно сжимается менее, чем по закону Б.-М.

Давно уже были возбуждены сомнения о том, чтобы газы могли следовать закону Б.-М. при весьма сильных давлениях. Так как при сжатии плотность газа постоянно в такой же мере увеличивается, то можно бы дойти до того, что сжатый газ был бы плотнее самого плотного металла, т. е. что газ, доведенный сжатием до некоторого объема, был бы тяжелее, напр., платины, взятой в том же объеме. Беспредельного уплотнения газа нельзя допустить по той причине, что вещество газа, само по себе занимающее некоторую часть пространства, тем самым поставляет предел сжатию. Новейшая химия (см. Менделеев, «Об упругости газов», стр. 8-12) приводит к соображениям, которые не позволяют допустить, чтобы газ сжатием мог быть доведен до весьма большой плотности. А в действительности замеченный факт, что все испытанные газы при больших давлениях занимают объем не столь малый, как бы следовало по закону Б.-М., и что отступления от этого закона тем значительнее, чем больше давление; этот факт показывает, что уменьшение объема приближается к некоторому пределу. Для некоторых газов при обыкновенной температуре такой предел найден, так как эти газы обращаются в жидкость, а жидкости при самых сильных давлениях лишь весьма незначительно уменьшаются в объеме. Другие газы, не обращающиеся в жидкость от одного сжатия без более или менее значительного понижения температуры, все более и более отступают от закона Б.-М. Водород при 3000 атм. давления занимает объем только в 1000 раз меньший первоначального, т. е. при этом давлении его объем втрое более, чем можно бы ожидать в случае точности закона Б.-М. Несколько опытов Реньо над сжатием газов при температуре кипения воды показывают, что при возвышении температуры отступления от закона Б.-М. становятся менее; это обстоятельство привело его к заключению, что возвышение температуры приближает газ к идеальному состоянию, в котором он следует закону Б.-М., но такое понятие об идеальном газе еще не довольно обосновано. В заключение надо сказать, что закон Б.-М., собственно выражая сжатие газов только в некоторых предельных случаях, тем не менее послужил исходной точкой для изучения их свойств. Вместе с законом Гей-Люссака, относящимся к расширению газов от теплоты, он представляет математическую формулу, которую нужно видоизменить, чтобы представить во всей полноте явления изменения объема газов. Формула Ван дер Вальса (см. это слово) уже глубже проникает в натуру газов.

Несмотря на множество экспериментальных работ над сжатием газов, наука может ожидать еще новых, еще более обширных исследований. Точные и трудные исследования весьма расширенных газов, сделанные Д. И. Менделеевым, ведущие к важным заключениям, желательно бы видеть повторенными и распространенными. Опыты Реньо останутся надолго руководящими, но точность нашего времени может показаться недостаточной в ближайшем будущем.

Изучение зависимости между параметрами, характеризующими состояние данной массы газа, начнем с изучения газовых процессов, протекающих при неизменности одного из параметров. Английский ученый Бойль (в 1669 г.) и французский ученый Мариотт (в 1676 г.) открыли закон, который выражает зависимость изменения давления от изменения объема газа при постоянной температуре. Проведем следующий опыт.

Вращением рукоятки будем изменять объем газа (воздуха) в цилиндре А (рис. 11, а). По показанию манометра заметим что и давление газа при этом изменяется. Будем менять объем газа в сосуде (объем определяется по шкале В) и, замечая давление, запишем их в табл. 1. Из нее видно, что произведение объема газа на его давление было почти постоянным: во сколько раз "уменьшался объем газа, во столько же раз увеличивалось его давление.


В результате подобных, более точных, опытов было открыто: для данной массы газа при постоянной температуре давление газа изменяется обратно пропорционально изменению объема газа. Это и есть формулировка закона Бойля-Мариотта. Математически он для двух состояний запишется так:


Процесс изменения состояния газа при постоянной температуре называется изотермическим. Формула закона Бойля-Мариотта является уравнением изотермического состояния газа. При постоянной температуре средняя скорость движения молекул не меняется. Изменение объема газа вызывает изменение числа ударов молекул о стенки сосуда. Это и есть причина изменения давления газа.

Изобразим графически этот процесс, например для случая V = 12 л, р = 1 ат. . Будем откладывать на оси абсцисс объем газа, а на оси ординат - его давление (рис. 11, б). Найдем точки, соответствующие каждой паре значений V и р, и, соединив их между собой, получим график изотермического процесса. Линия, изображающая зависимость между объемом и давлением газа При постоянной температуре, называется изотермой. Изотермические процессы в чистом виде не встречаются. Но нередки случаи, когда температура газа мало меняется, например при накачивании компрессором воздуха в баллоны, при впуске горючей смеси в цилиндр двигателя внутреннего сгорания. В таких случаях расчеты объема и давления газа производятся по закону Бойля- Мариотта * .

По своим механическим свойствам газы имеют много общего с жидкостями. Так же как и жидкости, они не обладают упругостью по отношению к изменениям формы. Отдельные части газа легко могут перемещаться друг относительно друга. Так же как и жидкости, они обладают упругостью относительно деформации всестороннего сжатия. При увеличении внешних давлений объем газа уменьшается. При снятии внешних давлений объем газа возвращается к первоначальному значению.

В существовании упругих свойств газа легко убедиться на опыте. Возьмите детский воздушный шар. Надуйте его не очень сильно и завяжите. После этого начните сдавливать его руками (рис. 3.20). При появлении внешних давлений шар сожмется, его объем уменьшится. Если прекратить сдавливание, шар сразу расправится, как будто у него внутри есть пружины.

Возьмите воздушный насос для автомашины или велосипеда, закройте его выходное отверстие и надавите на ручку поршня. Воздух, заключенный внутри насоса, начнет сжиматься, и вы сразу почувствуете быстрое нарастание давления. Еслн перестать давить на поршень, он вернется на место, и воздух займет первоначальный объем.

Упругость газа по отношению к всестороннему сжатию используется в шинах автомашин для амортизации, в воздушных тормозах и других устройствах. Первым упругие свойства газа, его способность изменять свой объем при изменении давления заметил Блез Паскаль.

Как мы уже отмечали, газ отличается от жидкости тем, что не может сам по себе сохранять объем неизменным и не имеет свободной поверхности. Он обязательно должен находиться в замкнутом сосуде и всегда будет полностью занимать весь объем этого сосуда.

Другим важным отличием газа от жидкости является его большая сжимаемость (податливость). Уже при очень малых изменениях давления возникают хорошо заметные большие изменения объема газа. Кроме того, связь между давлениями и изменениями объема для газа носит более сложный характер, чем для жидкости. Изменения объема уже не будут прямо пропорциональны изменениям давления.

Впервые количественную связь между давлением и объемом газа установил английский ученый Роберт Бойль (1627-1691). В своих опытах Бойль наблюдал за изменениями объема воздуха, заключенного в запаянном конце трубки (рис. 3.21). Давление на этот воздух он изменял, подливая ртуть в длинное колено трубки. Давление определялось по высоте столба ртути

Опыт Бойля в приближенном, грубом виде вы можете повторить с воздушным насосом. Возьмите хороший насос (важно, чтобы поршень не пропускал воздух), закройте выходное отверстие и нагружайте поочередно ручку поршня одним, двумя, тремя одинаковыми грузами. Одновременно отмечайте положения ручки при разных нагрузках относительно вертикальной линейки.

Даже такой грубый опыт позволит вам убедиться в том, что объем данной массы газа обратно пропорционален давлению, которому подвергается этот газ. Независимо от Бойля такие же опыты ставил французский ученый Эдмон Мариотт (1620-1684), который пришел к таким же результатам, как и Бойль.

Одновременно Мариотт обнаружил, что при проведении опыта нужно соблюдать одну очень важную предосторожность: температура газа во время опыта должна оставаться постоянной, иначе результаты опыта будут другими. Поэтому закон Бойля - Мариотта читается так; при постоянной температуре объем данной массы газа обратно пропорционален давлению.

Если обозначить через начальные объем и давление газа, через конечные объем и давление той же массы газа, то

закон Бойля - Мариотта можно записать в виде следующей формулы:

Представим закон Бойля - Мариотта в наглядной графической форме. Для определенности допустим, что некоторая масса газа занимала объем при давлении Изобразим графически, как будет меняться объем этого газа с увеличением давления при постоянной температуре. Для этого рассчитаем объемы газа по закону Бойля - Мариотта для давлений 1, 2, 3, 4 и т. д. атмосфер и составим таблицу:


По этой таблице легко построить график зависимости давления газа от его объема (рис. 3.22).

Как видно из графика, зависимость давления от объема газа действительно носит сложный характер. Сначала увеличение давления от одной до двух единиц приводит к уменьшению объема в два раза. В дальнейшем при таких же приращениях давления возникают все более малые изменения начального объема. Чем больше сжимается газ, тем более упругим он становится. Поэтому для газа нельзя указать какого-нибудь постоянного модуля сжатия (характеризующего его упругие свойства), как это сделано для твердых тел. У газа модуль сжатия зависит от давления, под которым находится модуль сжатия растет вместе с давлением.


Заметим, что закон Бойля - Мариотта соблюдается только для не очень больших давлений и не очень низких температур. При высоких давлениях и низких температурах зависимость между объемом и давлением газа становится еще более сложной. Для воздуха, например, при 0°С закон Бойля - Мариотта дает правильные значения объема при давлении не выше 100 ат.

В начале параграфа уже говорилось, что упругие свойства газа, его большая сжимаемость широко используются человеком в практической деятельности. Приведем еще несколько примеров. Возможность сильно сжимать газ с помощью высоких давлений позволяет хранить большие массы газа в малых объемах. Баллоны со сжатым воздухом, водородом, кислородом широко используются в промышленности, например при газовой сварке (рис. 3.23).

Хорошие упругие свойства газа послужили основой для создания речных судов на воздушной подушке (рис. 3.24). Эти суда нового типа идоеют скорости, намного превосходящие те, которые удавалось получить раньше. Благодаря использованию упругих свойств воздуха удалось избавиться от больших сил трения. Правда, в этом случае расчет давления значительно усложняется, потому что приходится рассчитывать давления в быстрых потоках воздуха.

В основе многих биологических процессов также лежит использование упругих свойств воздуха. Задумывались ли вы, например, о том, как дышите? Что происходит при вдохе?

По сигналу нервной системы о том, что организму не хватает кислорода, человек при вдохе с помощью мышц грудной клетки поднимает ребра, с помощью других мышц опускает диафрагму. При этом увеличивается объем, который могут занять легкие (и находящиеся, в них остатки воздуха). Но такое увеличение объема приводит к большому уменьшению давления воздуха в легких. Возникает разность давлений между наружным воздухом и воздухом в легких. В результате наружный воздух начинает сам входить в легкие за счет своих упругих свойств.

Мы только предоставляем ему возможность войти, изменяя объем легких.

Не только в этом состоит использование упругости воздуха при дыхании. Легочная ткань очень нежная, и она не выдержала бы многократных растягиваний и довольно грубых нажимов грудных мышц. Поэтому она и не прикреплена к ним (рис. 3.25). Кроме этого, расширение легкого путем растягивания его поверхности (с помощью грудных мышц) вызвало бы неравномерное, неодинаковое расширение легкого в разных частях. Поэтому легкое окружено особой пленкой - плеврой. Плевра одной своей частью прикреплена к легкому, а другой - к мышечной ткани грудной клетки. Плевра образует своеобразный мешок, стенки которого не пропускают воздуха.

Внутри самой плевральной полости содержится очень небольшое количество газа. Давление этого газа становится равным давлению воздуха в легких только тогда, когда стенки плевры находятся очень близко друг от друга. При вдохе объем полости резко увеличивается. Давление в ней резко падает. Легкое за счет остатков содержащегося в нем воздуха начинает само расширяться равномерно во всех частях подобно резиновому шарику под колоколом воздушного насоса.

Таким образом, природа мудро использовала упругие свойства воздуха для создания идеального амортизатора для ткани легкого и самых выгодных условий для его расширения и сжатия.

При решении задач на применение законов Ньютона мы будем использовать закон Бойля - Мариотта как дополнительное уравнение, выражающее особые упругие свойства газов.

Описывает поведение газа в изотермическом процессе . Закон является следствием уравнения Клапейрона .

Энциклопедичный YouTube

    1 / 3

    Физика для чайников. Лекция 26. Закон Бойля - Мариотта

    Физика. МКТ: Изотермический процесс. Центр онлайн-обучения «Фоксфорд»

    Физика. МКТ: Основные термодинамические процессы. Центр онлайн-обучения «Фоксфорд»

    Субтитры

Формулировки

Утверждение закона Бойля - Мариотта состоит в следующем :

В математической форме это утверждение записывается в виде формулы

p V = C , {\displaystyle pV=C,}

где p {\displaystyle p} - давление газа; V {\displaystyle V} - объём газа, а C {\displaystyle C} - постоянная в оговоренных условиях величина. В общем случае значение C {\displaystyle C} определяется химической природой, массой и температурой газа.

Очевидно, что если индексом 1 обозначить величины, относящиеся к начальному состоянию газа, а индексом 2 - к конечному, то приведённую формулу можно записать в виде

p 1 V 1 = p 2 V 2 {\displaystyle p_{1}V_{1}=p_{2}V_{2}} .

Из сказанного и приведённых формул следует вид зависимости давления газа от его объёма в изотермическом процессе:

p = C V . {\displaystyle p={\frac {C}{V}}.}

Эта зависимость представляет собой другое, эквивалентное первому, выражение содержания закона Бойля - Мариотта. Она означает, что

Давление некоторой массы газа, находящегося при постоянной температуре, обратно пропорционально его объёму.

Тогда связь начального и конечного состояний газа, участвовавшего в изотермическом процессе, можно выразить в виде:

p 1 p 2 = V 2 V 1 . {\displaystyle {\frac {p_{1}}{p_{2}}}={\frac {V_{2}}{V_{1}}}.}

Следует отметить, что применимость этой и приведённой выше формулы, связывающей начальные и конечные давления и объёмы газа друг с другом, не ограничивается случаем изотермических процессов. Формулы остаются справедливыми и в тех случаях, когда в ходе процесса температура изменяется, но в результате процесса конечная температура оказывается равной начальной.

Важно уточнить, что данный закон справедлив только в тех случаях, когда рассматриваемый газ можно считать идеальным . В частности, с высокой точностью закон Бойля - Мариотта выполняется применительно к разреженным газам. Если же газ сильно сжат, то наблюдаются существенные отступления от этого закона.

Следствия

Закон Бойля - Мариотта утверждает, что давление газа в изотермическом процессе обратно пропорционально занимаемому газом объёму. Если учесть, что плотность газа также обратно пропорциональна занимаемому им объёму, то мы придём к заключению:

При изотермическом процессе давление газа изменяется прямо пропорционально его плотности.

β T = 1 p . {\displaystyle \beta _{T}={\frac {1}{p}}.}

Таким образом, приходим к выводу:

Изотермический коэффициент сжимаемости идеального газа равен обратной величине его давления.

При постоянной температуре объем, занимаемый газом, обратно пропорционален его давлению.

Роберт Бойль — яркий пример ученого-джентльмена, сына давно ушедшей эпохи, когда наука была уделом исключительно состоятельных людей, посвящавших занятиям ею свой досуг. Большинство исследований Бойля относятся по современной классификации к разряду химических опытов, хотя сам себя он, наверняка, считал натурфилософом (физиком-теоретиком) и естествоиспытателем (физиком-экспериментатором). Судя по всему, поведением газов он заинтересовался, увидев проект одного из первых в мире воздушных насосов. Сконструировав и построив очередную, усовершенствованную версию своего двустороннего воздушно-вакуумного насоса, он решил исследовать, как повышенное и пониженное давление газа в герметичном сосуде, к которому был подключен его новый аппарат, влияет на свойства газов. Будучи одаренным экспериментатором, Бойль одновременно придерживался весьма новых и необычных для той эпохи взглядов, считая, что наука должна идти от эмпирических наблюдений, а не основываться исключительно на умозрительно-философских построениях.

В формулировке Бойля закон звучал буквально так: «Под воздействием внешней силы газ упруго сжимается, а в ее отсутствие расширяется, при этом линейное сжатие или расширение пропорционально силе упругости газа». Представьте, что вы сдавливаете надутый воздушный шарик. Поскольку свободного пространства между молекулами воздуха достаточно, вы без особого труда, приложив некоторую силу и проделав определенную работу, сожмете шарик, уменьшив объем газа внутри него. Это одно из основных отличий газа от жидкости. В шарике с жидкой водой, например, молекулы упакованы плотно, как если бы шарик был заполнен микроскопическими дробинками. Поэтому вода не поддается, в отличие от воздуха, упругому сжатию. (Если не верите, попробуйте протолкнуть плотно пригнанную пробку внутрь горлышка бутылки, заполненной водой по самую пробку.) Закон Бойля—Мариотта , наряду с законом Шарля , лег в основу Уравнения состояния идеального газа .

Дж. Трефил называет его «закон Бойля», однако мы предпочли принятое в российской традиции название закона. — Прим. переводчика .

См. также:

Robert Boyle, 1627-91

Англо-ирландский физик и химик. Родился в замке Лисмор (Lismore Castle), Ирландия, став четырнадцатым ребенком графа Коркского (Earl of Cork) — знаменитого авантюриста эпохи королевы Елизаветы. Окончив привилегированную Итонскую школу, где был одним из первых учеников среди «юных джентльменов», отправился в многолетнее путешествие по континентальной Европе, в ходе которого продолжил образование в Женевском университете. Вернувшись на родину в 1648 году, оборудовал частную лабораторию и занялся на ее базе физико-химическими исследованиями. В 1658 году перебрался в Оксфорд, где его учеником и ассистентом по лаборатории стал Роберт Гук (см. Закон Гука), будущий научный секретарь Королевского общества. Кстати, Бойль был одним из основателей и соучредителей Королевского общества, выросшего из кружка молодых оксфордских ученых. Провел целый ряд новаторских химических экспериментов, включая эксперименты по детальному изучению свойств кислот и оснований . По некоторым данным, первым выдвинул гипотезу о существовании химических элементов. Доказал, что воздух необходим для горения и дыхания. Помимо занятий наукой был соучредителем и членом-пайщиком «Восточно-индийской компании» и активно занимался миссионерской деятельностью в надежде обратить в христианство жителей восточных колоний Британской империи.