Настольный набор для редактирования генов. Механизмы, вызывающие изменения генетической информации Изменение набора генов

Мутации (от лат. mutatio - изменять) - это передава­ емые по наследству структурные изменения генов.

Крупные мутации (геномные перестройки) сопро­ вождаются выпадением или изменением относительно крупных участков генома - такие мутации, как правило, необратимы.

Мелкие (точковые) мутации связаны с выпадением или добавлением отдельных нуклеотидов ДНК. При этом изменяется лишь небольшое число признаков. Такие измененные бактерии могут полностью возвращаться в исходное состояние (ревертировать).

Бактерии с измененными признаками называются му­ тантами. Факторы, вызывающие образование мутантов, носят название мутагенов.

Бактериальные мутации делят на спонтанные и индуци­ рованные. Спонтанные (самопроизвольные) мутации возникают под влиянием неконтролируемых факторов, т. е. без вмешательства экспериментатора. Индуциро­ ванные (направленные) мутации появляются в результа­ те обработки микроорганизмов специальными мутагенами (химическими веществами, излучением, температурой и

В результате бактериальных мутаций могут отмечать­ся: а) изменение морфологических свойств б) изменение культуральных свойств в) возникновение у микроорганиз­мов устойчивости к лекарственным препаратам г) потеря способности синтезировать аминокислоты, утилизировать углеводы и другие питательные вещества д) ослабление болезнетворных свойств и т. д.

Если мутация приводит к тому, что мутагенные клетки обретают по сравнению с остальными клетками популяций преимущества, то формируется популяция из мутантных клеток и все приобретенные свойства передаются по наследству. Если же мутация не дает клетке преимуществ, то мутантные клетки, как правило, погибают.

Трансформация. Клет­ ки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными.

Трансдукция - это перенос генетической информа­ ции (ДНК) от бактерии донора к бактерии реципиенту при участии бактериофага. Трансдуцирующими свойствами обладают в основном умеренные фаги. Размножаясь в бактериальной клетке, фаги включают в состав своей ДНК часть бактериальной ДНК и передают ее реци­пиенту.

Различают три типа трансдукции: общую, специфи­ ческую и абортивную.

1 . Общая трансдукция - это передача различных генов, локализованных на разных участках бактериальной хромосомы.

При этом бактерии доноры могут передать реципиенту разнообразные признаки и свойства- способность образовывать новые ферменты, устойчивость к лекарственным препаратам и т. д.

2. Специфическая трансдукция - это передача фагом только некоторых специфических генов, локализо­ванных на специальных участках бактериальной хромосо­ мы. В этом случае передаются только определенные признаки и свойства.

3. Абортивная трансдукция - перенос фагом ка­ кого-то одного фрагмента хромосомы донора. Обычно этот фрагмент не включается в хромосому клетки реципи­ента, а циркулирует в цитоплазме. При делении клетки реципиента этот фрагмент передается только одной из двух дочерних клеток, а второй клетке достается неизме­ ненная хромосома реципиента.

С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как способность образовывать токсин, споры, жгутики, проду­ цировать дополнительные ферменты, устойчивость к ле­карственным препаратам и т. д.

Конъюгация - это передача генетического матери­ ала от одной бактерии к другой при непосредственном контакте клеток. Клетки, передающие генетический мате­ риал, называются донорами, воспринимающие его - реципиентами. Этот процесс носит односторонний характер - от клетки донора к клетке реципиента.

Бактерии донора обозначаются F + (мужской тип), а бактерии реципиента - F - (женский тип). При тесном сближении клеток F + и F - между ними возникает цитоплазматический мостик. Образование мостика контро­ лируется фактором F (от англ. Fertility - плодовитость). Этот фактор содержит гены, ответственные за образова­ ние половых ворсинок (sex - pili). Функцию донора могут выполнять только те клетки, которые содержат фактор F . Клетки реципиента лишены этого фактора. При скрещива­ нии фактор F передается клеткой донора реципиенту. Получив фактор F , женская клетка сама становится донором (F +).

Процесс конъюгации можно прервать механическим способом, например встряхиванием. В этом случае реципи­ ент получает неполную информацию, заключенную в ДНК.

Конъюгация, как и другие виды рекомбинации, может осуществляться не только между бактериями одного и того же вида, но и между бактериями разных видов. В этих случаях рекомбинация называется межви­ довой.

Плаз миды - это сравнительно небольшие внехромо-сомные молекулы ДНК бактериальной клетки. Они распо­ложены в цитоплазме и имеют кольцевую структуру. В плазмидах содержится несколько генов, функциониру ющих независимо от генов, содержащихся в хромосомной ДНК.

Профаги, вызывающие у лизогенной клетки ряд изме­ нений, передающихся по наследству, например способ­ ность образовывать токсин (см. трансдукцию).

F -фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации (см. конъ­ югацию).

R -фактор, придающий клетке устойчивость к лекар­ ственным препаратам (впервые R -фактор был выделен из кишечной палочки, затем из шигелл). Исследования пока­зали, что R -фактор может быть удален из клетки, что вообще характерно для плазмид.

К-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться при­чиной формирования трудно диагностируемых атипичных штаммов.

Бактериоциногенные факторы (col -факторы), которые впервые были обнаружены в культуре кишечной палочки (E . coli), в связи с чем названы колицинами. В дальней­ шем они были выявлены и у других бактерий: холерного вибриона - вибриоцины, стафилококков - стафилоцины и др.

Со l -фактор - это маленькая автономная плазмида, ко­торая детерминирует синтез белковых веществ, способ­ ных вызывать гибель бактерий собственного вида или близкородственного. Бактериоцины адсорбируются на по­верхности чувствительных клеток и вызывают нарушения метаболизма, что приводит клетку к гибели.

В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обра­ботка бактерий УФ-лучами) количество колицинпродуцйрующих клеток увеличивается.

ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ ИЗМЕНЧИВОСТИ микроорганизмов

Еще Пастер искусственным путем получил необрати­мые изменения у возбудителей бешенства, сибирской язвы и приготовил вакцины, предохраняющие от этих заболеваний. В дальнейшем исследования в области генетики и изменчивости микроорганизмов позволили получить большое число бактериальных и вирусных штаммов, используемых для получения вакцин.

Результаты исследования генетики микроорганизмов с успехом были использованы для выяснения закономерностей наследственности высших организмов.

Большое научное и практическое значение имеет также новый раздел генетики - генная инженерия.

Методы генной инженерии позволяют изменять структуру генов и включать в хромосому бактерий гены других организмов, ответственных за синтез важных и нужных веществ. В результате микроорганизмы становятся продуцентами таких веществ, получение которых химическим путем представляет очень сложную, а иногда даже невозможную задачу. Этим путем в настоящее время получают такие медицинские препараты, как инсулин, интерферон и др. При использовании мутагенных факторов и селекции были получены мутанты-продуценты антибиотиков, которые в 100-1000 раз активнее исходных.

9. Генетика иммунитета

Генетическая детерминированность иммунной реакции организма высших животных

Механизм синтеза моноспецифических антител и иммунная память

Наследуемость уровня иммунной реакции организма и возможности селекции животных по устойчивости к инфекциям.

Иммунитет – это невосприимчивость организма к инфекционным агентам и генетически чужеродным веществам антигенной природы. Главная функция иммунитета – иммунологический надзор за внутренним постоянством (гомеостазом) организма.

Следствием этой функции является распознавание, а потом блокирование, нейтрализация или уничтожение генетически чужеродных веществ (вирусов, бактерий, раковых клеток и т.д.). За сохранение генетически обусловленной биологической индивидуальности отвечает иммунная система организма – совокупность всех лимфоидных клеток (специфический фактор защиты). К неспецифическим факторам защиты относят кожные и слизистые покровы. Иммунный ответ, или иммунологическая реактивность – форма реакций организма на чужеродные вещества (антигены). Главной функцией антител является их способность вступать в быструю реакцию с антигеном в виде реакции глютинации, преципитации, лизиса, нейтрализации.

10. Группы крови и биохимический полиморфизм.

Понятие о группах крови

Наследуемость групп крови

Практическое применение групп крови в животноводстве

Полиморфные системы белков и их связь с продуктивностью животных

Методы определения групп крови и полиморфных систем белков.

Группы крови были открыты в 1900 г. (у человека) и объяснены в 1924 г. А в 1936 году использован термин иммуногенетика. В пределах вида особи различаются по ряду охимических, генетически детерминируемых признаков, которые могут быть выявлены иммуногенетически в виде антигенов (генетически чужеродные вещества, при введении их в организм вызывают иммуногенетических реакций). Антитела – иммуноглобулины (белки), образующие в организме под воздействием антигенов, различия в групповой принадлежности крови определяются антигенами, расположенными на поверхности эритроцитов. Антигенные факторы иногда называют кровяными факторами, сумму всех групп крови одной особи – типом крови. После рождения группы крови у животных не меняется. Генетические системы групп крови и антигены обозначают прописными и строчными буквами – А,В,С и т.д. Количество антигенов много, поэтому пишут со значками А, В, С, и с подстрочными индексами А1, А2 и т.д.

Главная | О нас | Обратная связь

ГЕНОТИПИЧЕСКАЯ (НАСЛЕДУЕМАЯ) ИЗМЕНЧИВОСТЬ

Генотипическая изменчивость может возникать в резуль­тате мутаций и генетических рекомбинаций.

Мутации (от лат. mutatio - изменять) - это передаваемые по наследству структурные изменения генов.

Крупные мутации (геномные перестройки) сопро­вождаются выпадением или изменением относительно крупных участков генома -такие мутации, как правило, необратимы.

Мелкие (точковые) мутации связаны с выпадением или добавлением отдельных оснований ДНК. При этом изменяется лишь небольшое число признаков. Такие измененные бактерии могут полностью возвращаться в исходное состояние (ревертировать).

Бактерии с измененными признаками называются му­тантами. Факторы, вызывающие образование мутантов, носят название мутагенов.

Бактериальные мутации делят на спонтанные и индуци­рованные. Спонтанные (самопроизвольные) мутации возникают под влиянием неконтролируемых факторов, т.е. без вмешательства экспериментатора. Индуцированные (направленные) мутации появляются в результа­те обработки микроорганизмов специальными мутагенами (химическими веществами, излучением, температурой и др.).

В результате бактериальных мутаций могут отмечать­ся:

а) изменение морфологических свойств

б) изменение культуральных свойств

в) возникновение у микроорганиз­мов устойчивости к лекарственным препаратам

г) потеря способности синтезировать аминокислоты, утилизировать углеводы и другие питательные вещества

д) ослабление болезнетворных свойств и т. д.

Если мутация приводит к тому, что мутагенные клетки обретают по сравнению с остальными клетками популяций преимущества, то формируется популяция из мутантных клеток, и все приобретенные свойства передаются по наследству. Если же мутация не дает клетке преимуществ, то мутантные клетки, как правило, погибают. Генетические рекомбинации. Трансформация. Клет­ки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными. Состояние компетентности часто совпадает с логарифмиче­ской фазой роста.

Трансдукция - это перенос генетической информа­ции от бактерии донора к бактерии реципиенту при участии бактериофага. Трансдуцирующими свойствами обладают, в основном, умеренные фаги. Размножаясь в бактериальной клетке, фаги включают в состав своей ДНК часть бактериальной ДНК и передают ее реципиенту. Различают три типа трансдукции: общую, специфи­ческую и абортивную.

1. Общая трансдукция - это передача различных генов, локализованных на разных участках бактериальной хромосомы. При этом бактерии доноры могут передать реципиенту разнообразные признаки и свойства - способность образовывать новые ферменты, устойчивость к лекарственным препаратам и т. д.

2. Специфическая трансдукция - это передача
фагом только некоторых специфических генов, локализо­ванных на специальных участках бактериальной хромосо­мы. В этом случае передаются только определенные признаки и свойства.

3. Абортивная трансдукция - перенос фагом какого-то одного фермента хромосомы донора. Обычно этот фрагмент не включается в хромосому клетки реципиента, а циркулирует в цитоплазме. При делении клетки реципиента этот фрагмент передается только одной из двух дочерних клеток, а второй клетке достается неизме­ненная хромосома реципиента.

С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как способность, образовывать токсин, споры, жгутики, продуцировать дополнительные ферменты, устойчивость к ле­карственным препаратам и т. д.

Конъюгация - это передача генетического материла от одной бактерии к другой при непосредственном контакте клеток. Клетки, передающие генетический мате­риал, называются донорами, воспринимающие его - реципиентами. Этот процесс носит односторонний характер - от клетки донора к клетке реципиента.

Бактерии донора обозначаются F+ (мужской тип), а бактерии реципиента - F- (женский тип). При тесном сближении клеток F+ и F- между ними возникает цитоплазматический мостик. Образование мостика контро­лируется фактором F (от англ. fertility -- плодовитость). Этот фактор содержит гены, ответственные за образова­ние половых ворсинок (sex-pili). Функцию донора могут выполнять только те клетки, которые содержат фактор F. Клетки реципиента лишены этого фактора. При скрещива­нии фактор F передается клеткой донора реципиенту. Получив фактор F, женская клетка сама становится донором (F+).

Процесс конъюгации можно прервать механическим способом, например, встряхиванием. В этом случае реципи­ент получает неполную информацию, заключенную в ДНК.

Перенос генетической информации путем конъюгации лучше всего изучен у энтеробактерий.

Конъюгация, как и другие виды рекомбинации, может осуществляться не только между бактериями одного и того же вида, но и между бактериями разных видов, В этих случаях рекомбинация называется межви­довой.

Генотипическая изменчивость наследуемая

Плазмиды – это сравнительно небольшое внехромосомное молекулы ДНК бактериальной клетки. Они распо­ложены в цитоплазме и имеют кольцевую структуру. В плазмидах содержится несколько генов, функционирующих независимо от генов, содержащихся в хромосомной ДНК.

Рис.54 Плазмиды (внехромосомные молекулы ДНК)

Типичным признаком плазмид служит их способность к самостоятельному воспроизведению (репликации).

Они могут также переходить из одной клетки в другую и включать в себя новые гены из окружающей среды. К числу плазмид относятся:

Профаги. вызывающие у лизогенной клетки ряд изме­нений, передающихся по наследству, например способ­ность образовывать токсин (см. трансдукцию). F-фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации (см. конъ­югацию).

R-фактор, придающий клетке устойчивость к лекар­ственным препаратам (впервые R-фактор был выделен из кишечной палочки, затем из шигелл). Исследования пока­зали, что R-фактор может быть удален из клетки, что вообще характерно для плазмид.

R-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться причиной формирования трудно диагностируемых атипичных штаммов.

Бактериоциногенные факторы (col-факторы), которые впервые были обнаружены в культуре кишечной палочки (Е. coli), в связи с чем названы колицинами. В дальней­шем они были выявлены и у других бактерий: холерного вибриона - вибриоцины, стафилококков - стафилоцины и др.

Col-фактор - это маленькая автономная плазмида, ко­торая детерминирует синтез белковых веществ, способ­ных вызывать гибель бактерий собственного вида или близкородственного. Бактериоцины адсорбируются на по­верхности чувствительных клеток и вызывают нарушения метаболизма, что приводит клетку к гибели.

В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обра­ботка бактерий УФ-лучами) количество колицинпродуцирующих клеток увеличивается.

Изменения функциональных генов

По мутировавшим клеткам мутации могут быть соматические (например, разный цвет глаз у одного человека) и генеративные (или гаметические). Генеративные мутации передаются потомству, соматические проявляются у самой особи. Они передаются по наследству только при вегетативном размножении.

По исходу (значению) для организма выделяют мутации положительные, нейтральные и отрицательные. Положительные мутации появляются редко. Они повышают жизнеспособность организма и имеют значение для эволюции (например, мутации, приводящие к появлению четырехкамерного сердца в процессе эволюции хордовых). Нейтральные мутации практически не влияют на процессы жизнедеятельности (например, мутации, приводящие к наличию веснушек). Отрицательные мутации делят на полулетальные и летальные. Полулетальные мутации снижают жизнеспособность организма, сокращают срок его жизни (например, мутации, приводящие к болезни Дауна). Летальные мутации вызывают
смерть организма до рождения или в момент рождения (например, мутации, приводящие к отсутствие головного мозга).

По изменению фенотипа мутации бывают морфологические (например, уменьшенные глазные яблоки, шесть пальцев на руке) и биохимические (например, альбинизм, гемофилия).

По изменению генотипа выделяют мутации геномные, хромосомные и генные.

Геномные мутации – это изменение числа хромосом под действием факторов среды. Гаплоидия – набор хромосом 1n. В природе она встречается у трутней (самцов) пчел. Жизнеспособность таких организмов снижена, так как у них проявляются все рецессивные гены.

Полиплоидия – увеличение гаплоидного набора хромосом (3n, 4n, 5n). Полиплоидия используется в растениеводстве. Она приводит к повышению урожайности. Для человека гаплоидия и полиплоидия это летальные мутации.

Анеуплоидия – это изменение числа хромосом в отдельных парах (2n±1, 2n±2 и так далее).

Трисомия. например, если к паре половых хромосом женского организма добавляется Х-хромосома, развивается синдром трисомии Х (47, ХХХ), если она добавляется к половым хромосомам мужского организма, развивается синдром Клайнфельтера (47, ХХY). Моносомия. отсутствие одной хромосомы в паре – 45, Х0 – синдром Шерешевского-Тернера. Нулисомия. отсутствие пары гомологичных хромосом (для человека – летальная мутация).

Хромосомные мутации (или хромосомные аберрации) – это изменения структуры хромосом (межхромосомные или внутрихромосомные). Перестройки внутри одной хромосомы называются инверсии, нехватки (дефишенси и делеции), дупликации. Межхромосомные перестройки называются транслокации.

Примеры: делеция – синдром кошачьего крика у человека дупликация – появление полосковидных глаз у дрозофилы инверсия – изменение порядка расположения генов.

Транслокации могут быть: реципрокные – две хромосомы обмениваются сегментами нереципрокные – сегменты одной хромосомы переносятся на другую робертсоновские – две акроцентрические хромосомы соединяются своими центромерными участками.

Нехватки и дупликации всегда проявляются фенотипически, так как изменяется набор генов. Не всегда проявляются инверсии и транслокации. В этих случаях затрудняется конъюгация гомологичных хромосом и нарушается распределение генетического материала между дочерними клетками.

Генные мутации называются точковые, или трансгенации. Они связаны с изменениями структуры генов и вызывают развитие болезней обмена веществ (их частота 2-4%).

Изменения структурных генов.

1. Сдвиг рамки считывания происходит в случае выпадения или вставки одной или нескольких пар нуклеотидов в молекулу ДНК.

2. Транзиция – мутация, при которой происходит замена пуринового основания на пуриновое или пиримидинового на пиримидиновое (А Г или Ц Т). Такая замена приводит к изменению кодонов.

3. Трансверсия – замена пуринового основания на пиримидиновое или пиримидинового на пуриновое (А Ц Г Т) – приводит к изменению кодонов. Изменение смысла кодонов приводит к мисценс-мутациям. Если образуются бессмысленные кодоны (УАА, УАГ, УГА), они вызывают нонсенс-мутации. Эти кодоны не определяют аминокислоты, а являются терминаторами – они определяют конец считывания информации.

1. Изменен белок-репрессор, он не подходит к гену-оператору. В этом случае структурные гены не выключаются и работают постоянно.

2. Белок-репрессор плотно присоединяется к гену-оператору и не «снимается» индуктором. Структурные гены постоянно не работают.

3. Нарушение чередования процессов репрессии и индукции. Если индуктор отсутствует, специфический белок синтезируется, в присутствии индуктора он не синтезируется. Такие нарушения работы транскриптонов наблюдаются при мутациях гена-регулятора или гена-оператора.

В настоящее время описано около 5 000 болезней обмена веществ, причиной которых являются генные мутации. Примерами их могут быть фенилкетонурия, альбинизм, галактоземия, различные гемофилии, серповидно-клеточная анемия, ахондроплазия и др.

В большинстве случаев генные мутации проявляются фенотипически.

Наследственность и изменчивость. Хромосомная теория наследственности

Наследственность - это важнейшая особенность живых организмов, заключающаяся в способности передавать свойства и функции родителей потомкам. Эта передача осуществляется с помощью генов.

Ген - единица хранения, передачи и реализации наследственной информации. Ген представляет собой специфический участок молекулы ДНК, в структуре которого закодирована структура определенного полипептида (белка). Вероятно, многие участки ДНК не кодируют белки, а выполняют регулирующие функции. Во всяком случае в структуре генома человека только около 2% ДНК представляют собой последовательности, на основе которых идет синтез информационной РНК (процесс транскрипции), которая затем определяет последовательность аминокислот при синтезе белков (процесс трансляции). В настоящее время полагают, что в геноме человека имеется около 30 тыс. генов.

Гены расположены на хромосомах, которые находятся в ядрах клеток и представляют собой гигантские молекулы ДНК.

Хромосомная теория наследственности была сформулирована н 1902 г. Сэттоном и Бовери. Согласно этой теории хромосомы являются носителями генетической информации, определяющей наследственные свойства организма. У человека в каждой клетке имеется 46 хромосом, разделенных на 23 пары. Хромосомы, образующие пару, называются гомологичными.

Половые клетки (гаметы) образуются с помощью особого типа деления - мейоза. В результате мейоза в каждой половой клетке остается только по одной гомологичной хромосоме из каждой пары т.е. 23 хромосомы. Такой одинарный набор хромосом называется гаплоидным. При оплодотворении, когда сливаются мужская и женская половые клетки и образуется зигота, двойной набор, который называется диплоидным, восстанавливается. В зиготе у организма который из нее развивается, одна хромосома из каждой нары получена от отцовского организма, другая - от материнского.

Генотип - это совокупность генов, полученных организмом от родителей.

Другое явление, которое изучает генетика - изменчивость. Под изменчивостью понимают способность организмов приобретать новые признаки - различия в пределах вида. Выделяют две формы изменчивости:
- наследственную
- модификационную (ненаследственную).

Наследственная изменчивость - это форма изменчивости вызванная изменениями генотипа, которые могут быть связаны с мутационной либо комбинативной изменчивостью.

Мутационная изменчивость.
Гены время от времени подвергаются изменениям, которые получили название мутаций. Эти изменения имеют случайный характер и появляются спонтанно. Причины возникновения мутаций могут быть самыми разнообразными. Имеется целый ряд факторов воздействие которых повышает вероятность возникновения мутации. Это может быть воздействие определенных химических веществ радиации, температуры и т.д. С помощью этих средств можно вызывать мутации, однако случайный характер их возникновения сохраняется, и предсказать появление той или иной мутации невозможно.

Возникшие мутации передаются потомкам, т. е. определяют наследственную изменчивость, которая связанна с тем, где произошла мутация. Если мутация произошла в половой клетке то у нее есть возможность передаться потомкам, т.е. быть унаследованной. Если же мутация произошла в соматической клетке, то она передается только тем из них, которые возникают из этой соматической клетки. Такие мутации называются соматическими, они не передаются по наследству.

Различают несколько основных типов мутаций.
- Генные мутации, при которых изменения происходят на уровне отдельных генов, т. е. участков молекулы ДНК. Это может быть у трата нуклеотидов, замена одного основания на другое, перестановка нуклеотидов или добавление новых.
- Хромосомные мутации, связанные с нарушением структуры хромосом, приводят к серьезным изменениям, которые могут быть обнаружены при помощи микроскопа. К таким мутациям относятся утраты участков хромосом (делеции), добавление участков, поворот участка хромосомы на 180°, появление повторов.
- Геномные мутации вызвываются изменением числа хромосом. Могут появляться лишние гомологичные хромосомы: в хромосом ном наборе на месте двух гомологичных хромосом оказываются три -трисомия. В случае моносомии наблюдается утрата одной хромосомы из пары. При полиплоидии происходит кратное увеличение генома. Еще один вариант геномной мутации - гаплоидия, при которой остается только одна хромосома из каждой пары.

На частоту возникновения мутаций влияют, как уже было сказано, самые разнообразные факторы. При возникновении ряда геномных мутаций большое значение имеет, в частности, возраст матери.

Комбинативная изменчивость.
Данный тип изменчивости определяется характером полового процесса. При комбинативной изменчивости возникают новые генотипы из-за новых комбинаций генов. Этот тип изменчивости проявляется уже на стадии образования половых клеток. Как уже было сказано, в каждой половой клетке (гамете) представлена только одна гомологичная хромосома из каждой пары. Хромосомы попадают в гамету случайным образом, поэтому половые клетки одного человека могут довольно сильно отличаться по набору генов в хромосомах. Еще более важная стадия для возникновения комбинативной изменчивости - это оплодотворение, после которого у вновь возникшего организма 50% генов унаследовано от одного родителя, и 50% - от другого.

Модификационная изменчивость не связана с изменениями генотипа, а вызвана влиянием среды на развивающийся организм.

Наличие модификационной изменчивости очень важно для понимания сущности наследования. Наследуются не признаки. Можно взять организмы с абсолютно одинаковым генотипом, например вырастить черенки от одного и того же растения, но поместить их при этом в разные условия (освещенность, влажность, минеральное питание) и получить достаточно сильно отличающиеся растения с разными признаками (рост, урожайность, форма листьев и т. п.). Для описания реально сформировавшихся признаков организма используют понятие «фенотип».

Фенотип - это весь комплекс реально возникших признаков организма, который формируется как результат взаимодействия генотипа и влияний среды в ходе развития организма. Таким образом, сущность наследования заключается не в наследовании признака, а в способности генотипа в результате взаимодействия с условиями развития давать определенный фенотип.

Так как модификационная изменчивость не связана с изменениями генотипа, то модификации не передаются по наследству. Обычно это положение почему-то с трудом принимается. Кажется, что если, скажем, родители на протяжении нескольких поколений тренируются в поднятии тяжестей и обладают развитой мускулатурой, то эти свойства должны обязательно передаться детям. Между тем, это типичная модификация, а тренировки - это и есть то воздействие среды, которое повлияло на развитие признака. Никаких изменений генотипа при модификации не происходит и приобретенные в результате модификации признаки не наследуются. Дарвин называл этот вид изменчивости - ненаследственной.

Для характеристики пределов модификационной изменчивости применяется понятие норма реакции. Некоторые признаки у человека невозможно изменить за счет средовых влияний, например группу крови, пол, цвет глаз. Другие, напротив, очень чувствительны к воздействию среды. К примеру, в результате длительного пребывания на солнце цвет кожи становится темнее, а волосы светлеют. На вес человека сильно влияют особенности питания, болезни, наличие вредных привычек, стресс, образ жизни.

Средовые воздействия могут приводить не только к количественным, но и к качественным изменениям фенотипа. У некотррь« видов примулы при пониженной температуре воздуха(15-20 С) появляются цветы красного цвета, если же растения поместить во влажную среду с температурой 30°С, то образуются белые цветки.

причем, хотя норма реакции характеризует ненаследственную форму изменчивости (модификационную изменчивость), она тоже определяется генотипом. Это положение очень важно: норма реакции зависит от генотипа. Одно и то же воздействие среды на генотип может привести к сильному изменению одного его признака и никак не повлиять на другой.

21. Ген - функциональная единица наследственности. Молекулярное строение гена у прокариот и эукариот. Уникальные гены и повторы ДНК. Структурные гены. Гипотеза «1 ген- 1 фермент», её современная трактовка.

Ген - структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения. Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Йогансеном. Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передачи по наследству признаков при скрещивании гороха. Гены могут подвергаться мутациям - случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий, такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

У человека в результате делеции:

Синдром Вольфа- утрачен участок в большой хромосоме 4 ,

Синдром “кошачьего крика”- при делеции в хромосоме 5. Причина: хромосомная мутация потеря фрагмента хромосомы в 5-й паре.

Проявление: неправильное развитие гортани, крики, подобные кошачьим, I раннем детском возрасте, отставание в физическом и умственном развитии.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу, по имени которой и получила название сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Хромосома любого организма, будь то бактерия или человек, содержит длинную непрерывную цепь ДНК. вдоль которой расположено множество генов. Различные организмы резко отличаются по количеству ДНК, составляющей их геномы. У вирусов в зависимости от их величины и сложности размер генома колеблется от нескольких тысяч до сотен пар нуклеотидов. Гены в таких просто устроенных геномах расположены один за другим и занимают до 100% длины соответствующей нуклеиновой кислоты (РНК и ДНК). Для многих вирусов установлена полная нуклеотидная последовательность ДНК. У бактерий размер генома значительно больше. У кишечной палочки единственная нить ДНК – бактериальная хромосома состоит из 4,2х106(6 степень) пар нуклеотидов. Более половины этого количества состоит из структурных генов, т.е. генов, кодирующих определенные белки. Остальную часть бактериальной хромосомы составляют неспособные транскрибироваться нуклеотидные последовательности, функция которых не вполне ясна. Подавляющее большинство бактериальных генов уникальны, т.е. представлены в геноме один раз. Исключение составляют гены транспортных и рибосомальных РНК, которые могут повторяться десятки раз.

Геном эукариот, особенно высших, резко превышает по размерам геном прокариот и достигает, как отмечалось, сотен миллионов и миллиардов пар нуклеотидов. Количество структурных генов при этом возрастает не очень сильно. Количество ДНК в геноме человека достаточно для образования примерно 2 млн. структурных генов. Реально имеющееся число оценивается как 50-100 тыс. генов, т.е. в 20-40 раз меньше того, что могло бы кодироваться геномом такого размера. Следовательно, приходится констатировать избыточность генома эукариот. Причины избыточности в настоящее время в значительной степени прояснились: во-первых, некоторые гены и последовательности нуклеотидов многократно повторены, во-вторых, в геноме существует много генетических элементов, имеющих регуляторную функцию, в-третьих, часть ДНК вообще не содержит генов.

Согласно современным представлениям, ген, кодирующий синтез определенного белка, у эукариот состоит из нескольких обязательных элементов. Прежде всего это обширная регуляторная зона, оказывающая сильное влияние на активность гена в той или иной ткани организма на определенной стадии его индивидуального развития. Далее расположен непосредственно примыкающий к кодирующим элементам гена промотор – последовательность ДНК длиной до 80-100 пар нуклеотидов, ответственная за связывание РНК-полимеразы, осуществляющей транскрипцию данного гена. Вслед за промотором лежит структурная часть гена, заключающая в себе информацию о первичной структуре соответствующего белка. Эта область для большинства генов эукариот существенно короче регуляторной зоны, однако ее длина может измеряться тысячами пар нуклеотидов.

Важная особенность эукариотических генов – их прерывность. Это значит, что область гена, кодирующая белок, состоит из нуклеотидных последовательностей двух типов. Одни – экзоны – это участки ДНК, которые несут информацию и строении белка и входят в состав соответствующих РНК и белка. Другие – интроны – не кодируют структуру белка и в состав зрелой молекулы и-РНК не входят, хотя и транскрибируются. Процесс вырезания интронов – «ненужных» участков молекулы РНК и сращивания экзонов при образовании и-РНК осуществляется специальными ферментами и получил название Сплайсинг (сшивание, сращивание).

Геном эукариот характеризуется двумя основными особенностями:

1) Повторенность последовательностей

2) Разделением по составу на различные фрагменты, характеризуемые специфическим содержанием нуклеотидов

Повторенная ДНК состоит из нуклеотидных последовательностей различной длины и состава, которые встречаются в геноме несколько раз либо в тандемно-повторенном, либо в диспергированном виде. Последовательности ДНК, которые не повторяются, называются уникальной ДНК. Размер части генома, занятой повторяющимися последовательностями, широко варьирует между таксонами. У дрожжей он достигает 20%, у млекопитающих до 60% всей ДНК повторяется. У растений процент повторенных последовательностей может превышать 80%.

По взаимной ориентации в структуре ДНК различаются прямые, инвертированные, симметричные повторы, палиндромы, комплементарные палиндромы и т.п. В очень широком диапазоне варьирует и длина (в числе оснований) элементарной повторяющейся единицы, и степень их повторяемости, и характер распределения в геноме. периодичность повторений ДНК может иметь очень сложную структуру, когда короткие повторы включены в более протяженные или окаймляют их и т.д. Кроме того, для последовательностей ДНК можно рассматривать зеркальные и инвертированные повторы. Геном человека известен на 94%.На основании этого материала можно сделать следующий вывод- повторы занимают по крайней мере 50% генома.

СТРУКТУРНЫЕ ГЕНЫ - гены, кодирующие клеточные белки с ферментативными или структурными функциями. К ним же относят гены, кодирующие структуру рРНК и тРНК. Есть гены, содержащие информацию о структуре полипептидной цепи, в конечном счете – структурных белках. Такие последовательности нуклеотидов длинной в один ген, называются структурными генами. Гены, определяющие место, время, длительность включения структурных генов – регуляторные гены.

Гены имеют маленький размер, хотя состоят из тысяч пар нуклеотидов. Наличие гена устанавливается по проявлению признака гена (конечному продукту). Общую схему строения генетического аппарата и его работы в 1961 году предложили Жакоб, Моно. Они предложил, что есть участок молекулы ДНК с группой структурных генов. К этой группе примыкает участок в 200пар нуклеотидов – промотор (участок примыкания ДНК зависимой РНК-полимеразы). К этому участку примыкает ген-оператор. Название всей системы – оперон. Регуляция осуществляется регуляторным геном. В итоге белок-репрессор взаимодействует с геном-оператором, и оперон начинает работать. Субстрат взаимодействует с геном регуляторами, оперон блокируется. Принцип обратной связи. Экспрессия оперона включается как единое целое. 1940 год - Бидл и Татум предложили гипотезу: 1 ген – 1 фермент. Эта гипотеза сыграла важную роль – ученые стали рассматривать конечные продукты. Оказалось, что гипотеза имеет ограничения, т.к. все ферменты – белки, но не все белки – ферменты. Как правило, белки являются олигомерами – т.е. существуют в четвертичной структуре. Пример, капсула табачной мозаики имеет более 1200 полипептидов. У эукариот экспрессия (проявление) генов не исследована. Причина – серьезные препятствия:

Организация генетического материала в форме хромосом

У многоклеточных организмов клетки специализированы и поэтому часть генов выключена.

Наличие гистоновых белков, в то время как у прокариот - «голая» ДНК.

Гистоновые и негистоновые белки принимают участие в экспрессии генов, участвуют в создании структуры.

22. Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).

Дискретность - несмешиваемость генов

Стабильность - способность сохранять структуру

Лабильность - способность многократно мутировать

Множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм

Аллельность - в генотипе диплоидных организмов только две формы гена

Специфичность - каждый ген кодирует свой признак

Плейотропия - множественный эффект гена

Экспрессивность - степень выраженности гена в признаке

Пенетрантность - частота проявления гена в фенотипе

Амплификация - увеличение количества копий гена.

23. Строение гена. Регуляция экспрессия генов у прокариот. Гипотеза оперона.

Экспрессия генов - это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт - РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме. У прокариот и эукариот гены представляют собой последовательности нуклеотидов ДНК. На матрице ДНК происходит транскрипция - синтез комплементарной РНК. Далее на матрице мРНК происходит трансляция - синтезируются белки. Существуют гены, кодирующие нематричную РНК (например, рРНК, тРНК, малые РНК), которые экспрессируются (транскрибируются), но не транслируются в белки.

Исследования на клетках Е. coli позволили установить, что у бактерий существуют ферменты 3 типов:

конститутивные, присутствующие в клетках в постоянных количествах независимо от метаболического состояния организма (например, ферменты гликолиза)

индуцируемые, их концентрация в обычных условиях мала, но может возрастать в 100Q раз и более, если, например, в среду культивирования клеток добавить субстрат такого фермента

репрессируемые, т.е. ферменты метаболических путей, синтез которых прекращается при добавлении в среду выращивания конечного продукта этих путей.

На основании генетических исследований индукции β-галактозидазы, участвующей в клетках Е. coli, в гидролитическом расщеплении лактозы Франсуа Жакоб и Жак Моно в 1961 г. сформулировали гипотезу оперона, которая объясняла механизм контроля синтеза белков у прокариотов.

В экспериментах гипотеза оперона получила полное подтверждение, а предложенный в ней тип регуляции стали называть контролем синтеза белка на уровне транскрипции, так как в этом случае изменение скорости синтеза белков осуществляется за счёт изменения скорости транскрипции генов, т.е. на стадии образования мРНК.

У Е. coli, как и у других прокариотов, ДНК не отделена от цитоплазмы ядерной оболочкой. В процессе транскрипции образуются первичные транскрипты, не содержащие нитронов, а мРНК лишены "кэпа" и поли-А-конца. Синтез белка начинается до того, как заканчивается синтез его матрицы, т.е. транскрипция и трансляция протекают почти одновременно. Исходя из размера генома (4×106 пар нуклеотидов), каждая клетка Е. coli содержит информацию о нескольких тысячах белков. Но при нормальных условиях роста она синтезирует около 600-800 различных белков, а это означает, что многие гены не транскрибируются, т.е. неактивны. Гены белков, функции которых в метаболических процессах тесно связаны, часто в геноме группируются вместе в структурные единицы (опероны). Согласно теории Жакоба и Моно, оперонами называют участки молекулы ДНК, которые содержат информацию о группе функционально взаимосвязанных структурных белков, и регуляторную зону, контролирующую транскрипцию этих генов. Структурные гены оперона экспрессируются согласованно, либо все они транскрибируются, и тогда оперон активен, либо ни один из генов не "прочитывается", и тогда оперон неактивен. Когда оперон активен и все его гены транскрибируются, то синтезируется полицистронная мРНК, служащая матрицей для синтеза всех белков этого оперона. Транскрипция структурных генов зависит от способности РНК-полимеразы присоединяться к промотору, расположенному на 5"-конце оперона перед структурными генами.

Связывание РНК-полимеразы с промотором зависит от присутствия белка-репрессора на смежном с промотором участке, который называют "оператор". Белок-репрессор синтезируется в клетке с постоянной скоростью и имеет сродство к операторному участку. Структурно участки промотора и оператора частично перекрываются, поэтому присоединение белка-репрессора к оператору создаёт стерическое препятствие для присоединения РНК-полимеразы.

Большинство механизмов регуляции синтеза белков направлено на изменение скорости связывания РНК-полимеразы с промотором, влияя таким образом на этап инициации транскрипции. Гены, осуществляющие синтез регуляторных белков, могут быть удалены от оперона, транскрипцию которого они контролируют.

В пятидесятых годах XX века ученые столкнулись со странным феноменом. Они обратили внимание на то, что некоторые вирусы по-разному заражают разные штаммы одной и той же бактерии. Некоторые штаммы - например, кишечной палочки - заражались легко и быстро распространяли инфекцию по колонии. Другие заражались очень медленно или вовсе были устойчивы к вирусам. Но однажды приспособившись к тому или иному штамму, в дальнейшем вирус заражал его уже без затруднений.

Биологам потребовалось два десятилетия, чтобы разобраться в такой избирательной устойчивости бактерий. Как выяснилось, способность определенных штаммов бактерий противостоять вирусам - ее назвали рестрикцией (то есть, «ограничением») - объясняется наличием у них специальных ферментов, физически разрезающих вирусную ДНК.

Особенность этих белков - ферментов рестрикции - в том, что они распознают небольшую и строго определенную последовательность ДНК. Бактерии «нацеливают» ферменты рестрикции на редкие последовательности, которых сами в своих генах избегают - но которые могут присутствовать в вирусной ДНК. Разные ферменты рестрикции опознают разные последовательности.

Каждый штамм бактерии имеет определенный арсенал таких ферментов и, таким образом, реагирует на определенный набор «слов» в геноме вируса. Если представить, что геном вируса - это фраза «мама мыла раму», то вирус не сможет заразить бактерию, опознающую слово «мама», но бактерия, нацеленная на слово «дядя», окажется беззащитной. Если же вирус сумеет мутировать и превратиться, скажем, в «баба мыла раму», то и первая бактерия потеряет свою защиту.

Почему открытие «бактериального иммунитета» оказалось на самом верху списка важнейших достижений молекулярной биологии? Дело не в самих бактериях и даже не в вирусах.

Отмерить кусочек ДНК

Ученые, описавшие этот механизм, почти сразу же обратили внимание на важнейшую деталь этого процесса. Ферменты рестрикции (точнее, один из типов этих ферментов) способны разрезать ДНК в четко определенной точке. Возвращаясь к нашей аналогии, фермент, нацеленный на слово «мама» в ДНК, связывается с этим словом и разрезает его, например, между третьей и четвертой буквой.

Таким образом, исследователи впервые получили возможность «вырезать» из геномов нужные им фрагменты ДНК. С помощью специальных «склеивающих» ферментов полученные фрагменты можно было сшивать - тоже в определенном порядке. С открытием ферментов рестрикции в руках ученых оказался весь необходимый инструментарий для «монтажа» ДНК. Со временем для обозначения этого процесса прижилась несколько другая метафора - генная инженерия.

Хотя сегодня существуют и другие методы работы с ДНК, подавляющее большинство биологических исследований последних двадцати-тридцати лет были бы невозможны без ферментов рестрикции. От трансгенных растений до генной терапии, от рекомбинантного инсулина до индуцированных стволовых клеток - любые работы, включающие генетические манипуляции, используют это «бактериальное оружие».

Знать врага в лицо

Иммунная система млекопитающих - в том числе человека - обладает как врожденными, так и приобретенными механизмами защиты. Врожденные компоненты иммунитета обычно реагируют на что-то общее, объединяющее сразу многих врагов организма. Например, врожденный иммунитет может распознавать компоненты клеточной стенки бактерий, одинаковые для тысяч разнообразных микробов.

Приобретенный же иммунитет полагается на явление иммунологической памяти. Он распознает конкретные компоненты конкретных патогенов, «запоминая» их на будущее. На этом основана вакцинация: иммунная система «тренируется» на убитом вирусе или бактерии, и в дальнейшем, при попадании в организм живого патогена, «узнает» его и уничтожает на месте.

Врожденный иммунитет - это пограничный пункт досмотра. Он защищает от всего сразу и при этом ни от чего конкретного. Приобретенный иммунитет - это снайпер, знающий врага в лицо. Как выяснилось в 2012-м году, нечто похожее есть и у бактерий.

Если рестрикция - это бактериальный аналог врожденного иммунитета, то роль приобретенного иммунитета у бактерий выполняет система с довольно громоздким названием CRISPR/Cas9, или «Криспер».

Суть работы «Криспера» заключается в следующем. Когда бактерия попадает под вирусную атаку, она копирует часть ДНК вируса в специальное место в собственном геноме (это «хранилище» информации о вирусах и называется CRISPR). На основе этих сохраненных «фотороботов» вируса бактерия затем изготавливает РНК-зонд, способный распознавать вирусные гены и связываться с ними, если вирус попытается снова заразить бактерию.

РНК-зонд сам по себе безобиден для вируса, но здесь в дело вступает еще один игрок: белок Cas9. Он представляет собой «ножницы», ответственные за разрушение вирусных генов - наподобие фермента рестрикции. Cas9 ухватывается за РНК-зонд и как бы на поводке доставляется к вирусной ДНК, после чего ему дается сигнал: резать здесь!

Итого, вся система состоит из трех бактериальных компонентов:

1) ДНК-хранилище «фотороботов» старых вирусов;

2) РНК-зонд, сделанный на основе этих «фотороботов» и способный опознать по ним вирус;

3) белковые «ножницы», привязанные к РНК-зонду и разрезающие вирусную ДНК ровно в той точке, с которой «фоторобот» был снят в прошлый раз.

Практически мгновенно после открытия этого «бактериального иммунитета» о бактериях и их вирусах все забыли. Научная литература взорвалась восторженными статьями о потенциале системы CRISPR/Cas9 как инструмента для генной инженерии и медицины будущего.

Как и в случае с ферментами рестрикции, система «Криспер» способна разрезать ДНК в строго определенной точке. Но по сравнению с «ножницами», открытыми в семидесятых, она обладает огромными преимуществами.

Ферменты рестрикции используются биологами для «монтажа» ДНК исключительно в пробирке: нужно сначала изготовить нужный фрагмент (например, модифицированный ген), и уже потом вводить его в клетку или организм. «Криспером» можно резать ДНК на месте, прямо в живой клетке. Это позволяет не просто изготавливать искусственно вводимые гены, но и «редактировать» целые геномы: например, удалять одни гены и вставлять вместо них новые. Совсем недавно о таком можно было только мечтать.

Как стало понятно за последний год, система CRISPR неприхотлива и может работать в любой клетке: не только бактериальной, но и мышиной или человеческой. «Установить» ее в нужную клетку довольно просто. Принципиально это можно делать даже на уровне целых тканей и организмов. В будущем это позволит целиком удалять из генома взрослого человека дефектные гены - например, вызывающие рак.

Допустим, присутствующая у вас в геноме фраза «мама мыла раму» вызывает в вас болезненную тягу к гендерным стереотипам. Чтобы избавиться от этой проблемы, вам нужен белок Cas9 - всегда один и тот же - и пара РНК-зондов, нацеленных на слова «мама» и «раму». Эти зонды могут быть любыми - современные методы позволяют синтезировать их за несколько часов. Ограничений по количеству вообще нет: «резать» геном можно хоть в тысяче точек одновременно.

Прицельная настройка организма

Но ценность «Криспера» не ограничивается «ножничной» функцией. Как отмечают многие авторы, эта система - первый известный нам инструмент, с помощью которого можно организовать «встречу» определенного белка, определенной РНК и определенной ДНК одновременно. Это само по себе открывает огромные возможности для науки и медицины.

Например, у белка Cas9 можно отключить «ножничную» функцию, а вместо этого привязать к нему другой белок - скажем, активатор гена. С помощью подходящего РНК-зонда получившуюся пару можно отправлять в нужную точку генома: например, к плохо работающему гену инсулина у некоторых диабетиков. Организуя таким образом встречу активирующего белка и выключенного гена, можно прицельно и тонко настраивать работу организма.

Привязывать можно не только активаторы, а вообще все что угодно - скажем, белок, способный заменить дефектный ген на его «резервную копию» с другой хромосомы. Таким образом в перспективе можно будет вылечить, например, болезнь Хантингтона. Главное достоинство системы CRISPR в данном случае - именно ее способность «отправлять экспедиции» к любой точке ДНК, которую мы можем запрограммировать без особых затруднений. В чем состоит задача каждой конкретной экспедиции - определяется только фантазией исследователей.

Сегодня сложно сказать, какие именно проблемы сумеет решить система CRISPR/Cas9 через несколько десятилетий. Мировое сообщество генетиков сейчас напоминает ребенка, которого пустили в огромный зал, до отказа забитый игрушками. Ведущий научный журнал Science недавно выпустил обзор последних достижений области под названием «The CRISPR Craze» - «Криспер-безумие». И все-таки уже сейчас очевидно: бактерии и фундаментальная наука в очередной раз подарили нам технологию, которая изменит мир.

В январе появились сообщения о рождении первых приматов, чей геном был успешно модифицирован системой CRISPR/Cas9. Мартышкам в качестве пробного эксперимента ввели мутации в два гена: один связанный с работой иммунной системы, а другой - ответственный за отложение жира, что непрозрачно намекает на возможное применение метода к homo sapiens. Возможно, решение проблемы ожирения методом генной инженерии - не такое уж далекое будущее.

Группе российских исследователей Петра Гаряева удалось с помощью метода модуляции доказать, что можно восстановить хромосомы, поврежденные рентгеновским излучением. Биофизики даже смогли выделить информационные паттерны одной ДНК и наложить их на другую. Таким образом, они перепрограммировали клетки второго организма по образу первого генома. Сообщается, что ученые успешно трансформировали эмбрионы лягушки в эмбрионы саламандры, просто облучая их волнами, которые несли информационные паттерны соответствующей другой ДНК. Иными словами, они переписали программу и изменили волновую форму тела животного.

Все это было сделано лишь за счет наложения звуковых колебаний специально подобранных слов на луч лазера, а не устаревшей процедуры вырезания генов. Этот эксперимент научно объясняет «волшебство», когда маг при помощи заклинания превращает одно животное в другое. Однако ученые из группы Петра Гаряева были далеко не первыми из тех, кто провел успешные опыты перепрограммирования ДНК.

Например, в самом начале 60-х годов прошлого столетия китайский исследователь Цзян Каньчжен опытным путем убедился в том, что все живые существа излучают энергию, которая управляет всеми процессами в их организме на клеточном уровне. Эта энергия содержит всю информацию о его генетическом коде. И если в зону действия психической энергии попадает существо другого вида, то ДНК этого существа меняются. Вот что пишет об удивительных опытах Цзян Каньчженя Владимир Бабанин в своей книге «Машины времени»:

«Усиленный поток психической энергии, выходящий через вершину пирамиды, можно было использовать для лечебных целей, для изменения кода генов ДНК… Нет, это не фантазия автора настоящей книги. Это открытие сделал в 60-х годах ХХ века китайский ученый-медик Цзян Каньчжен. Как известно, в современной радиотехнике широкое применение находят всякого рода волноводы, с помощью которых можно направить энергию излучения или сигнал, как воду из пожарного брандспойта, в нужном направлении. Раньше они были в основном металлическими трубочками с круглым или прямоугольным сечением. Сейчас применяют в качестве волноводов и другие материалы, в том числе неметаллические. Интересный вопрос: если по волноводу можно направить световые, акустические, радио- и другие волны, то можно ли направить по нему энергию психического характера, обладающую чрезвычайно высокими частотами? Могли ли волны психической энергии в какой-то мере подчиняться известным законам физики, преломлению и отражению? Странный вопрос… Ведь психическая энергия — более тонкого плана, чем известные нам СВЧ радиоволны. К тому же она — всепроникающая. Но она обладает выдающимися способностями к творчеству и трансформации в другие виды энергии, а потому может проявлять себя по-разному в разных условиях. Это хорошо будет заметно, когда человек овладеет психическими силами своего организма. Ему подчинится гравитационная энергия, и он будет способен летать. Ему подчинится электромагнитная энергия, и он будет способен посылать разящие молнии. Он сможет изменить ход времени и перенестись в другие, параллельные миры… На этом же принципе будут построены звездолеты — вихрелеты, которые преодолеют пространство и время. И все это — возможности психической энергии, ее огромной способности к трансформации и проявлению в других видах энергии. Так можно ли психическую энергию, излучаемую через вершину пирамид или излучаемую телом живого существа, направить в волновод и использовать по своему усмотрению? Надо бы попробовать… Вот здесь и заявил о себе китайский исследователь-медик Цзян Каньчжен. Уже в самом начале 60-х годов 20 столетия он опытным путем убедился в том, что все живые существа излучают энергию, которая управляет всеми процессами в их организме на клеточном уровне, содержит всю информацию о его генетическом коде. И если в зону действия этой энергии попадал растущий зародыш существа другого вида, то у него происходили изменения на генетическом уровне! В результате появилось составное существо — сфинкс. Так, путем «облучения» развивающегося в курином яйце эмбриона курицы энергетическим полем тела утки был получен цыпленок куроутки. В нем присутствовали признаки и курицы и утки. И это без хирургического вмешательства в ДНК зародыша куриного яйца! Затем были проведены опыты на других животных и созданы новые монстры-сфинксы. Когда же в 1963 году была опубликована первая статья с результатами опытов, она произвела в Китае эффект взорвавшейся бомбы. Лишь немногие ученые выразили свое восхищение этим открытием, увидели в нем будущее генетической инженерии, способной преобразовать мир. Другие же ученые и соответственно общественность имели другое мнение. Они увидели в открытии угрозу эволюции человечества и животного мира, возможность создания психотронного оружия, способного подчинить себе человека в интересах честолюбцев, переделать его природу. В конце концов, никому не хотелось в результате чьих-то экспериментов оказаться куроуткой, саблезубым монстром или каким-либо другим сфинксом. Реакция последовала незамедлительно: закрылись исследовательские лаборатории. Мощная волна культурной революции, охватившая в то время Китай, поставила заслон на пути дальнейших изучений. Цзяна отправили в деревню на перевоспитание, где он пас свиней, а после попытки бегства его посадили в тюрьму, где он просидел несколько лет. И только в 1971 году он тайно пересек советско-китайскую границу и осел в Хабаровске, где позднее стал сотрудником медицинского института. По странному совпадению, он сам стал «составным» русско-китайцем: фамилия Цзян Каньчжен у него сохранилась китайская, а имя и отчество стали русскими: Юрий Владимирович. Открытием Цзяна впоследствии заинтересовались советские ученые и продолжили свои исследования в этом направлении. Какие результаты? Они очень важны, но не становятся достоянием общественности. Нас же сейчас интересует, каким образом, с помощью каких технических средств Цзяну удавалось концентрировать и передавать психическую энергию в строго определенном направлении, и для чего он ее использовал. Со стороны вся его конструкция казалась довольно простой. В одном из помещений была расположена просторная замкнутая объемная контур-камера, изготовленная из немагнитного материала — листовой меди. В стенки камеры раструбом внутрь впаяны несколько пустотелых медных конусов — аналогов моделей-колпаков пирамид. Вершины конусов срезаны, и к ним припаяны длинные тонкие медные трубки — волноводы. Они тянулись в соседнее помещение и заканчивались в другой объемной контур-камере. Вот и вся конструкция. Как мы понимаем, первую камеру с ее наружными конусами моделировали в принципе, как обычную пирамиду со срезанной вершиной и камерой внутри. Как же тогда работала эта странная установка? В первой камере — «пирамиде» находился «донор» — «генератор» психической энергии. Здесь не требовалось изобретать какое-нибудь техническое средство, генерирующее волны психической энергии. Да это и сложно при нашем уровне развития науки. Лучшим генератором психической энергии являлось живое существо — человек, животное или растение. Их аура — энергоинформационное поле — и являлась носителем источником этой энергии. Она содержала в себе всю информацию о процессах, протекающих в живом организме на уровне клеток, о сигналах и командах, которым подчинялись клетки. Вот эти команды и программы всех процессов одного организма и подлежали передаче по «биоСВЧсвязи» другому организму находящемуся на удалении. Конусы в установке выполняли функцию пирамид. Вихревой поток внутри них как бы «всасывал» энергию живого существа — «донора» и направлял ее в волновод, а по нему — в другую камеру. В ней размещался живой объект того же или другого вида. Он и подлежал «облучению». Он должен был принять поступившие команды и приказы и исполнить их, даже если они разрушали весь его организм. Какой организм лучше всего выполнял поступившие, часто чуждые команды и приказы? Как заметил в свое время известный русский селекционер И. В. Мичурин, лучше всего приспосабливался к новым условиям молодой растущий организм. Поэтому с целью получения быстрого эффекта во вторую камеру могли помещаться растущие особи животных, яйца птиц, змей, крокодилов с развивающимися эмбрионами, прорастающие зерна растений. В нормальных привычных условиях зародыши растений и живых существ развиваются в соответствии с генетической программой, заложенной в их клетках. Но вот по волноводу от «донора» пришли сигналы с другой генетической программой, даже совершенно другого вида живого существа. И тогда начиналась борьба между программами, итог которой был непредсказуем. Как правило, находился компромиссный вариант, в результате которого менялся генетический код развивающегося зародыша. Так во второй камере вырастало растение или живое существо, содержавшее в себе признаки двух существ — того, кто находился в первой камере, и того, кто находился во второй. Но это уже был монстр, урод, сфинкс! Хорошо, если в эксперименте участвовали растения. Но когда дело доходило до разных видов животных, здесь уже было не только не смешно, но даже преступно, особенно когда в одной камере находился человек, а в другой — животное. Кстати, Цзян ставил и такие опыты: в первой камере в качестве «донора» был он сам, а во второй — яйцо курицы в инкубаторе. В результате облучения выросла курица, тело которой вместо перьев было покрыто… волосами! Но могло быть и еще хуже — птица с человеческой головой. Такие создания — любимые персонажи многих древних легенд. Может быть, они отражают факты, которые действительно имели место в результате неосторожных экспериментов древних генетиков? И самое главное: произведенные сфинксы могли размножаться и давать потомство сфинксов! По сути, установка Цзян Каньчженя была своеобразным психотронным генератором. Как известно, всякая палка имеет два конца. Такие же два конца имело и изобретение Цзяна. Оно полезно, но в допустимых пределах: для создания новых видов растений, дающих нам пищу, для лечения неизлечимых болезней, для многих других целей, не наносящих вред. Но оно же может нести в себе большую угрозу природе человека, если возможностями подобного психотронного генератора воспользуется личность или группы людей, или даже целое государство в политических целях».

Нашим эзотерическим и духовным учителям давно было известно, что человеческое тело можно программировать не только при помощи пирамид, но и с помощью определенных звуков, рифмованных предложений или концентрированной мысли. Сейчас это научно доказано исследователями ДНК и объяснено . Разумеется, что перепрограммирование ДНК необходимо выполнять на соответствующей частоте, и именно поэтому не каждому ученому или эзотерику удается постоянно получать одинаково успешные и глубокие результаты. Воплощенная в тело душа должна постоянно работать над своими внутренними процессами, она должна стремиться установить сознательную связь со своей ДНК и привести ее к гармонии. Ибо духовное сознание человека может и должно переписывать программу ДНК. Ту же самую работу по перепрограммированию ДНК может выполнять и правильная золотосеченная пирамида, если человек ежедневно медитирует в ней около одного часа.
Однако, чем выше развито сознание человека, чем больше раскрыты его душевные и духовные качества, тем меньше у него ощущается потребность в каком-либо внешнем устройстве для перепрограммирования своей ДНК.

Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.

Два года назад была изобретена технология изменения генома CRISPR/Cas9. В 2015 году она сделала настоящий переворот в генной инженерии. В основе технологии лежит молекулярный защитный механизм микроорганизмов, благодаря которому можно с повышенной точностью редактировать фрагменты ДНК и вырезать их. Причем делать это можно непосредственно в живых клетках любого организма!

Конечно, сегодня манипуляциями с генами никого не удивишь, однако работа с ними до этого выполнялась в специально оборудованных лабораториях при крупнейших институтах. Но технгология CRISPR/Cas9 может стать доступной каждому. Молекулярный биолог НАСА Джосиа Зайнер намерен разработать набор, который бы позволял проводить эксперименты с изменением генов в домашних условиях. Он позволит у себя на кухне изменять геном дрожжей и микроорганизмов.

Принцип действия технологии

Аббревиатуру CRISPR на русский язык дословно можно перевести как «кластерные регулярно разделяемые короткие палиндромические повторы», в первый раз они были найдены в генах архей и бактерий. Потом было обнаружено, что микроорганизмы, которым удалось пережить нападение вируса, прописывают в собственную ДНК участок гена недоброжелателя. Благодаря этому, сформированные организмом клетки смогут распознать подобный штамм. Если в «базе данных» генов имеются сведения врага, то при встрече с ним микроорганизмы используют специальный молекулярный механизм. Он присоединяется к ДНК вируса в том месте, которое соответствует сохраненному участку. Далее белки группы Cas применяются для разрезания ее и уничтожения вируса. Ученые определили, что подобные ножницы для разрезания молекул можно использовать для любого участка генетического кода млекопитающих, и человек не является исключением. С их помощью можно заменять либо, редактировать различные гены.

Интернет-магазин The ODIN начнет продавать наборы для редактирования генного кода

По мнению господина Зайнера, CRISPR/Cas9 должен стать общедоступным, возможность проводить эксперименты с этим методом должны получить даже начинающие исследователи и любители. С этой целью был разработан интернет-магазин The ODIN. Его цель – помочь в проведении домашних экспериментов с искусственно созданными бактериями. Сегодня компания Зайнера привлекает средства на краудфандинговой площадке Indiegogo, предлагая в качестве «вознаграждения» полноценные наборы и реактивы для редактирования генов.

Доступные наборы

Продаваемая продукция похожа на развивающие наборы для проведения химических опытов школьниками и студентами. За 75 долларов США здесь можно купить комплект, позволяющий добавлять в геном бактерий флуоресцентный белок, в результате чего они начинают светиться в темноте. Для создания генно модифицированного штамма бактерий, который бы смог выжить в экстремальных условиях, необходимо купить комплект за 130 долларов США. А вот набор за 160 американских долларов позволит вносить изменения в генный код дрожжей, добавляя в них красный пигмент.

Компания предлагает и более дорогостоящие наборы. Так, например, за 200 долларов можно получить комплект, который наделяет бактерии способностями удобрять почву и разрушать пластик. За 500 долларов можно купить набор для классной комнаты – клиент может указать вид комплектов, которые будут высланы в количестве 20 штук для группового использования. Инструменты из этого набора могут наделять бактерии свойством светиться в темноте или изменять цвет.

Комплект за 3000 долларов позволит создать настоящую домашнюю лабораторию для проведения опытов по молекулярной и синтетической биологии. В него входят: центрифуги, пипетки, реагенты, гель электрофореза, химические вещества и многое другое. Набор комплектуется позволяет использовать систему CRISPR для проведения различных исследований.

Самым невероятным является предложение за 5000$: авторы проекта обещают возможность создать новый уникальный живой организм. С его помощью можно выделять нужный признак дрожжей или бактерий и изменять его. Владелец такого комплекта может самостоятельно выводить генетически модифицированные организмы. Компания помогает определить параметры, которые содействуют достижению поставленных целей! Детальная инструкция, прилагающаяся к каждому набору, поможет проводить эксперименты без посторонней помощи, хотя автора с готовностью обещают провести консультацию в случае необходимости.

Планы на будущее

Технология CRISPR способна проводить изменения с генами человека. Однако Зайнер не планирует реализовывать наборы, которые бы помогали бороться с облысением либо наращивать дополнительную почку.

Чтобы добиться своей цели, на сайте Indiegogo Зайнером была начата краудфандинговая кампания. Посмотреть компанию можно . Благодаря нарастающему интересу к методу CRISPR, авторам компании удалось раньше установленного срока получить 10 000 долларов США, необходимые для создания портативных наборов. По мнению экспертов Инвестток.ру, до конца компании авторы проекта могут собрать в десять раз больше средств, чем планировали изначально, поскольку интерес аудитории к новой технологии огромен.