Строение, функции и свойства днк. Какова биологическая роль ДНК? Строение и функции Строение молекулы днк и ее функции

Открытие генетической роли ДНК

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входят азот и фосфор. Впервые нуклеиновую кислоту, свободную от белков, получил Р. Альтман в 1889 г., который и ввел этот термин в биохимию. Лишь к середине 1930-х годов было до­казано, что ДНК и РНК содержатся в каждой живой клетке. Первостепенная роль в утверждении этого фундаментального положе­ния принадлежит А. Н. Белозерскому, впервые выделившему ДНК из растений. Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. О. Эверину, Колину Мак-Леоду и Маклину Мак-Карти (1944 г.) удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК. Эксперимент американских учёных (эксперимент Херши - Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени Розалинды Франклин, так как премия не присуждается посмертно.В 1960 г. сразу в нескольких лабораториях был открыт фер­мент РНК-полимераза, осуществляющий синтез РНК на ДНК-матрицах. Генетический аминокислотный код был полностью расшифро­ван в 1961–1966 гг. усилиями лабораторий М. Ниренберга, С. Очоа и Г. Кораны.

Химический состав и структурная организация молекулы днк.

ДНК - дезоксирибонуклеиновая кислота. Молекула ДНК – это самый крупный биополимер, мономером которого является нуклеотид. Нуклеотид состоит из остатков 3 веществ: 1 – азотистого основания; 2 – углевода дезоксирибозы; 3 - фосфорной кислоты (рисунок – строение нуклеотида). Нуклеотиды, участвующие в образовании молекулы ДНК отличаются друг от друга азотистыми основаниями. Азотистые основание: 1 – Цитозин и Тимин (производные пиримидина) и 2 – Аденин и Гуанин (производные пурина). Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и остаток фосфорный кислоты соседнего (рисунок – строение полинуклеотидной цепи). Правило Чаргаффа (1951г.): число пуриновых оснований в ДНК всегда равно числу пиримидиновых, А=Т Г=Ц.



1953г. Дж. Уотсон и Ф. Крик – Представили модель строения молекулы ДНК (рисунок – строение молекулы ДНК).

Первичная структура – последовательность расположения мономерных звеньев (мононуклеотидов) в линейных полимерах. Цепь стабилизируется 3,5 – фосфодиэфирными связями.Вторичная структура – двойная спираль, формирование которой определяется межнуклеотидными водородными связями, которые образуются между основаниями входящими в канонические пары А-Т (2 водородные связи) и Г-Ц (3 водородные связи). Цепи удерживаются стекинг-взаимодействиями, электростатическими взаимодействиями,Ван-Дер-Ваальсовыми взаимодействиями.Третичная структура – общая форма молекул биополимеров. Сверхспиральная структура – когда замкнутая двойная спираль образует не кольцо, а структуру с витками более высокого порядка (обеспечивает компактность).Четвертичная структура – укладка молекул в полимолекулярные ансамбли. Для нуклеиновых кислот - это ансамбли, включающие молекулы белков.

Первое доказательство роли ДНК как носителя наследственной информации организмов привлекло огромное внимание к изучению нуклеиновых кислот. В 1869 г. Ф. Мишер выделил из ядер клеток особое вещество, которое назвал нуклеином. Через 20 лет это название было заменено термином нуклеиновая кислота. В 1924 г. Р. Фельген разработал метод цитологического распознавания нуклеиновых кислот посредством их специфического окрашивания и показал, что ДНК локализуется в ядрах клеток, а РНК - в цитоплазме. В 1936 г. А.Н. Белозерский и И.И. Дубровская выделили ДНК в чистом виде из ядер растительных клеток. К началу 1930-х гг. были выяснены основные химические принципы строения сахаров нуклеиновых кислот, а в 1953 г. создана структурная модель ДНК.

Основная структурная единица нуклеиновых кислот - нуклеотид , который состоит из трех химически различных частей, соединенных ковалентными связями (рис. 5.2).

Рис. 5.2. Структурные формулы: а - нуклеотидов; б - ДНК; в - РНК (см. также с. 110)


Рис. 5.2. Окончание. Структурные формулы: а - нуклеотидов; 6 - ДНК; в - РНК

Первая часть - сахар, содержащий пять атомов углерода: дезоксири- боза в ДНК и рибоза в РНК.

Вторая часть нуклеотида - пуриновое или пиримидиновое азотистое основание, ковалентно соединенное с первым атомом углерода сахара, формирует структуру, называемую нуклеозидом. ДНК содержит пуриновые основания - аденин (А) и гуанин (Г) - и пиримидиновые основания - тимин (Т) и цитозин (Ц). Соответствующие нуклеозиды называются дезоксиаде- нозином, дезоксигуанозином, дезокситимидином и дезоксицитидином. РНК содержит те же пуриновые основания, что и ДНК, пиримидиновое основание цитозин , и вместо тимина в ее состав входит урацил (У); соответствующие нуклеозиды называются аденозином, гуанозином, уридином и ци- тидином.

Третью часть нуклеотида составляет фосфатная группа, которая соединяет соседние нуклеозиды в полимерную цепочку посредством фосфо- диэфирных связей между 5-атомом углерода одного сахара и З"-атомом углерода другого (рис. 5.2, б, в). Нуклеотидами называются нуклеозиды с одной или несколькими фосфатными группами, присоединенными эфирными связями к 3"- или 5-атомам углерода сахара. Синтез нуклеотидов предшествует синтезу нуклеиновых кислот, соответственно, нуклеотиды являются продуктами химического или ферментативного гидролиза нуклеиновых кислот.

Нуклеиновые кислоты - очень длинные полимерные цепочки, состоящие из мононуклеотидов, соединенных 5- и З’-фосфодиэфирными связями. Интактная молекула ДНК содержит в зависимости от вида организмов от нескольких тысяч до многих миллионов нуклеотидов, интактная молекула РНК - от 100 до 100 тыс. и более нуклеотидов.

Результаты проведенных Э. Чаргаффом анализов нуклеотидного состава ДНК различных видовых форм показали, что молекулярное соотношение различных азотистых оснований - аденина, гуанина, тимина, цитозина - варьирует в широких пределах. Следовательно, было доказано, что ДНК вовсе не монотонный полимер, состоящий из одинаковых тетрануклеотидов, как предполагали в 40-е гт. XX вв., и что он в полной мере обладает сложностью, необходимой для сохранения и передачи наследственной информации в форме специфической последовательности нуклеотидных оснований.

Исследования Э. Чаргаффа выявили также особенность, присущую всем молекулам ДНК: молярное содержание аденина равно содержанию тимина, а молярное содержание гуанина - содержанию цитозина. Эти равенства называются правилом эквивалентности Чаргаффа: [А] = [Т], [Г] = [Ц]; количество пуринов равно количеству пиримидинов. В зависимости от видовой принадлежности меняется лишь отношение ([А] + [Т])/([Г] + [Ц]) (табл. 5.1).

Состав оснований,

Отношение

Асимметрия

оснований

(А + Т)/(Г + Ц)

Животные

Черепаха

Морской краб

Морской еж

Растения, грибы

Зародыш пшеницы

Гриб Aspergillus niger

Бактерии

Escherichia coli

Staphylococcus aureus

Clostridium perfringens

Brucela abortus

Sarcina lutea

Бактериофаги

ФХ 174 (вирусная форма)

ФХ 174 (репликативная форма)

Отношение оснований получило наименование коэффициента нуклеотидной (видовой) специфичности. В открытии Чаргаффа была сформулирована важная структурная особенность ДНК, нашедшая позже отражение в структурной модели ДНК Дж. Уотсона и Ф. Крика (1953), которые фактически показали, что правила Чаргаффа не накладывают никаких ограничений на возможное число сочетаний различных последовательностей оснований, способных образовывать молекулы ДНК.

Положение о нуклеотидной специфичности легло в основу новой отрасли биологии - геносистематики , которая оперирует сравнением состава и структуры нуклеиновых кислот для построения естественной системы организмов.

Согласно модели Уотсона-Крика молекула ДНК состоит из двух по- линуклеотидных цепочек (нитей, тяжей), соединенных друг с другом с помощью поперечных водородных связей между азотистыми основаниями по комплементарному принципу (аденин одной цепочки соединен двумя водородными связями с тимином противоположной цепочки, а гуанин и цитозин разных цепочек соединены друг с другом тремя водородными связями). При этом две Полинуклеотидные цепочки одной молекулы являются анти- параллельными, т. е. напротив 3"-конца одной цепочки находится 5"-конец другой цепочки и наоборот (рис. 5.3). Следует, однако, иметь в виду современные данные о том, что генетический материал некоторых вирусов представлен одноцепочечными (однонитевыми) молекулами ДНК. На основании данных рентгеноструктурного анализа ДНК Дж. Уотсон и Ф. Крик сделали также заключение о том, что ее двухцепочечная молекула имеет вторичную структуру в форме спирали, закрученной в направлении слева направо, которая в дальнейшем получила название 5-формы (рис. 5.4). К настоящему времени доказано, что помимо наиболее часто встречающейся 5-формы можно обнаружить участки ДНК, имеющие иную конфигурацию, - как правозакрученную (формы А , С), так и закрученную справа налево (левозакрученную, или Z-форму) (рис. 5.4). Между этими формами вторичной структуры ДНК имеются определенные различия (табл. 5.2). Так, например, расстояние между двумя соседними парами азотистых оснований в двухцепочечной спирали, выраженное в нанометрах (нм), для 5-формы и Z-формы характеризуется разными величинами (0,34 и 0,38 нм соответственно). На рис. 5.5 приведены современные объемные модели «левозакрученной» и «правозакрученной» форм ДНК.


Рис. 5.3. схематическое изооражение первичной структуры фрагмента двухцепочечной молекулы ДНК: А - аденин; Г - гуанин; Т - тимин; Ц - цитозин

Рис. 5.4.

Таблица 5.2

Свойства различных форм двойных спиралей ДНК

Молекулы РНК в зависимости от их структурно-функциональных особенностей подразделяют на несколько типов: информационные (матричные) РНК (иРНК, или мРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК), малые ядерные РНК (мяРНК) и др. В отличие от ДНК молекулы РНК всегда являются одноцепочечными (однонитевыми). Однако они могут формировать более сложные (вторичные) конфигурации за счет комплементарного соединения отдельных участков такой цепочки на основе взаимодействия комплементарных азотистых оснований (A-У и Г-Ц). В качестве примера можно рассмотреть конфигурацию, имеющую форму «листа клевера», для молекулы фенил ал аниновой транспортной РНК (рис. 5.6).

Рис. 5.6.

В 1953 г. Д. Уотсон и Ф. Крик предложили модель структуры ДНК, которая основывалась на следующих постулатах:

  • 1. ДНК представляет собой полимер, состоящий из нуклеотидов, соединенных 3"- и 5"-фосфодиэфирными связями.
  • 2. Состав нуклеотидов ДНК подчиняется правилам Чаргаффа.
  • 3. Молекула ДНК имеет структуру двойной спирали, напоминающую винтовую лестницу, о чем свидетельствуют рентгенограммы нитей ДНК, впервые полученные М. Уилкинсом и Р. Франклин.
  • 4. Структура полимера, как показывает кислотно-щелочное титрование нативной (природной) ДНК, стабилизируется водородными связями. Титрование и нагревание нативной ДНК вызывает заметное изменение ее физических свойств, в частности вязкости, переводя ее в денатурированную форму, причем ковалентные связи не разрушаются.

Практически каждый слышал о существовании в живых клетках молекул ДНК и знает, что эта молекула ответственна за передачу наследственной информации. Огромная куча разных фильмов в той или иной степени строит свои сюжеты на свойствах маленькой, но гордой очень важной молекулы.

Однако мало кто хоть примерно сможет объяснить, что именно входит в состав молекулы ДНК и каким образом функционируют процессы считывания этой всей информации о «строении всего организма». Прочитать же без запинки «дезоксирибонуклеиновая кислота» способны и вовсе единицы.

Попробуем разобраться, из чего же состоит и как выглядит самая важная для каждого из нас молекула.

Строение структурного звена - нуклеотида

В состав молекулы ДНК входит множество структурных единиц, поскольку она является биополимером. Полимер - это макромолекула, которая состоит из множества маленьких, последовательно соединенных повторяющихся фрагментов. Подобно тому как цепь состоит из звеньев.

Структурным звеном макромолекулы ДНК является нуклеотид. В состав нуклеотидов молекулы ДНК входят остатки трех веществ - ортофосфорной кислоты, сахарида (дезоксирибозы) и одного из четырех возможных азотсодержащих оснований.

В состав молекулы ДНК входят азотистые основания: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т).

Состав цепи нуклеотидов отображают чередованием вошедших в нее оснований: -ААГЦГТТАГЦАЦГТ- и т.п. Последовательность может быть любая. Так формируется одинарная цепочка ДНК.

Спирализация молекулы. Явление комплементарности

Величина молекулы ДНК человека чудовищно огромна (в масштабах других молекул, конечно)! В геноме одной-единственной клетки (46 хромосом) содержится примерно 3,1 млрд пар нуклеотидов. Длина цепочки ДНК, составленной таким количеством звеньев, равняется примерно двум метрам. Трудно представить, каким образом настолько громоздкую молекулу можно разместить в пределах крохотной клетки.

Но природа позаботилась о более компактной упаковке и защите своего генома - две цепочки соединяются между собой азотистыми основаниями и образуют хорошо известную двойную спираль. Таким образом, удается сократить длину молекулы почти в шесть раз.

Порядок взаимодействия азотистых оснований строго определен явлением комплементарности. Аденин может соединяться исключительно с тимином, а цитозин взаимодействует только с гуанином. Эти комплементарные пары подходят друг другу как ключ и замок, как кусочки пазла.

Теперь давайте посчитаем, сколько же памяти в компьютере (ну или на флешке) должна занимать вся информация об этой маленькой (в масштабе нашего с вами мира) молекуле. Количество пар нуклеотидов - 3,1х10 9 . Всего значений 4, что означает - для одной пары достаточно 2-х бит информации (2 2 значений). Умножаем все это друг на друга и получаем 6200000000 бит, или 775000000 байт, или 775000 килобайт, или 775 мегабайт. Что примерно соответствует емкости CD диска или объему какой-нибудь 40-минутной серии фильма в среднем качестве.

Образование хромосом. Определение генома человека

Помимо спирализации, молекула еще неоднократно подвергается уплотнению. Двойная спираль начинает закручиваться подобно клубку ниток – этот процесс называется сверхспирализацией и происходит с помощью специального белка гистона, на который как на катушку наматывается цепочка.

Этот процесс сокращает длину молекулы еще в 25-30 раз. Подвергаясь еще нескольким уровням упаковки, все больше и больше уплотняясь, одна молекула ДНК совместно со вспомогательными белками формирует хромосому.

Вся информация, которая касается формы, вида и особенностей функционирования нашего организма определяется набором генов. Ген - это строго определенный участок молекулы ДНК. Он состоит из неизменной последовательности нуклеотидов. Более того, ген жестко определен не только составом, но и своим положением относительно других участков цепи.

Рибонуклеиновая кислота и ее роль в синтезе белка

Помимо ДНК существуют другие виды нуклеиновых кислот – матричная, транспортная и рибосомная РНК (рибонуклеиновая кислота). Цепи РНК намного меньше и короче, благодаря этому они способны проникать сквозь мембрану ядра.

Молекула РНК также является биополимером. Ее структурные фрагменты подобны тем, что входят в состав ДНК за небольшим исключением сахарида (рибозы вместо дезоксирибозы). Азотистых оснований четыре вида: знакомые нам А, Г, Ц и урацил (У) вместо тимина. На картинке выше все это наглядно показано.

Макромолекула ДНК способна передать информацию РНК в раскрученном виде. Раскручивание спирали происходит с помощью специального фермента, который разделяет двойную спираль на отдельные цепочки – как расходятся половинки замка-молнии.

В это же время, параллельно цепи ДНК создается комплементарная цепь РНК. Скопировав информацию и попав из ядра в среду клетки, цепочка РНК инициирует процессы синтеза закодированного геном белка. Синтез протеинов протекает в особых органеллах клетки - рибосомах.

Рибосома по мере прочтения цепочки определяет, в какой последовательности необходимо соединять аминокислоты, одна за другой - по мере считывания в РНК информации. Затем, синтезированная цепочка аминокислот принимает определенную 3D форму.

Эта объемная структурная молекула и является протеином, способным выполнять закодированные функции ферментов, гормонов, рецепторов и строительного материала.

Выводы

Для любого живого существа именно белок (протеин), является конечным продуктом каждого гена. Именно протеины определяют все то разнообразие форм, свойств и качеств, которые зашифрованы в наших клетках.

Уважаемые читатели блога , а вы знаете где находится ДНК , оставляйте комментарии или отзывы что вы хотели узнать. Кому то это очень пригодиться!

Содержание

Аббревиатура клеточный ДНК многим знакома из школьного курса биологии, но мало кто сможет с легкостью ответить, что это. Лишь смутное представление о наследственности и генетике остается в памяти сразу после окончания учебы. Знание, что такое ДНК, какое влияние оно оказывает на нашу жизнь, порой может оказаться очень нужным.

Молекула ДНК

Биохимики выделяют три типа макромолекул: ДНК, РНК и белки. Дезоксирибонуклеиновая кислота – это биополимер, который несет ответственность за передачу данных о наследственных чертах, особенностях и развитии вида из поколения в поколение. Его мономером является нуклеотид. Что такое молекулы ДНК? Это главный компонент хромосом и содержит генетический код.

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Состав ДНК

Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.

Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.

Где находится­

Расположение внутри клетки зависит от особенностей вида. У одноклеточных ДНК находится в мембране. У остальных живых существ она располагается в ядре, пластидах и митохондриях. Если говорить о человеческой ДНК, то ее называют хромосомой. Правда, это не совсем так, ведь хромосомы – это комплекс хроматина и дезоксирибонуклеиновой кислоты.

Роль в клетке

Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты - топоизомеразы и хеликазы.

Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.

Как расшифровывается ДНК

Эта аббревиатура для биологии является привычной. Полное название ДНК- дезоксирибонуклеиновая кислота. Произнести такое не каждому под силу с первого раза, поэтому часто в речи расшифровка ДНК опускается. Встречается еще понятие РНК – рибонуклеиновая кислота, которая состоит из последовательностей аминокислот в белках. Они напрямую связаны, а РНК является второй по важности макромолекулой.

ДНК человека

Человеческие хромосомы внутри ядра разделены, что делает ДНК человека самым стабильным, полным носителем информации. Во время генетической рекомбинации спирали разделяются, происходит обмен участками, а затем связь восстанавливается. За счет повреждения ДНК образовываются новые комбинации и рисунки. Весь механизм способствует естественному отбору. До сих пор неизвестно, как долго она отвечает за передачу генома, и какова ее эволюция метаболизма.

Кто открыл­

Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.

Мишер занимался изучением способов отмывания лейкоцитов, выделял белки, когда обнаружил, что кроме них есть что-то еще. На дне посуды во время обработки образовался осадок из хлопьев. Изучив эти отложения под микроскопом, молодой врач обнаружил ядра, которые оставались после обработки соляной кислотой. Там содержалось соединение, которое Фридрих назвал нуклеином (от лат. nucleus - ядро).

DNA Logic - это технология ДНК-вычислений, которая сегодня находится в зачаточном состоянии, однако в будущем на нее возлагаются большие надежды. Биологические нанокомпьютеры, вживляемые в живые организмы, пока видятся нам как нечто фантастическое, нереальное. Но то, что нереально сегодня, уже завтра может оказаться чем-то обыденным и настолько естественным, что трудно будет представить, как без этого можно было обходиться в прошлом.

Итак, ДНК-вычисления - это раздел области молекулярных вычислений на границе молекулярной биологии и компьютерных наук. Основная идея ДНК-вычислений - построение новой парадигмы, создание новых алгоритмов вычислений на основе знаний о строении и функциях молекулы ДНК и операций, которые выполняются в живых клетках над молекулами ДНК при помощи различных ферментов. К перспективам ДНК-вычислений относится создание биологического нанокомпьютера, который будет способен хранить терабайты информации при объеме в несколько микрометров. Такой компьютер можно будет вживлять в клетку живого организма, а его производительность будет исчисляться миллиардами операций в секунду при энергопотреблении не более одной миллиардной доли ватта.

Преимущества ДНК в компьютерных технологиях

Для современных процессоров и микросхем в качестве строительного материала используется кремний. Но возможности кремния не беспредельны, и в конечном счете мы подойдем к той черте, когда дальнейший рост вычислительной мощности процессоров окажется исчерпан. А потому перед человечеством уже сейчас остро стоит проблема поиска новых технологий и материалов, которые смогли бы в будущем заменить кремний.

Молекулы ДНК могут оказаться тем самым материалом, который впоследствии заменит кремниевые транзисторы с их бинарной логикой. Достаточно сказать, что всего один фунт (453 г) ДНК-молекул обладает емкостью для хранения данных, которая превосходит суммарную емкость всех современных электронных систем хранения данных, а вычислительная мощность ДНК-процессора размером с каплю будет выше самого мощного современного суперкомпьютера.

Более 10 триллионов ДНК-молекул занимают объем всего в 1 см3. Однако такого количества молекул достаточно для хранения объема информации в 10 Тбайт, при этом они могут производить 10 трлн операций в секунду.

Еще одно преимущество ДНК-процессоров в сравнении с обычными кремниевыми процессорами заключается в том, что они могут производить все вычисления не последовательно, а параллельно, что обеспечивает выполнение сложнейших математических расчетов буквально за считаные минуты. Традиционным компьютерам для выполнения таких расчетов потребовались бы месяцы и годы.

Строение молекул ДНК

Как известно, современные компьютеры работают с бинарной логикой, подразумевающей наличие всего двух состояний: логического нуля и единицы. Используя двоичный код, то есть последовательность нулей и единиц, можно закодировать любую информацию. В молекулах ДНК имеется четыре базовых основания: аденин (A), гуанин (G), цитозин (C) и тимин (T), связанных друг с другом в цепочку. То есть молекула ДНК (одинарная цепочка) может иметь, например, такой вид: ATTTACGGCC - здесь используется не двоичная, а четверичная логика. И подобно тому, как в двоичной логике любую информацию можно закодировать в виде последовательности нулей и единиц, в молекулах ДНК можно кодировать любую информацию путем сочетания базовых оснований.

Базовые основания в молекулах ДНК находятся друг от друга на расстоянии 0,34 нанометра, что обусловливает их огромную информативную емкость - линейная плотность составляет 18 Мбит/дюйм. Если же говорить о поверхностной информативной плотности, предполагая, что на одно базовое основание приходится площадь в 1 квадратный нанометр, то она составляет более миллиона гигабит на квадратный дюйм. Для сравнения отметим, что поверхностная плотность записи современных жестких дисков составляет порядка 7 Гбит/дюйм 2.

Другое важное свойство ДНК-молекул заключается в том, что они могут иметь форму регулярной двойной спирали, диаметр которой составляет всего 2 нм. Такая спираль состоит из двух цепей (последовательностей базовых оснований), причем содержание первой цепи строго соответствует содержанию второй.

Это соответствие достигается благодаря наличию водородных связей между направленными навстречу друг другу основаниями двух цепей - попарно G и C или A и T. Описывая это свойство двойной спирали, молекулярные биологи говорят, что цепи ДНК комплементарны за счет образования пар G-C и A-T.

К примеру, если последовательность S записывается как ATTACGTCG, то дополняющая ее последовательность S’ будет иметь вид TAATGCAGC.

Процесс соединения двух одинарных цепочек ДНК путем связывания комплементарных оснований в регулярную двойную спираль называется ренатурацией, а обратный процесс, то есть разъединение двойной цепочки и получение двух одинарных цепочек, - денатурацией (рис. 1).

Рис. 1. Процессы ренатурации и денатурации

Комплементарная особенность строения ДНК-молекул может использоваться при ДНК-вычислениях. К примеру, на основе дополняющих друг друга последовательностей можно реализовать мощнейший механизм коррекции ошибок, который чем-то напоминает технологию зеркалирования данных RAID Level 1.

Базовые операции над ДНК-молекулами

Для различных манипуляций над ДНК-молекулами используются различные энзимы (ферменты). И точно так же, как современные микропроцессоры имеют набор базовых операций типа сложения, сдвига, логических операций AND, OR и NOT NOR, ДНК-молекулы под воздействием энзимов могут выполнять такие базовые операции, как разрезание, копирование, вставка и др. Причем все операции над ДНК-молекулами можно производить параллельно и независимо от других операций, к примеру дополнение цепочки ДНК осуществляется при воздействии на исходную молекулу ферментов - полимераз. Для работы полимеразы необходимо наличие одноцепочечной молекулы (матрицы), определяющей добавляемую цепочку по принципу комплементарности, праймера (небольшого двухцепочечного участка) и свободных нуклеотидов в растворе. Процесс дополнения цепочки ДНК показан на рис. 2.

Рис. 2. Процесс дополнения цепочки ДНК
при воздействии на исходную молекулу полимеразы

Существуют полимеразы, которым не требуются матрицы для удлинения цепочки ДНК. Например, терминальная трансфераза добавляет одинарные цепочки ДНК к обоим концам двухцепочечной молекулы. Таким образом можно конструировать произвольную цепь ДНК (рис. 3).

Рис. 3. Процесс удлинения цепочки ДНК

За укорачивание и разрезание молекул ДНК отвечают ферменты - нуклеазы. Различают эндонуклеазы и экзонуклеазы. Последние могут укорачивать и одноцепочечные и двухцепочечные молекулы с одного или с обоих концов (рис. 4), а эндонуклеазы - только с концов.

Рис. 4. Процесс укорачивания молекулы
ДНК под воздействием экзонуклеазы

Разрезание молекул ДНК возможно под воздействием сайт-специфичных эндонуклеазов - рестриктазов, которые разрезают их в определенном месте, закодированном последовательностью нуклеотидов (сайтом узнавания). Разрез может быть прямым или несимметричным и проходить по сайту узнавания либо вне его. Эндонуклеазы разрушают внутренние связи в молекуле ДНК (рис. 5).

Рис. 5. Разрезание молекулы ДНК
под воздействием рестриктазов

Сшивка - операция, обратная разрезанию, - происходит под воздействием ферментов - лигазов. «Липкие концы» соединяются вместе с образованием водородных связей. Лигазы служат для того, чтобы закрыть насечки, то есть способствовать образованию в нужных местах фосфодиэфирных связей, соединяющих основания друг с другом в пределах одной цепочки (рис. 6).

Рис. 6. Сшивка ДНК-молекул под воздействием лигазов

Еще одна интересная операция над ДНК-молекулами, которую можно отнести к числу базовых, - это модификация. Она используется для того, чтобы рестриктазы не смогли найти определенный сайт и не разрушили молекулу. Существует несколько типов модифицирующих ферментов - метилазы, фосфатазы и т.д.

Метилаза имеет тот же сайт узнавания, что и соответствующая рестриктаза. При нахождении нужной молекулы метилаза модифицирует участок с сайтом так, что рестриктаза уже не сможет идентифицировать эту молекулу.

Копирование, или размножение, ДНК-молекул осуществляется в ходе полимеразной цепной реакции (Polymerase Chain Reaction, PCR) - рис. 7. Процесс копирования можно разделить на несколько стадий: денатурация, праймирование и удлинение. Он происходит лавинообразно. На первом шаге из одной молекулы образуются две, на втором - из двух молекул - четыре, а после n-шагов получается уже 2n молекул.

Рис. 7. Процесс копирования ДНК-молекулы

Еще одна операция, которую можно производить над ДНК-молекулами, - это секвенирование, то есть определение последовательности нуклеотидов в ДНК. Для секвенирования цепочек разной длины применяют различные методы. При помощи метода праймер-опосредованной прогулки удается на одном шаге секвенировать последовательность в 250-350 нуклеотидов. После открытия рестриктаз стало возможным секвенировать длинные последовательности по частям.

Ну и последняя процедура, которую мы упомянем, - это гель-электрофорез, используемый для разделения молекул ДНК по длине. Если молекулы поместить в гель и приложить постоянное электрическое поле, то они будут двигаться по направлению к аноду, причем более короткие молекулы будут двигаться быстрее. Используя данное явление, можно реализовать сортировку ДНК-молекул по длине.

ДНК-вычисления

ДНК-молекулы со своей уникальной формой строения и возможностью реализовать параллельные вычисления позволяют по-другому взглянуть на проблему компьютерных вычислений. Традиционные процессоры выполняют программы последовательно. Несмотря на существование многопроцессорных систем, многоядерных процессоров и различных технологий, направленных на повышение уровня параллелизма, в своей основе все компьютеры, построенные на основе фон-неймановской архитектуры, являются устройствами с последовательным режимом выполнения команд. Все современные процессоры реализуют следующий алгоритм обработки команд и данных: выборка команд и данных из памяти и исполнение инструкций над выбранными данными. Этот цикл повторяется многократно и с огромной скоростью.

ДНК-вычисления имеют в своей основе абсолютно иную, параллельную архитектуру и в ряде случаев именно благодаря этому способны с легкостью рассчитывать те задачи, для решения которых компьютерам на базе фон-неймановской архитектуры потребовались бы годы.

Эксперимент Эдлмана

История ДНК-вычислений начинается в 1994 году. Именно тогда Леонард М. Эдлман (Leonard M. Adleman) попытался решить весьма тривиальную математическую задачу абсолютно нетривиальным способом - с использованием ДНК-вычислений. Фактически это было первой демонстраций прототипа биологического компьютера на основе ДНК-вычислений.

Задача, которую Эдлман выбрал для выполнения с помощью ДНК-вычислений, известна как поиск гамильтонова пути в графе или выбор маршрута путешествия (traveling salesman problem). Смысл ее заключается в следующем: имеется несколько городов, которые необходимо посетить, причем побывать в каждом городе можно только один раз.

Зная пункт отправления и конечный пункт, необходимо определить маршрут путешествия (если он существует). При этом маршрут составляется с учетом возможных авиаперелетов и коннектов различных авиарейсов.

Итак, предположим, что имеется всего четыре города (в эксперименте Эдлмана использовалось семь городов): Атланта (Atlanta), Бостон (Boston), Детройт (Detroit) и Чикаго (Chicago). Перед путешественником ставится задача выбрать маршрут, чтобы попасть из Атланты в Детройт, побывав при этом в каждом городе только один раз. Схемы возможных сообщений между городами показаны на рис. 8.

Рис. 8. Схемы возможных сообщений
между городами

Нетрудно заметить (для этого требуется всего несколько секунд), что единственно возможный маршрут (гамильтонов путь) следующий: Атланта - Бостон - Чикаго - Детройт.

Действительно, при небольшом количестве городов составить такой маршрут довольно просто. Но с увеличением их числа сложность решения задачи экспоненциально возрастает и становится трудновыполнимой не только для человека, но и для компьютера.

Так, на рис. 9 показан граф из семи вершин с указанием возможных переходов между ними. Для поиска гамильтонова пути обычному человеку требуется не более одной минуты. Именно такой граф был использован в эксперименте Эдлмана. На рис. 10 представлен граф из 12 вершин - в этом случае поиск гамильтонова пути оказывается уже не такой простой задачей. Вообще, сложность решения задачи поиска гамильтонова пути возрастает экспоненциально с ростом числа вершин в графе. К примеру, для графа из 10 вершин существует 106 возможных путей; для графа из 20 вершин - 1012, а для графа из 100 вершин - 10100 вариантов. Понятно, что в последнем случае для генерации всех возможных путей и их проверки потребуется огромное время даже для современного суперкомпьютера.

Рис. 9. Поиск оптимального маршрута путешествия

Рис. 10. Граф, состоящий из 12 вершин

Итак, вернемся к нашему примеру с поиском гамильтонова пути в случае четырех городов (см. рис. 8).

Для решения данной задачи с использованием ДНК-вычислений Эдлман закодировал название каждого города в виде одной цепочки ДНК, причем каждая из них содержала 20 базовых оснований. Для простоты мы будем кодировать каждый город ДНК-цепочкой из восьми оснований. ДНК-коды городов показаны в табл. 1. Обратите внимание, что цепочка длиной в восемь базовых оснований оказывается избыточной для кодирования всего четырех городов.

Таблица 1. ДНК-коды городов

Отметим, что для каждого ДНК-кода города, который определяет одинарную ДНК-цепочку, существует и комплементарная цепочка, то есть комплементарный ДНК-код города, причем и ДНК-код города, и комплементраный код абсолютно равноправны.

Далее с помощью одинарных ДНК-цепочек необходимо закодировать все возможные перелеты (Атланта - Бостон, Бостон - Детройт, Чикаго - Детройт и т.д.). Для этого использовался следующий подход. Из названия города отправления брались четыре последних базовых основания, а из названия города прибытия - четыре первых.

К примеру, перелету Атланта - Бостон будет соответствовать следующая последовательность: GCAG TCGG (рис. 11).

Рис. 11. Кодирование перелетов между городами

ДНК-кодирование всех возможных перелетов показано в табл. 2.

Таблица 2. ДНК-коды всех возможных перелетов

Итак, после того как готовы коды городов и возможных перелетов между ними, можно непосредственно переходить к вычислению гамильтонова пути. Процесс вычисления состоит из четырех этапов:

  1. Сгенерировать все возможные маршруты.
  2. Отобрать маршруты, которые начинаются в Атланте и заканчиваются Детройтом.
  3. Выбрать маршруты, длина которых соответствует количеству городов (в нашем случае длина маршрута составляет четыре города).
  4. Выбрать маршруты, в которых каждый город присутствует только один раз.

Итак, на первом этапе мы должны сгенерировать все возможные маршруты. Напомним, что правильный маршрут соответствует перелетам Атланта - Бостон - Чикаго - Детройт. Этому маршруту соответствует ДНК-молекула GCAG TCGG ACTG GGCT ATGT CCGA.

Для того чтобы сгенерировать все возможные маршруты достаточно поместить в пробирку все необходимые и заранее заготовленные ингредиенты, то есть ДНК-молекулы, соответствующие всем возможным перелетам, и ДНК-молекулы, соответствующие всем городам. Но вместо того, чтобы применять одинарные ДНК-цепочки, соответствующие названиям городов, необходимо использовать комплементарные им ДНК-цепочки, то есть вместо ДНК-цепочки ACTT GCAG, соответствующей Атланте, будем применять комплементарную ДНК-цепочку TGAA CGTC и т.д., поскольку ДНК-код города и комплементраный код абсолютно равноправны.

Далее все эти молекулы (достаточно буквально щепотки, которая будет содержать порядка 1014 различных молекул) помещаем в воду, добавляем лигазов, произносим заклинание и… буквально через несколько секунд получаем все возможные маршруты.

Процесс образования цепочек ДНК, соответствующих различным маршрутам, происходит следующим образом. Рассмотрим, к примеру, цепочку GCAG TCGG, отвечающую за перелет Атланта - Бостон. Вследствие высокой концентрации различных молекул, данная цепочка обязательно встретится с комплементарной ДНК-цепочкой AGCC TGAC, соответствующей Бостону. Поскольку группы TCGG и AGCC комплементарны друг другу, то за счет образования водородных связей эти цепочки сцепятся друг с другом (рис. 12).

Рис. 12. Сцепление цепочек, соответствующих
перелету Атланта - Бостон и Бостону

Теперь образовавшаяся цепочка неминуемо встретится с ДНК-цепочкой ACTG GGCT, соответствующей авиаперелету Бостон - Чикаго, и поскольку группа ACTG (первые четыре основания в этой цепочке) комплементарна группе TGAC (последние четыре основания в комплементарном коде Бостона), то ДНК-цепочка ACTG GGCT присоединится к уже образовавшейся цепочке. Далее к этой цепочке таким же образом присоединится ДНК-цепочка, соответствующая городу Чикаго (комплементарный код), а затем и цепочка авиаперелета Чикаго - Детройт. Процесс образования маршрута показан на рис. 13.

Рис. 13. Процесс образования ДНК-цепочки, соответствующей маршруту
Атланта - Бостон - Чикаго - Детройт

Мы рассмотрели пример образования только одного маршрута (причем это именно гамильтонов маршрут). Аналогичным образом получаются и все остальные возможные маршруты (например, Атланта - Бостон - Атланта - Детройт). Важно, что все маршруты формируются одновременно, то есть параллельно. Причем время, требуемое для создания всех возможных маршрутов в данной задаче и всех маршрутов в задаче с 10 или 20 городами, абсолютно одинаково (лишь бы хватило исходных ДНК-молекул). Собственно, именно в параллельном алгоритме ДНК-вычислений и заключается основное преимущество в сравнении с фон-неймановской архитектурой.

Итак, в пробирке образованы ДНК-молекулы, соответствующие всем возможным маршрутам. Однако это еще не решение задачи - нам необходимо выделить ту единственную ДНК-молекулу, которая отвечает за гамильтонов маршрут. Поэтому на следующем этапе необходимо отобрать молекулы, соответствующие маршрутам, начинающимся в Атланте и заканчивающимся в Детройте.

Для этого используется полимеразная цепная реакция (PCR), в результате которой создается множество копий только тех ДНК-цепочек, которые начинаются с кода Атланты и заканчиваются кодом Детройта.

Для реализации полимеразной цепной реакции применяются два прайма: GCAG и GGCT. Процесс копирования ДНК-модекул, начинающихся с ДНК-кода Атланты и заканчивающихся ДНК-кодом Детройта, показан на рис. 14.

Рис. 14. Процесс копирования ДНК-молекул в ходе PCR-реакции

Отметим, что в присутствии праймов GCAG и GGCT будут копироваться и те ДНК-молекулы, которые начинаются с ДНК-кодов Атланты, но не заканчиваются ДНК-кодом Детройта (под действием прайма GCAG), а также ДНК-молекулы, которые заканчиваются ДНК-кодом Детройта, но не начинаются с ДНК-кода Атланты (под действием прайма GGCT). Понятно, что скорость копирования таких молекул будет гораздо ниже скорости копирования ДНК-молекул, начинающихся с ДНК-кода Атланты и заканчивающихся ДНК-кодом Детройта. Следовательно, после PCR-реакции мы получим преобладающее количество ДНК-молекул в форме регулярной двойной спирали, соответствующих маршрутам, начинающимся в Атланте и заканчивающимся в Детройте.

На следующем этапе необходимо выделить молекулы нужной длины, то есть те, что содержат ДНК-коды ровно четырех городов. Для этого используется гель-электрофорез, что позволяет отсортировать молекулы по длине. В результате мы получаем молекулы нужной длины (ровно четыре города), начинающиеся с кода Атланты и заканчивающиеся кодом Детройта.

Теперь необходимо убедиться, что в отобранных молекулах код каждого города присутствует только один раз. Эта операция реализуется с применением процесса, известного как affinity purification.

Для данной операции используется микроскопический магнитный шарик диаметром порядка одного микрона. К нему притягиваются комлементарные ДНК-коды того или иного города, которые выполняют функцию пробы. К примеру, если требуется проверить, присутствует ли в исследуемой ДНК-цепочке код города Бостона, то необходимо сначала поместить магнитный шарик в пробирку с ДНК-молекулами, соответствующими ДНК-кодам Бостона. В результате мы получим магнитный шарик, облепленный нужными нам пробами. Затем этот шарик помещается в пробирку с исследуемыми ДНК-цепочками - в результате к нему (за счет образования водородных связей между комплементарными группами) притянутся ДНК-цепочки, в которых присутствует комплементарный код Бостона. Далее шарик с отсортированными молекулами вынимается и помещается в новый раствор, из которого затем удаляется (при повышении температуры ДНК-молекулы отваливаются от шарика). Данная процедура (сортировка) повторяется последовательно для каждого города, и в результате мы получаем только те молекулы, в которых содержатся ДНК-коды всех городов, а значит, и маршруты, соответствующие гамильтонову пути. Фактически задача решена - осталось лишь просчитать ответ.

Заключение

Эдлман продемонстрировал решение задачи поиска гамильтонова пути на примере всего семи городов и потратил на это семь дней. Это был первый эксперимент, продемонстрировавший возможности ДНК-вычислений. Фактически Эдлман доказал, что, пользуясь вычислениями на ДНК, можно эффективно решать задачи переборного характера, и обозначил технику, которая в дальнейшем послужила основой для создания модели параллельной фильтрации.

Впрочем, многие исследователи не испытывают оптимизма по поводу будущего биологических компьютеров. Вот лишь маленький пример. Если бы подобным методом понадобилось найти гамильтонов путь в графе, состоящем из 200 вершин, потребовалось бы количество ДНК-молекул, сопоставимое по весу со всей нашей планетой! Это принципиальное ограничение, конечно же, является своего рода тупиковой ситуацией. Поэтому многие исследовательские лаборатории (например, компания IBM) предпочли сфокусировать свое внимание на других идеях альтернативных компьютеров, таких как углеродные нанотрубки и квантовые компьютеры.

После эксперимента Эдлмана было проведено множество других исследований возможностей ДНК-вычислений. Например, можно вспомнить опыт Э.Шапиро: в нем был реализован конечный автомат, который может находиться в двух состояниях: S0 и S1 - и отвечает на вопрос: четное или нечетное количество символов содержится во входной последовательности символов.

Сегодня ДНК-вычисления - это не более чем перспективные технологии на уровне лабораторных исследований, причем в таком состоянии они будут находиться еще не один год. Фактически на современном этапе развития необходимо ответить на следующий глобальный вопрос: какой класс задач поддается решению при помощи ДНК и можно ли построить общую модель ДНК-вычислений, пригодную как для реализации, так и для использования?