Амфотерные свойства проявляют кислородные соединения. Амфотерные органические и неорганические соединения. Свойства амфотерных металлов

Амфотерными являются следующие оксиды элементов главных подгрупп: BeO, A1 2 O 3 , Ga 2 O 3 , GeO 2 , SnO, SnO 2 , PbO, Sb 2 O 3 , РоO 2 . Амфотерными гидроксидами являются следующие гидроксиды элементов глав­ных подгрупп: Ве(ОН) 2 , А1(ОН) 3 , Sc(OH) 3 , Ga(OH) 3 , In(OH) 3 , Sn(OH) 2 , SnО 2 ·nH 2 О, Pb(OH) 2 , PbО 2 ·nH 2 О.

Основный характер оксидов и гидроксидов элементов одной подгруппы усили­вается с возрастанием порядкового номера элемента (при сравнении оксидов и гидроксидов элементов в одной и той же степени окисления). Например, N 2 O 3 , Р 2 O 3 , As 2 O 3 – кис­лотные оксиды, Sb 2 O 3 – амфотерный оксид, Bi 2 O 3 – основ­ный оксид.

Рассмотрим амфотерные свойства гидрокси­дов на примере соединений бериллия и алюминия.

Гидроксид алюминия проявляет амфотерные свойства, реагирует как с основаниями, так и с кислотами и образует два ряда солей:

1) в которых элемент А1 нахо­дится в форме катиона;

2А1(ОН) 3 + 6НС1 = 2А1С1 3 + 6Н 2 O А1(ОН) 3 + 3Н + = А1 3+ + 3Н 2 O

В этой реакции А1(ОН) 3 выполняет функцию основа­ния, образуя соль, в которой алюминий является катио­ном А1 3+ ;

2) в которых элемент А1 входит в сос­тав аниона (алюминаты).

А1(ОН) 3 + NaOH = NaA1O 2 + 2Н 2 O.

В этой реакции А1(ОН) 3 выполняет функцию кисло­ты, образуя соль, в которой алюминий входит в состав аниона AlO 2 – .

Формулы растворенных алюминатов записывают упро­щенно, имея ввиду продукт, образующийся при обезвожи­вании соли.

В химической литературе можно встретить разные фор­мулы соединений, образующихся при растворении гидроксида алюминия в щёлочи: NaA1О 2 (метаалюминат натрия), Na тетрагидроксоалюминат натрия. Эти формулы не противоречат друг другу, так как их различие связано с разной степенью гидратации этих соединений: NaA1О 2 ·2Н 2 О – это иная запись Na. При растворении А1(ОН) 3 в избытке щелочи образуется тетрагидроксоалюминат натрия:

А1(ОН) 3 + NaOH = Na.

При спекании реагентов – образуется метаалюминат натрия:

А1(ОН) 3 + NaOH ==== NaA1О 2 + 2Н 2 О.

Таким образом, можно говорить, что в водных растворах присутствуют одновременно такие ионы, как [А1(ОН) 4 ] – или [А1(ОН) 4 (Н 2 О) 2 ] – (для случая, когда составляется уравнение реакции с учетом гидратной оболочки), а запись A1О 2 – явля­ется упрощенной.

Из-за способности реагировать со щелочами гидроксид алюминия, как правило, не получают действием щелочи на растворы солей алюминия, а используют раствор аммиака:

A1 2 (SО 4) 3 + 6 NH 3 ·Н 2 О = 2А1(ОН) 3 + 3(NH 4) 2 SО 4 .

Среди гидроксидов элементов второго периода амфотерные свойства проявляют гидроксид бериллия (сам бериллий проявляет диагональное сходство с алюминием).

С кислотами:

Ве(ОН) 2 + 2НС1 = ВеС1 2 + 2Н 2 О.

С основаниями:

Ве(ОН) 2 + 2NaOH = Na 2 (тетрагидроксобериллат натрия).

В упрощенном виде (если представить Ве(ОН) 2 как кис­лоту Н 2 ВеО 2)

Ве(ОН) 2 + 2NaOH(конц.горяч.) = Na 2 BeО 2 + 2H 2 О.

бериллат Na

Гидроксиды элементов побочных подгрупп, соответствующие высшим степеням окисления, чаще всего имеют кислотные свойства: например, Мn 2 О 7 – НМnО 4 ; CrО 3 – H 2 CrО 4 . Для низших оксидов и гидроксидов харак­терно преобладание основных свойств: СrО – Сr(ОН) 2 ; МnО – Mn(OH) 2 ; FeO – Fe(OH) 2 . Промежуточные соедине­ния, соответствующие степеням окисления +3 и +4, часто проявляют амфотерные свойства: Сr 2 О 3 – Cr(OH) 3 ; Fe 2 О 3 – Fe(OH) 3 . Проиллюстрируем эту закономерность на примере соеди­нений хрома (таблица 9).

Таблица 9 – Зависимость характера оксидов и соответствующих им гидроксидов от степени окисления элемента

Взаимодействие с кислотами приводит к образованию соли, в которой элемент хром находится в форме катиона:

2Cr(OH) 3 + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 6H 2 O.

сульфат Cr(III)

Взаимодействие с основаниями приводит к образованию соли, в которой элемент хром входит в состав аниона:

Cr(OH) 3 + 3NaOH = Na 3 + 3H 2 О.

гексагидроксохромат (III) Na

Оксид и гидроксид цинка ZnO, Zn(OH) 2 – типично ам­фотерные соединения, Zn(OH) 2 легко растворяется в раство­рах кислот и щелочей.

Взаимодействие с кислотами приводит к образованию соли, в которой элемент цинк находится в форме катиона:

Zn(OH) 2 + 2HC1 = ZnCl 2 + 2H 2 O.

Взаимодействие с основаниями приводит к образованию соли, в которой элемент цинк находится в составе аниона. При взаимодействии со щелочами в растворах образуются тетрагидроксоцинкаты, при сплавлении – цинкаты:

Zn(OH) 2 + 2NaOH = Na 2 .

Или при сплавлении:

Zn(OH) 2 + 2NaOH = Na 2 ZnO 2 + 2Н 2 O.

Получают гидроксид цинка аналогично гидроксиду алю­миния.

Амфотерные металлы - это простые вещества, которые по структуре, химическим и сходны с металлической группой элементов. Сами по себе металлы не могут проявлять амфотерных свойств, в отличие от их соединений. Например, оксиды и гидроксиды некоторых металлов обладают двойственной химической природой - в одних условиях они ведут себя как кислоты, а в других обладают свойствами щелочей.

Основные амфотерные металлы - это алюминий, цинк, хром, железо. К этой же группе элементов можно отнести бериллий и стронций.

амфотерность?

Впервые это свойство было обнаружено достаточно давно. А термин «амфотерные элементы» был введен в науку в 1814 году известными химиками Л. Тенаром и Ж. Гей-Люссаком. В те времена химические соединения принято было разделять на группы, которые соответствовали их основным свойствами во время реакций.

Тем не менее, группа оксидов и оснований обладала двойственными способностями. В некоторых условиях такие вещества вели себя как щелочи, в других же, наоборот, действовали как кислоты. Именно так и возник термин «амфотерность». Для таких поведение во время кислотно-основной реакции зависит от условий ее проведения, природы участвующих реагентов, а также от свойств растворителя.

Интересно, что в естественных условиях амфотерные металлы могут взаимодействовать как с щелочью, так и с кислотой. Например, во время реакции алюминия с образуется сульфат алюминия. А при реакции этого же метала с концентрированной щелочью образуется комплексная соль.

Амфотерные основания и их основные свойства

При нормальных условиях это твердые вещества. Они практически не растворяются в воде и считаются довольно слабыми электролитами.

Основной метод получения таких оснований - это реакция соли металла с небольшим количеством щелочи. Реакцию осаждения нужно проводить медленно и осторожно. Например, при получении гидроксида цинка в пробирку с хлоридом цинка осторожно, каплями добавляют едкий натр. Каждый раз нужно несильно встряхивать емкость, чтобы увидеть белый осадок металла на дне посуды.

С кислотами и амфотерные вещества реагируют как основания. Например, при реакции гидроксида цинка с соляной кислотой образуется хлорид цинка.

А вот во время реакций с основаниями амфотерные основания ведут себя как кислоты.

Кроме того, при сильном нагревании разлагаются с образованием соответствующего амфотерного оксида и воды.

Самые распространенные амфотерные металлы: краткая характеристика

Цинк относится к группе амфотерных элементов. И хотя сплавы этого вещества широко использовались еще в древних цивилизациях, в чистом виде его смогли выделить лишь в 1746 году.

Чистый металл представляет собой достаточно хрупкое вещество голубоватого цвета. На воздухе цинк быстро окисляется - его поверхность тускнеет и покрывается тонкой пленкой оксида.

В природе цинк существует преимущественно в виде минералов - цинкитов, смитсонитов, каламитов. Самое известное вещество - это цинковая обманка, которая состоит из сульфида цинка. Самые большие месторождения этого минерала находятся в Боливии и Австралии.

Алюминий на сегодняшний день считается наиболее распространенным металлом на планете. Его сплавы использовались на протяжении многих столетий, а в 1825 году вещество было выделено в чистом виде.

Чистый алюминий представляет собой легкий металл серебристого цвета. Он легко поддается механической обработке и литью. Этот элемент обладает высокой электро- и теплопроводностью. Кроме того, данный металл стоек к коррозии. Дело в том, что поверхность его покрыта тонкой, но очень стойкой оксидной пленкой.

На сегодняшний день алюминий широко применяется в промышленности.

Класс: 8

Цели урока:
-формирование понятия «амфотерность», применение знаний о кислотно-основных свойствах соединений.

Задачи урока:
-обеспечить усвоение свойств амфотерных соединений;
-обобщить сведения о характерных свойствах оксидов, кислот и оснований, подготовиться к выполнению практической работы;
-закрепить навык составления уравнений реакций;
-развивать умение анализировать информацию, выделять причинно-следственные связи;
-совершенствовать умение находить общие черты и различия в составе и свойствах веществ;
-поддерживать уверенность в своих силах;
-воспитывать навыки коллективной работы и внимательное отношение к мнению другого человека.

Тип урока:
Комбинированный урок изучения новых знаний и применения знаний, умений, навыков.

Этапы урока:

I. Организация начала урока.

Учитель: Ребята, сегодня нам предстоит подготовиться к практической работе по характерным свойствам изученных веществ (оксидов, кислот и оснований). Кроме того, мы познакомимся с веществами, которые обладают и кислотными, и основными свойствами, проявляя их в зависимости от того с чем реагируют. Вам предстоит серьёзная индивидуальная и групповая работа, а в качестве помощников мы используем систему цветных символов и схемы , отражающие химические свойства веществ.
В основе системы цветных символов лежит способность человека запоминать понятия и термины, ассоциируя их с цветом (например, название станций метрополитена часто ассоциируется с цветом ветки на схеме).

II. Проверка усвоения предыдущего материала.

Учитель: Для выполнения 1-го задания у вас на столах лежат карточки красного и синего цветов, на каждой карточке формула сложного вещества. Вещества разные, но относятся к одному классу, какому?
Ученики выясняют, что это оксиды (формулы кислотных оксидов стоит написать на красных карточках, а формулы основных оксидов на синих ).
Учитель : Работать будем в парах, вам нужно написать уравнения реакций взаимодействия веществ, записанных на карточках, с водой. Каждая мини-группа должна составить 2 уравнения. На доске работать индивидуально будут два ученика, в их задачу входит написать реакцию взаимодействия оксида с водой и составить схему правила такого взаимодействия из отдельных слов. (Ученику, который пишет уравнение с кислотным оксидом предлагается работать красным маркером или мелом, а тому, у кого основный оксид, синим).

По ходу выполнения задания необходимо обсудить:
-состав основных оксидов;
-состав кислотных оксидов;
-результат взаимодействия оксидов с водой;
-какие кислотные и основные оксиды не взаимодействуют с водой;
-состав и правила составления формул оснований и кислот.

На доске должна появиться запись:

После выполнения задания необходимо обсудить:
-какие оксиды мы обозначили красным, а какие синим цветом;
-как на практической работе учащиеся смогут доказать, что полученное вещество является кислотой или основанием;
-что такое индикаторы и как они изменяют цвет.

III. Подготовка учащихся к сознательному усвоению новых знаний.

Учитель: Мы обсудили с вами как можно экспериментально доказать наличие полученной кислоты или щелочи, но сегодня наша работа теоретическая и нам предстоит выполнить 2-е задание. Теперь на развороте доски записаны схемы правил ( в тех же цветовых решениях) , а вы постарайтесь подобрать примеры уравнений реакций. Работаем в группах, потом 2 человека выполняют задание у доски.

Эта схема ещё раз напоминает нам правило:
Наиболее типичными для соединений являются реакции взаимодействия с противоположными по свойствам веществами.

Учитель : Не случайно центральная часть доски у нас пока пустует. Там осталось место для особых соединений, их название произошло от греческого слова amphoteros, означающего « и тот и другой». Однокоренным к нему является слово амфибия, давайте вспомним, что оно значит?

IV. Изучение нового материала.

Амфотерность - способность соединений проявлять либо кислотные либо основные свойства, в зависимости от того с чем они реагируют.
Амфотерных соединений довольно много. Из оксидов двойственными свойствами обладают: оксид цинка, оксид алюминия, оксиды меди, оксиды олова, оксиды свинца, оксид железа (III) и др. (На доске можно записать формулы амфотерных оксидов )
Заменим в наших схемах таблички «основный оксид» и «кислотный оксид» на табличку «амфотерный оксид» и получим новые правила. Для выполнения 3-го задания используем схемы, записанные на доске.
3 задание: Зная, что оксид цинка является амфотерным, составьте уравнения реакций его взаимодействия с соляной кислотой и гидроксидом натрия.

Учитель: С водой амфотерные оксиды не реагируют. Однако, сама вода является классическим примером амфотерного оксида, т.к. реагирует и с кислотными, и с основными оксидами.

V. Первичное осмысление знаний.

Учитель :Как же распознать, что соединение является амфотерным?
Амфотерный характер носят оксиды и гидроксиды большинства переходных элементов и многих элементов побочных подгрупп.
Для удобства определения характера соединений некоторые варианты таблицы Д.И.Менделеева снабжены цветными значками, похожими на те, которыми мы сегодня пользовались. Значок синего цвета я подпишу, а вы сами подпишите два других.

Помните, что оксиды и гидроксиды активных металлов всегда основны,
Соединения неметаллов обычно носят кислотный характер.

VI. Закрепление знаний.

Учитель: Ваше 4-е задание самое сложное, но если вы запомнили химические свойства оснований и кислот, то справитесь и с ним.
4-е задание: Запишите уравнения реакций взаимодействия амфотерного гидроксида цинка с кислотой и щелочью. Перед тем как вы начнете самостоятельную работу над этим заданием, я немного помогу.
Давайте вместе составим формулу гидроксида цинка Zn(OH)2. В таком виде мы привыкли записывать основания, но это же вещество можно изобразить и в виде кислоты, достаточно раскрыть скобки и перенести водород на первое место: H2ZnO2 . Такая кислота существует, она называется цинковая, а её соли- цинкаты.

VII. Контроль и самопроверка знаний.

Разбирая 4-е задание, стоит обратить внимание на:
-химические свойства кислот и оснований;
-составление названий солей;
-двоякость свойств амфотерных соединений.
Учащимся, которые быстро справились с заданием можно предложить выполнить задание из учебника после параграфа.

VIII. Обобщение и систематизация знаний.

Учитель: Для того, чтобы помочь себе запомнить правила написания продуктов реакции, существует много различных схем. Я приведу пример для оксидов, а вы попробуйте составить подобные схемы для кислот, оснований и амфотерных гидроксидов.

IX. Информация о домашнем задании, подведение итогов урока.

В качестве домашнего задания предлагается подготовиться к практической работе

Простые вещества сходные с металлическими элементами по структуре и ряду химических и физических параметров называют амфотерными, т.е. это те элементы, проявляющие химическую двойственность. Надо отметить, что это не сами металли, а их соли или оксиды. К, примеру, оксиды некоторых металлов могут обладать двумя свойствами, при одних условиях они могут проявлять свойства присущие кислотам, в других, они ведут себя как щелочи.

К основным амфотерным металлам относят алюминий, цинк, хром и некоторые другие.

Термин амфотерность был введен в оборот в начале XIX века. В то время химические вещества разделяли на основании их сходных свойств, проявляющиеся при химических реакциях.

Что такое амфотерные металлы

Список металлов, которые можно отнести амфотерным, достаточно велик. Причем некоторые из них можно назвать амфотерными, а некоторые - условно.

Перечислим порядковые номера веществ, под которыми они расположены в Таблице Менделеева. В список входят группы с 22 по 32, с 40 по 51 и еще много других. Например, хром, железо и ряд других можно с полным основанием называть основными, к последним можно отнести и стронций с бериллием.

Кстати, самым ярким представителем амфорных металлов считают алюминий.

Именно его сплавы в течение длительного времени используют практически во всех отраслях промышленности. Из него делают элементы фюзеляжей летательных аппаратов, кузовов автомобильного транспорта, и кухонную посуду. Он стал незаменим в электротехнической промышленности и при производстве оборудования для тепловых сетей. В отличии от многих других металлов алюминий постоянно проявляет химическую активность. Оксидная пленка, которая покрывает поверхность металла, противостоит окислительным процессам. В обычных условиях, и в некоторых типах химических реакций алюминий может выступать в качестве восстановительного элемента.

Этот металл способен взаимодействовать с кислородом, если его раздробить на множество мелких частиц. Для проведения операции такого рода необходимо использование высокой температуры. Реакция сопровождается выделением большого количества тепловой энергии. При повышении температуры в 200 ºC, алюминий вступает в реакцию с серой. Все дело в том, что алюминий, не всегда, в нормальных условиях, может вступать в реакцию с водородом. Между тем, при его смешивании с другими металлами могут возникать разные сплавы.

Еще один ярко выраженный металл, относящийся к амфотерным - это железо. Этот элемент имеет номер 26 и расположен между кобальтом и марганцем. Железо, самый распространенный элемент, находящийся в земной коре. Железо можно классифицировать как простой элемент, имеющий серебристо-белый цвет и отличается ковкостью, разумеется, при воздействии высоких температур. Может быстро начинать коррозировать под воздействием высоких температур. Железо, если поместить его в чистый кислород полностью прогорает и может воспламениться на открытом воздухе.

Такой металл обладает способностью быстро переходить в стадию корродирования при воздействии высокой температуры. Помещенное в чистый кислород железо полностью перегорает. Находясь на воздухе металлическое вещество, быстро окисляется вследствие чрезмерной влажности, то есть, ржавеет. При горении в кислородной массе образуется своеобразная окалина, которая называется оксидом железа.

Свойства амфотерных металлов

Они определены самим понятием амфотерности. В типовом состоянии, то есть обычной температуре и влажности, большая часть металлов представляет собой твердые тела. Ни один металл не подлежит растворению в воде. Щелочные основания проявляются только после определенных химических реакций. В процессе прохождения реакции соли металла вступают во взаимодействие. Надо отметить что правила безопасности требуют особой осторожности при проведении этой реакции.

Соединение амфотерных веществ с оксидами или самими кислотами первые показывают реакцию, которая присуща основаниями. В тоже время если их соединять с основаниями, то будут проявляться кислотные свойства.

Нагрев амфотерных гидроксидов вынуждает их распадаться на воду и оксид. Другими словами свойства амфотерных веществ весьма широки и требуют тщательного изучения, которое можно выполнить во время химической реакции.

Свойства амфотерных элементов можно понять, сравнив их с параметрами традиционных материалов. Например, большинство металлов имеют малый потенциал ионизации и это позволяет им выступать в ходе химических процессов восстановителями.

Амфотерные - могут показать как восстановительные, так и окислительные характеристики. Однако, существуют соединения которые характеризуются отрицательным уровнем окисления.

Абсолютно все известные металлы имеют возможность образовывать гидроксиды и оксиды.

Всем металлам свойственна возможность образования основных гидроксидов и оксидов. Кстати, металлы могут вступать в реакцию окисления только с некоторыми кислотами. Например, реакция с азотной кислотой может протекать по-разному.

Амфотерные вещества, относящиеся к простым, обладают явными различиями по структуре и особенностям. Принадлежность к определенному классу можно у некоторых веществ определить на взгляд, так, сразу видно что медь - это металл, а бром нет.

Как отличить металл от неметалла

Главное различие заключается в том, что металлы отдают электроны, которые находятся во внешнем электронном облаке. Неметаллы, активно их притягивают.

Все металлы являются хорошими проводниками тепла и электричества, неметаллы, такой возможности лишены.

Основания амфотерных металлов

В нормальных условиях это вещества не растворяются в воде и их можно спокойно отнести к слабым электролитам. Такие вещества получают после проведения реакции солей металла и щелочи. Эти реакции довольно опасны для тех, кто их производит и поэтому, например, для получения гидроксида цинка в емкость с хлоридом цинка медленно и аккуратно, по капле надо вводить едкий натр.

Вместе тем, амфотерные - взаимодействуют с кислотами как основания. То есть при выполнении реакции между соляной кислотой и гидроксидом цинка, появится хлорид цинка. А при взаимодействии с основаниями, они ведут себя как кислоты.

Химия – это всегда единство противоположностей.

Рассмотрим элементы периодической системы, соединения которых проявляют амфотерные (противоположные) свойства.

· Некоторые элементы, например, соединения К (K2O - оксид, KOH - гидроксид) проявляют основные свойства .

Основные свойства - взаимодействие с кислотными оксидами и кислотами.

Почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды.

· Некоторые элементы (все неметаллы и d-элементы со степенями окисления +5 и +6) образуют кислотные соединения.

Кислотные соединения – это оксиды и соответствующие кислородсодержащие кислоты, они взаимодействуют с основными оксидами и основаниями, образуя соли

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные и основные свойства, то есть являются амфотерными соединениями .

Большинство амфотерных оксидов и гидроксидов - твердые (или гелеобразные) вещества, мало- или нерастворимые в воде.

Какие элементы образуют амфотерные соединения?

Есть правило, немного условное, но зато вполне практичное:

· Элементы лежат на условно проведенной диагонали Be - At: самые часто встречающиеся в школьной программе - это Be и Al

· Амфотерные гидроксиды и оксиды образуются металлами - d-элементами в средней степени окисления, например

Cr 2 O 3 , Cr(OH) 3; Fe 2 O 3 , Fe(OH) 3

· И три исключения: металлы Zn, Pb, Sn образуют следующие соединения, и амфотерные соединения.

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды):

ZnO, Zn(OH) 2 , BeO, Be(OH) 2 , PbO, Pb(OH) 2 , SnO, Sn(OH) 2 , Al 2 O 3 , Al(OH) 3 , Fe 2 O 3 , Fe(OH) 3 , Cr 2 O 3 , Cr(OH) 3

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами .

с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

ZnO + H 2 SO 4 → ZnSO 4 + H 2 O

BeO + HNO 3 → Be(NO 3) 2 + H 2 O

Точно так же реагируют гидроксиды:

Fe(OH) 3 + 3HCl → FeCl 3 + 3H 2 O

Pb(OH) 2 + 2HCl → PbCl 2 + 2H 2 O

· С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

· Взаимодействие основных соединений с амфотерными при сплавлении.

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn(OH) 2 как кислоту. У кислоты водород спереди, вынесем его:H 2 ZnO 2 . И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO 2 2- двухвалентный:

2KOH (тв.) + H 2 ZnO 2(тв.) (t,сплавление)→ K 2 ZnO 2 + 2H 2 O

Полученное вещество K 2 ZnO 2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H 2 ZnO 2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: H 2 ZnO 2 – нехорошо. Пишем как обычно Zn(OH) 2 , но подразумеваем (для собственного удобства), что это «кислота»:

2KOH (тв.) + Zn(OH) 2(тв.) (t,сплавление)→ K 2 ZnO 2 + 2H 2 O

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

Be(OH) 2(тв.) + 2NaOH (тв.) (t,сплавление)→ 2H 2 O + Na 2 BeO 2 (метабериллат натрия, или бериллат)

С амфотерными гидроксидами с тремя группами OH (Al(OH) 3 , Cr(OH) 3 ,Fe(OH) 3) немного иначе.

Разберем на примере гидроксида алюминия: Al(OH) 3 , запишем в виде кислоты: H 3 AlO 3 , но в таком виде не оставляем, а выносим оттуда воду:

H 3 AlO 3 – H 2 O → HAlO 2 + H 2 O.

Вот с этой «кислотой» (HAlO 2) мы и работаем:

HAlO 2 + KOH → H 2 O + KAlO 2 (метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO 2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH) 3(тв.) + KOH (тв.) (t,сплавление)→ 2H 2 O + KAlO 2 (метаалюминат калия)

То же самое и с гидроксидом хрома: Cr(OH) 3 → H 3 CrO 3 → HCrO 2

Cr(OH) 3(тв.) + KOH (тв.) (t,сплавление)→ 2H 2 O + KCrO 2 (метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» (щелочи) и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды.

Взаимодействия:

1. Амфотерного оксида с сильноосновным оксидом:

ZnO (тв.) + K 2 O (тв.) (t,сплавление)→ K 2 ZnO 2 (метацинкат калия, или просто цинкат калия)

2. Амфотерного оксида со щелочью:

ZnO (тв.) + 2KOH (тв.) (t,сплавление)→ K 2 ZnO 2 + H 2 O

3. Амфотерного гидроксида с сильноосновным оксидом:

Zn(OH) 2(тв.) + K 2 O (тв.) (t,сплавление)→ K 2 ZnO 2 + H 2 O

4. Амфотерного гидроксида со щелочью:

Zn(OH) 2(тв.) + 2KOH (тв.) (t,сплавление)→ K 2 ZnO 2 + 2H 2 O

Запомните, реакции, приведенные выше, протекают при сплавлении .

· Взаимодействие амфотерных соединений со ЩЕЛОЧАМИ (здесь только щелочи) в растворе.

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д..

Запишем сокращенное ионное уравнение этих процессов:

Al(OH) 3 + OH - → Al(OH) 4 -

Образовавшийся ион называется «Тетрагидроксоалюминат-ион». Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки .

Al(OH) 3 + KOH → K (тетрагидроксоалюминат калия)

Не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте в виду, что сумма их должна быть равна нулю.

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

Al 2 O 3 + NaOH → Na

Но эта реакция у вас не уравнивается. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na 3 + 6H 2 SO 4 → 3Na 2 SO 4 + Al 2 (SO 4) 3 + 12H 2 O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.