Заместете израза a като степен. Изразете го като степен на изразеност. Преобразуване на степени с променливи в степента

Нека разгледаме темата за трансформиране на изрази със степени, но първо нека се спрем на редица трансформации, които могат да бъдат извършени с всякакви изрази, включително степенни. Ще научим как да отваряме скоби, да добавяме подобни термини, да работим с бази и показатели и да използваме свойствата на степените.

Yandex.RTB R-A-339285-1

Какво представляват изразите на властта?

В училищните курсове малко хора използват фразата „мощни изрази“, но този термин постоянно се среща в колекциите за подготовка за Единния държавен изпит. В повечето случаи фразата обозначава изрази, които съдържат степени в своите записи. Това ще отразим в нашата дефиниция.

Определение 1

Мощно изразяванее израз, който съдържа степени.

Нека дадем няколко примера за изрази на степен, започвайки със степен с естествен показател и завършвайки със степен с реален показател.

Най-простите изрази за степен могат да се считат за степени на число с естествен показател: 3 2, 7 5 + 1, (2 + 1) 5, (− 0, 1) 4, 2 2 3 3, 3 a 2 − a + a 2, x 3 − 1 , (a 2) 3 . А също и степени с нулев показател: 5 0, (a + 1) 0, 3 + 5 2 − 3, 2 0. И степени с цели отрицателни степени: (0, 5) 2 + (0, 5) - 2 2.

Малко по-трудно е да се работи със степен, която има рационални и ирационални показатели: 264 1 4 - 3 3 3 1 2, 2 3, 5 2 - 2 2 - 1, 5, 1 a 1 4 a 1 2 - 2 a - 1 6 · b 1 2 , x π · x 1 - π , 2 3 3 + 5 .

Индикаторът може да бъде променливата 3 x - 54 - 7 3 x - 58 или логаритъма x 2 · l g x − 5 · x l g x.

Заехме се с въпроса какво представляват изразите на сила. Сега нека започнем да ги конвертираме.

Основни видове преобразувания на степенни изрази

Първо, ще разгледаме основните трансформации на идентичност на изрази, които могат да бъдат изпълнени със степенни изрази.

Пример 1

Изчислете стойността на израз на степен 2 3 (4 2 − 12).

Решение

Ние ще извършим всички трансформации в съответствие с реда на действията. В този случай ще започнем с извършване на действията в скоби: ще заменим степента с цифрова стойност и ще изчислим разликата на две числа. Имаме 2 3 (4 2 − 12) = 2 3 (16 − 12) = 2 3 4.

Всичко, което трябва да направим, е да сменим степента 2 3 неговото значение 8 и изчислете продукта 8 4 = 32. Ето нашия отговор.

отговор: 2 3 · (4 2 − 12) = 32 .

Пример 2

Опростете израза със степени 3 a 4 b − 7 − 1 + 2 a 4 b − 7.

Решение

Изразът, даден ни в изложението на проблема, съдържа подобни термини, които можем да дадем: 3 a 4 b − 7 − 1 + 2 a 4 b − 7 = 5 a 4 b − 7 − 1.

отговор: 3 · a 4 · b − 7 − 1 + 2 · a 4 · b − 7 = 5 · a 4 · b − 7 − 1 .

Пример 3

Изразете израза със степени 9 - b 3 · π - 1 2 като произведение.

Решение

Нека си представим числото 9 като степен 3 2 и приложете формулата за съкратено умножение:

9 - b 3 π - 1 2 = 3 2 - b 3 π - 1 2 = = 3 - b 3 π - 1 3 + b 3 π - 1

отговор: 9 - b 3 · π - 1 2 = 3 - b 3 · π - 1 3 + b 3 · π - 1 .

Сега да преминем към анализа трансформации на идентичността, което може да се приложи конкретно към изрази на степен.

Работа с основа и експонента

Степента в основата или експонентата може да има числа, променливи и някои изрази. например, (2 + 0, 3 7) 5 − 3, 7И . Работата с такива записи е трудна. Много по-лесно е да замените израза в основата на степента или израза в експонентата с идентично равен израз.

Трансформациите на степен и експонента се извършват по известните ни правила отделно един от друг. Най-важното е, че трансформацията води до израз, идентичен с оригиналния.

Целта на трансформациите е да се опрости оригиналния израз или да се получи решение на проблема. Например в примера, който дадохме по-горе, (2 + 0, 3 7) 5 − 3, 7 можете да следвате стъпките, за да преминете към степента 4 , 1 1 , 3 . Като отворим скобите, можем да представим подобни членове на основата на степента (a · (a + 1) − a 2) 2 · (x + 1)и да получите израз на повече сила прост тип a 2 (x + 1).

Използване на свойства на степен

Свойствата на степените, записани под формата на равенства, са един от основните инструменти за преобразуване на изрази със степени. Тук представяме основните, като вземем предвид това аИ bса всякакви положителни числа и rИ s- произволни реални числа:

Определение 2

  • a r · a s = a r + s ;
  • a r: a s = a r − s ;
  • (a · b) r = a r · b r ;
  • (a: b) r = a r: b r ;
  • (a r) s = a r · s.

В случаите, когато имаме работа с естествени, цели, положителни показатели, ограниченията върху числата a и b могат да бъдат много по-малко строги. Така например, ако вземем предвид равенството a m · a n = a m + n, Къде мИ пса естествени числа, тогава ще е вярно за всякакви стойности на a, както положителни, така и отрицателни, както и за а = 0.

Свойствата на степените могат да се използват без ограничения в случаите, когато основите на мощностите са положителни или съдържат променливи, чийто диапазон от допустими стойности е такъв, че базите приемат само положителни стойности върху него. Всъщност в рамките на училищна програмаВ математиката задачата на ученика е да избере подходящо свойство и да го приложи правилно.

Когато се подготвяте да влезете в университети, може да срещнете проблеми, при които неточното прилагане на свойства ще доведе до стесняване на DL и други трудности при решаването. В този раздел ще разгледаме само два такива случая. Повече информация по темата можете да намерите в темата „Преобразуване на изрази чрез свойствата на степените“.

Пример 4

Представете си израза a 2 , 5 (a 2) − 3: a − 5 , 5под формата на мощност с основа а.

Решение

Първо, използваме свойството степенуване и преобразуваме втория фактор, използвайки го (a 2) − 3. След това използваме свойствата на умножение и деление на степени с една и съща основа:

a 2 , 5 · a − 6: a − 5 , 5 = a 2 , 5 − 6: a − 5 , 5 = a − 3 , 5: a − 5 , 5 = a − 3 , 5 − (− 5 , 5) = a 2 .

отговор: a 2, 5 · (a 2) − 3: a − 5, 5 = a 2.

Преобразуването на степенни изрази според свойството степен може да се извърши както отляво надясно, така и в обратна посока.

Пример 5

Намерете стойността на степенния израз 3 1 3 · 7 1 3 · 21 2 3 .

Решение

Ако приложим равенството (a · b) r = a r · b r, от дясно на ляво, получаваме произведение от вида 3 · 7 1 3 · 21 2 3 и след това 21 1 3 · 21 2 3 . Нека съберем степените при умножение на степени с еднакви основи: 21 1 3 · 21 2 3 = 21 1 3 + 2 3 = 21 1 = 21.

Има и друг начин за извършване на трансформацията:

3 1 3 · 7 1 3 · 21 2 3 = 3 1 3 · 7 1 3 · (3 · 7) 2 3 = 3 1 3 · 7 1 3 · 3 2 3 · 7 2 3 = = 3 1 3 · 3 2 3 7 1 3 7 2 3 = 3 1 3 + 2 3 7 1 3 + 2 3 = 3 1 7 1 = 21

отговор: 3 1 3 7 1 3 21 2 3 = 3 1 7 1 = 21

Пример 6

Като се има предвид израз на мощност a 1, 5 − a 0, 5 − 6, въведете нова променлива t = a 0,5.

Решение

Нека си представим степента а 1, 5как 0,5 3. Използване на свойството градуси към градуси (a r) s = a r · sот дясно на ляво и получаваме (a 0, 5) 3: a 1, 5 − a 0, 5 − 6 = (a 0, 5) 3 − a 0, 5 − 6. Можете лесно да въведете нова променлива в получения израз t = a 0,5: получаваме t 3 − t − 6.

отговор: t 3 − t − 6 .

Преобразуване на дроби, съдържащи степени

Обикновено имаме работа с две версии на степенни изрази с дроби: изразът представлява дроб със степен или съдържа такава дроб. Всички основни трансформации на дроби са приложими към такива изрази без ограничения. Те могат да бъдат намалени, доведени до нов знаменател или да се работи отделно с числителя и знаменателя. Нека илюстрираме това с примери.

Пример 7

Опростете израза за степен 3 · 5 2 3 · 5 1 3 - 5 - 2 3 1 + 2 · x 2 - 3 - 3 · x 2 .

Решение

Имаме работа с дроб, така че ще извършим трансформации както в числителя, така и в знаменателя:

3 5 2 3 5 1 3 - 5 - 2 3 1 + 2 x 2 - 3 - 3 x 2 = 3 5 2 3 5 1 3 - 3 5 2 3 5 - 2 3 - 2 - x 2 = = 3 5 2 3 + 1 3 - 3 5 2 3 + - 2 3 - 2 - x 2 = 3 5 1 - 3 5 0 - 2 - x 2

Поставете знак минус пред дробта, за да промените знака на знаменателя: 12 - 2 - x 2 = - 12 2 + x 2

отговор: 3 5 2 3 5 1 3 - 5 - 2 3 1 + 2 x 2 - 3 - 3 x 2 = - 12 2 + x 2

Дробите, съдържащи степени, се редуцират до нов знаменател по същия начин като рационалните дроби. За да направите това, трябва да намерите допълнителен фактор и да умножите числителя и знаменателя на дробта по него. Необходимо е да изберете допълнителен коефициент по такъв начин, че да не отива на нула за никакви стойности на променливи от ODZ променливите за оригиналния израз.

Пример 8

Намалете дробите до нов знаменател: а) a + 1 a 0, 7 към знаменателя а, б) 1 x 2 3 - 2 · x 1 3 · y 1 6 + 4 · y 1 3 към знаменателя x + 8 · y 1 2 .

Решение

а) Нека изберем фактор, който ще ни позволи да намалим до нов знаменател. a 0, 7 a 0, 3 = a 0, 7 + 0, 3 = a,следователно като допълнителен фактор ще вземем а 0, 3. Диапазонът от допустими стойности на променливата a включва набора от всички положителни реални числа. Степен в тази област а 0, 3не отива на нула.

Нека умножим числителя и знаменателя на една дроб по а 0, 3:

a + 1 a 0, 7 = a + 1 a 0, 3 a 0, 7 a 0, 3 = a + 1 a 0, 3 a

б) Нека обърнем внимание на знаменателя:

x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = = x 1 3 2 - x 1 3 2 y 1 6 + 2 y 1 6 2

Нека умножим този израз по x 1 3 + 2 · y 1 6, получаваме сумата от кубовете x 1 3 и 2 · y 1 6, т.е. x + 8 · y 1 2 . Това е нашият нов знаменател, до който трябва да намалим първоначалната дроб.

Ето как намерихме допълнителния множител x 1 3 + 2 · y 1 6 . От обхвата на допустимите стойности на променливите хИ гизразът x 1 3 + 2 y 1 6 не изчезва, следователно можем да умножим числителя и знаменателя на дробта по него:
1 x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = = x 1 3 + 2 y 1 6 x 1 3 + 2 y 1 6 x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = = x 1 3 + 2 y 1 6 x 1 3 3 + 2 y 1 6 3 = x 1 3 + 2 y 1 6 x + 8 y 1 2

отговор: a) a + 1 a 0, 7 = a + 1 a 0, 3 a, b) 1 x 2 3 - 2 x 1 3 y 1 6 + 4 y 1 3 = x 1 3 + 2 y 1 6 x + 8 · y 1 2 .

Пример 9

Намалете дробта: а) 30 x 3 (x 0, 5 + 1) x + 2 x 1 1 3 - 5 3 45 x 0, 5 + 1 2 x + 2 x 1 1 3 - 5 3, б) a 1 4 - b 1 4 a 1 2 - b 1 2.

Решение

а) Използваме най-големия общ знаменател (НОД), с който можем да намалим числителя и знаменателя. За числата 30 и 45 е 15. Можем също да направим намаление с х0,5+1и върху x + 2 · x 1 1 3 - 5 3 .

Получаваме:

30 x 3 (x 0, 5 + 1) x + 2 x 1 1 3 - 5 3 45 x 0, 5 + 1 2 x + 2 x 1 1 3 - 5 3 = 2 x 3 3 (x 0, 5 + 1)

б) Тук наличието на идентични фактори не е очевидно. Ще трябва да извършите някои трансформации, за да получите същите множители в числителя и знаменателя. За да направим това, разширяваме знаменателя, използвайки формулата за разликата на квадратите:

a 1 4 - b 1 4 a 1 2 - b 1 2 = a 1 4 - b 1 4 a 1 4 2 - b 1 2 2 = = a 1 4 - b 1 4 a 1 4 + b 1 4 a 1 4 - b 1 4 = 1 a 1 4 + b 1 4

отговор:а) 30 x 3 (x 0, 5 + 1) x + 2 x 1 1 3 - 5 3 45 x 0, 5 + 1 2 x + 2 x 1 1 3 - 5 3 = 2 · x 3 3 · (x 0 , 5 + 1) , b) a 1 4 - b 1 4 a 1 2 - b 1 2 = 1 a 1 4 + b 1 4 .

Основните операции с дроби включват преобразуване на дроби в нов знаменател и намаляване на дроби. И двете действия се извършват при спазване на редица правила. При събиране и изваждане на дроби първо се свеждат до общ знаменател, след което се извършват операции (събиране или изваждане) с числителите. Знаменателят остава същият. Резултатът от нашите действия е нова дроб, чийто числител е произведението на числителите, а знаменателят е произведението на знаменателите.

Пример 10

Направете стъпките x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 · 1 x 1 2 .

Решение

Нека започнем с изваждането на дробите, които са в скоби. Нека ги приведем към общ знаменател:

x 1 2 - 1 x 1 2 + 1

Нека извадим числителите:

x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = x 1 2 + 1 x 1 2 + 1 x 1 2 - 1 x 1 2 + 1 - x 1 2 - 1 x 1 2 - 1 x 1 2 + 1 x 1 2 - 1 1 x 1 2 = = x 1 2 + 1 2 - x 1 2 - 1 2 x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = x 1 2 2 + 2 x 1 2 + 1 - x 1 2 2 - 2 x 1 2 + 1 x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = 4 x 1 2 x 1 2 - 1 x 1 2 + 1 1 x 1 2

Сега умножаваме дробите:

4 x 1 2 x 1 2 - 1 x 1 2 + 1 1 x 1 2 = = 4 x 1 2 x 1 2 - 1 x 1 2 + 1 x 1 2

Нека намалим на степен х 1 2, получаваме 4 x 1 2 - 1 · x 1 2 + 1 .

Освен това можете да опростите израза на степента в знаменателя, като използвате формулата за разликата на квадратите: квадрати: 4 x 1 2 - 1 x 1 2 + 1 = 4 x 1 2 2 - 1 2 = 4 x - 1 .

отговор: x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 1 x 1 2 = 4 x - 1

Пример 11

Опростете израза на степенния закон x 3 4 x 2, 7 + 1 2 x - 5 8 x 2, 7 + 1 3.
Решение

Можем да намалим дробта с (x 2 , 7 + 1) 2. Получаваме дробта x 3 4 x - 5 8 x 2, 7 + 1.

Нека продължим да трансформираме степените на x x 3 4 x - 5 8 · 1 x 2, 7 + 1. Сега можете да използвате свойството за деление на степени с еднакви основи: x 3 4 x - 5 8 1 x 2, 7 + 1 = x 3 4 - - 5 8 1 x 2, 7 + 1 = x 1 1 8 1 x 2, 7 + 1.

Преместваме се от последна работакъм дробта x 1 3 8 x 2, 7 + 1.

отговор: x 3 4 x 2, 7 + 1 2 x - 5 8 x 2, 7 + 1 3 = x 1 3 8 x 2, 7 + 1.

В повечето случаи е по-удобно да прехвърляте фактори с отрицателни експоненти от числителя към знаменателя и обратно, като променяте знака на експонентата. Това действие ви позволява да опростите по-нататъшното решение. Нека дадем пример: степенният израз (x + 1) - 0, 2 3 · x - 1 може да бъде заменен с x 3 · (x + 1) 0, 2.

Преобразуване на изрази с корени и степени

В задачи има степенни изрази, които съдържат не само степени с дробни показатели, но и корени. Препоръчително е такива изрази да се редуцират само до корени или само до степени. За предпочитане е да се търсят степени, тъй като с тях се работи по-лесно. Този преход е особено за предпочитане, когато ODZ на променливите за оригиналния израз ви позволява да замените корените със степени, без да е необходимо да имате достъп до модула или да разделяте ODZ на няколко интервала.

Пример 12

Изразете израза x 1 9 · x · x 3 6 като степен.

Решение

Диапазон от допустими стойности на променливи хсе определя от две неравенства x ≥ 0и x x 3 ≥ 0, които определят множеството [ 0 , + ∞) .

В този комплект имаме право да преминем от корени към правомощия:

x 1 9 · x · x 3 6 = x 1 9 · x · x 1 3 1 6

Използвайки свойствата на степените, ние опростяваме получения израз за степен.

x 1 9 · x · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 · 1 3 · 6 = = x 1 9 · x 1 6 x 1 18 = x 1 9 + 1 6 + 1 18 = x 1 3

отговор: x 1 9 · x · x 3 6 = x 1 3 .

Преобразуване на степени с променливи в степента

Тези трансформации са доста лесни за извършване, ако използвате правилно свойствата на степента. например, 5 2 x + 1 − 3 5 x 7 x − 14 7 2 x − 1 = 0.

Можем да заменим с произведението на степените, чиито показатели са сумата от някаква променлива и число. От лявата страна това може да се направи с първия и последния член на лявата страна на израза:

5 2 x 5 1 − 3 5 x 7 x − 14 7 2 x 7 − 1 = 0, 5 5 2 x − 3 5 x 7 x − 2 7 2 x = 0 .

Сега нека разделим двете страни на равенството на 7 2 х. Този израз за променливата x приема само положителни стойности:

5 5 - 3 5 x 7 x - 2 7 2 x 7 2 x = 0 7 2 x , 5 5 2 x 7 2 x - 3 5 x 7 x 7 2 x - 2 7 2 x 7 2 x = 0 , 5 5 2 x 7 2 x - 3 5 x 7 x 7 x 7 x - 2 7 2 x 7 2 x = 0

Нека съкратим дроби със степени, получаваме: 5 · 5 2 · x 7 2 · x - 3 · 5 x 7 x - 2 = 0.

Накрая съотношението на степени с еднакви показатели се заменя със степени на отношения, което води до уравнението 5 5 7 2 x - 3 5 7 x - 2 = 0, което е еквивалентно на 5 5 7 x 2 - 3 5 7 x - 2 = 0.

Нека въведем нова променлива t = 5 7 x, която редуцира решението на първоначалното експоненциално уравнение до решението квадратно уравнение 5 · t 2 − 3 · t − 2 = 0 .

Преобразуване на изрази със степени и логаритми

В задачи се срещат и изрази, съдържащи степени и логаритми. Пример за такива изрази е: 1 4 1 - 5 · log 2 3 или log 3 27 9 + 5 (1 - log 3 5) · log 5 3. Трансформацията на такива изрази се извършва с помощта на подходите и свойствата на логаритмите, обсъдени по-горе, които разгледахме подробно в темата „Трансформация на логаритмични изрази“.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter

резюме на други презентации

“Методи за решаване на системи от линейни уравнения” - Уравнение. Изразяване. Методи за решаване на системи линейни уравнения. Решения. Метод на заместване. Номер. Решете системи. Ще го намерим. Метод на добавяне. Нека решим системата.

„Методи на факторизиране” – Съкращение алгебрични дроби. Решете уравнението. Факторизиране на полиноми. Идентичности. Основни резултати. Факторизиране на полином чрез комбинация. Нека разгледаме друга ситуация. Нека използваме факторизирането на полинома. Най-големият общ делителкоефициенти Факторизиране на полином с помощта на формули. Премахване общ множителизвън скоби. Факторингът е полезно нещо.

““Степени” 7 клас” - Решете уравнения. Намерете K в уравнението. Изчислете. Число 625. Устно броене. Изразете израза като степен с основа 7. Запишете го стандартен формуляр. Свойства на степен с естествен показател. Уравнение с модул. Решете проблема. Номер 64. Прогрес на урока. Цели на урока. Номер 729. Тестова работа.

„Стандартна форма на моном“ - Прочетете изразите. Нека използваме комутативните и асоциативните закони на умножението. На дъската. Произведение от числа. Мислете за това като степен. Какво се нарича степен на монома? Консолидиране на нов материал. експонента. Коефициенти. Консолидация. Практическа работа. Моном. Попълнете таблицата. Компютърни умения на учениците. Самостоятелна работа. Погледнете внимателно. Моном и неговата стандартна форма.

„Свойства на степен с естествен експонент“ - Епиграф на урока. Случаи на степенуване. История. Физическата култура. Биология. Свойства на степен с естествен показател. Изразете изрази като степени. Редакция. Питагор. География. Материалът беше повторен в клас. Гимнастика на ума.

„„Умножение на полиноми“ 7 клас“ - Умножете многочлен по многочлен. Умножение на полиноми. домашна работа. Цели на урока. Алгоритъм за умножение на полиноми. Умножение на полином по моном. правило. Урок по темата „Умножение на полиноми“. Работете по задачника. Устна работа.

Изрази, преобразуване на изрази

Силови изрази(изрази със степени) и тяхното преобразуване

В тази статия ще говорим за преобразуване на изрази със степени. Първо, ще се съсредоточим върху трансформациите, които се извършват с изрази от всякакъв вид, включително изрази за мощност, като отваряне на скоби и въвеждане на подобни термини. И тогава ще анализираме трансформациите, присъщи конкретно на изразите със степени: работа с основата и показателя, използване на свойствата на степените и т.н.

Навигация в страницата.

Какво представляват изразите на властта?

Терминът „степенни изрази“ практически не се появява в училищните учебници по математика, но се появява доста често в колекции от задачи, особено в тези, предназначени за подготовка за Единния държавен изпит и Единния държавен изпит, например. След анализ на задачите, в които е необходимо да се извършват каквито и да било действия със степенни изрази, става ясно, че степенните изрази се разбират като изрази, съдържащи мощности в своите записи. Следователно можете да приемете следното определение за себе си:

Определение.

Силови изразиса изрази, съдържащи степени.

Да дадем примери за степенни изрази. Нещо повече, ние ще ги представим според това как става развитието на възгледите за степен с естествен показател към степен с реален показател.

Както е известно, на този етап първо се запознават със степента на число с естествен показател, първите най-прости степенни изрази от вида 3 2, 7 5 +1, (2+1) 5, (−0,1); 4, 3 a 2 се появяват −a+a 2 , x 3−1 , (a 2) 3 и т.н.

Малко по-късно се изучава степента на число с цяло число, което води до появата на степенни изрази с цели отрицателни степени, като следното: 3 −2, , a −2 +2 b −3 +c 2 .

В гимназията се връщат към степени. Там се въвежда степен с рационален показател, което води до появата на съответните степенни изрази: , , и т.н. Накрая се разглеждат степени с ирационални показатели и изрази, които ги съдържат: , .

Въпросът не се ограничава до изброените степенни изрази: по-нататък променливата прониква в експонентата и например възникват следните изрази: 2 x 2 +1 или . И след като се запознаем с , започват да се появяват изрази със степени и логаритми, например x 2·lgx −5·x lgx.

И така, ние се справихме с въпроса какво представляват изразите на мощност. След това ще се научим да ги конвертираме.

Основни видове преобразувания на степенни изрази

С мощни изрази можете да направите всяко от основните трансформации на идентичност на изрази. Например, можете да отворите скоби, да замените числови изрази с техните стойности, да добавите подобни термини и т.н. Естествено е необходимо да се спазват приетите ред на действията. Да дадем примери.

Пример.

Изчислете стойността на степенния израз 2 3 ·(4 2 −12) .

Решение.

Според реда на изпълнение на действията първо изпълнете действията в скоби. Там, първо, заместваме степента 4 2 с нейната стойност 16 (вижте, ако е необходимо), и второ, изчисляваме разликата 16−12=4. Имаме 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4.

В получения израз заместваме степента 2 3 с нейната стойност 8, след което изчисляваме произведението 8·4=32. Това е желаната стойност.

така че 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32.

отговор:

2 3 ·(4 2 −12)=32.

Пример.

Опростете изрази със степени 3 a 4 b −7 −1+2 a 4 b −7.

Решение.

Очевидно този израз съдържа подобни условия 3·a 4 ·b −7 и 2·a 4 ·b −7 , и можем да им дадем: .

отговор:

3 a 4 b −7 −1+2 a 4 b −7 =5 a 4 b −7 −1.

Пример.

Изразете израз със степени като произведение.

Решение.

Можете да се справите със задачата, като представите числото 9 като степен на 3 2 и след това използвате формули за съкратено умножениеразлика на квадратите:

отговор:

Съществуват и редица идентични трансформации, присъщи специално на изразите на мощност. Ще ги анализираме допълнително.

Работа с основа и експонента

Има степени, чиято основа и/или степен не са просто числа или променливи, а някои изрази. Като пример даваме записите (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

Когато работите с подобни изрази, можете да замените както израза в основата на степента, така и израза в експонентата с идентично равен израз за ОДЗнеговите променливи. С други думи, според известните ни правила, можем отделно да трансформираме основата на степента и отделно експонентата. Ясно е, че в резултат на това преобразуване ще се получи израз, който е идентично равен на първоначалния.

Такива трансформации ни позволяват да опростим изрази със способности или да постигнем други цели, от които се нуждаем. Например в израза на степен, споменат по-горе (2+0,3 7) 5−3,7, можете да извършвате операции с числата в основата и степента, което ще ви позволи да преминете към степен 4,1 1,3. И след отваряне на скобите и привеждане на подобни членове към основата на степента (a·(a+1)−a 2) 2·(x+1) получаваме степенен израз на по-проста форма a 2·(x+1 ) .

Използване на свойства на степен

Един от основните инструменти за трансформиране на изрази със степени са равенствата, които отразяват . Нека си припомним основните. За всякакви положителни числа a и b и произволни реални числа r и s са верни следните свойства на степените:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Имайте предвид, че за естествени, цели и положителни показатели ограниченията за числата a и b може да не са толкова строги. Например за естествени числа m и n равенството a m ·a n =a m+n е вярно не само за положително a, но и за отрицателно a, и за a=0.

В училище основният фокус при трансформиране на изрази на мощност е върху способността да се избере подходящото свойство и да се приложи правилно. В този случай основите на степените обикновено са положителни, което позволява свойствата на степените да се използват без ограничения. Същото важи и за трансформацията на изрази, съдържащи променливи в основите на мощностите - обхватът на допустимите стойности на променливите обикновено е такъв, че базите приемат само положителни стойности върху него, което ви позволява свободно да използвате свойствата на мощностите . Като цяло, трябва постоянно да се питате дали е възможно да използвате някакво свойство на степени в този случай, тъй като неточното използване на свойства може да доведе до стесняване на образователната стойност и други проблеми. Тези точки са разгледани подробно и с примери в статията. преобразуване на изрази с помощта на свойствата на степените. Тук ще се ограничим до разглеждането на няколко прости примера.

Пример.

Изразете израза a 2,5 ·(a 2) −3:a −5,5 като степен с основа a.

Решение.

Първо, трансформираме втория множител (a 2) −3, използвайки свойството за повишаване на степен на степен: (a 2) −3 =a 2·(−3) =a −6. Оригиналният израз на степента ще приеме формата a 2,5 ·a −6:a −5,5. Очевидно остава да използваме свойствата на умножение и деление на степени с една и съща основа, която имаме
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

отговор:

a 2,5 ·(a 2) −3:a −5,5 =a 2.

Свойствата на степените при преобразуване на степенни изрази се използват както отляво надясно, така и отдясно наляво.

Пример.

Намерете стойността на степенния израз.

Решение.

Равенството (a·b) r =a r ·b r, приложено отдясно наляво, ни позволява да преминем от оригиналния израз към продукт на формата и по-нататък. И когато се умножават степени с еднакви основи, показателите се събират: .

Беше възможно да се трансформира оригиналният израз по друг начин:

отговор:

.

Пример.

При даден степенен израз a 1,5 −a 0,5 −6, въведете нова променлива t=a 0,5.

Решение.

Степента a 1.5 може да бъде представена като 0.5·3 и след това, въз основа на свойството степен на степен (a r) s =a r·s, приложена отдясно наляво, да се трансформира във формата (a 0.5) 3 . по този начин a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6. Сега е лесно да въведем нова променлива t=a 0,5, получаваме t 3 −t−6.

отговор:

t 3 −t−6 .

Преобразуване на дроби, съдържащи степени

Изразите на степен могат да съдържат или представляват дроби със степени. Всеки от основните е напълно приложим за такива дроби преобразувания на дроби, които са присъщи на дроби от всякакъв вид. Тоест дроби, които съдържат степени, могат да бъдат намалени, намалени до нов знаменател, да се работи отделно с техния числител и отделно със знаменателя и т.н. За да илюстрирате тези думи, помислете за решения на няколко примера.

Пример.

Опростете израза на мощността .

Решение.

Този израз на мощност е дроб. Нека работим с неговия числител и знаменател. В числителя отваряме скобите и опростяваме получения израз, използвайки свойствата на степените, а в знаменателя представяме подобни термини:

И нека също да променим знака на знаменателя, като поставим минус пред дробта: .

отговор:

.

Намаляването на дроби, съдържащи степени, до нов знаменател се извършва по същия начин като редукция до нов знаменател рационални дроби. В този случай се намира и допълнителен множител и числителят и знаменателят на дробта се умножават по него. Когато извършвате това действие, си струва да запомните, че намаляването до нов знаменател може да доведе до стесняване на VA. За да предотвратите това да се случи, е необходимо допълнителният коефициент да не отива на нула за никакви стойности на променливите от ODZ променливите за оригиналния израз.

Пример.

Намалете дробите до нов знаменател: а) до знаменател а, б) към знаменателя.

Решение.

а) В този случай е доста лесно да разберете кой допълнителен множител помага за постигане на желания резултат. Това е множител на 0,3, тъй като a 0,7 ·a 0,3 =a 0,7+0,3 =a. Обърнете внимание, че в диапазона от допустими стойности на променливата a (това е наборът от всички положителни реални числа), силата на a 0,3 не изчезва, следователно имаме право да умножим числителя и знаменателя на даден част от този допълнителен фактор:

б) Като погледнете по-отблизо знаменателя, ще откриете това

и умножаването на този израз по ще даде сумата от кубове и , т.е. И това е новият знаменател, до който трябва да намалим първоначалната дроб.

Ето как открихме допълнителен фактор. В обхвата на допустимите стойности на променливите x и y изразът не изчезва, следователно можем да умножим числителя и знаменателя на фракцията по него:

отговор:

а) , б) .

Също така няма нищо ново в намаляването на дроби, съдържащи степени: числителят и знаменателят са представени като редица множители и същите множители на числителя и знаменателя са намалени.

Пример.

Намалете дроба: а) , б) .

Решение.

а) Първо, числителят и знаменателят могат да бъдат намалени с числата 30 и 45, което е равно на 15. Също така очевидно е възможно да се извърши намаление с x 0,5 +1 и с . Ето какво имаме:

б) В този случай еднаквите множители в числителя и знаменателя не се виждат веднага. За да ги получите, ще трябва да извършите предварителни трансформации. В този случай те се състоят в разлагане на знаменателя на множители с помощта на формулата за разликата на квадратите:

отговор:

а)

б) .

Преобразуването на дроби в нов знаменател и намаляването на дроби се използват главно за извършване на неща с дроби. Действията се извършват по известни правила. При събиране (изваждане) на дроби те се свеждат до общ знаменател, след което числителите се събират (изваждат), но знаменателят остава същият. Резултатът е дроб, чийто числител е произведението на числителите, а знаменателят е произведението на знаменателите. Делението с дроб е умножение с обратното му.

Пример.

Следвайте стъпките .

Решение.

Първо, изваждаме дробите в скобите. За да направим това, ги привеждаме към общ знаменател, който е , след което изваждаме числителите:

Сега умножаваме дробите:

Очевидно е възможно да се намали на степен x 1/2, след което имаме .

Можете също така да опростите израза на степента в знаменателя, като използвате формулата за разликата на квадратите: .

отговор:

Пример.

Опростете Power Expression .

Решение.

Очевидно тази дроб може да бъде намалена с (x 2,7 +1) 2, това дава дробта . Ясно е, че трябва да се направи нещо друго със правомощията на X. За да направим това, трансформираме получената фракция в продукт. Това ни дава възможност да се възползваме от свойството за деление на степени с еднакви бази: . И в края на процеса преминаваме от последния продукт към фракцията.

отговор:

.

И нека добавим също, че е възможно и в много случаи желателно да се прехвърлят множители с отрицателни показатели от числителя към знаменателя или от знаменателя към числителя, като се промени знакът на степента. Такива трансформации често опростяват по-нататъшни действия. Например, степенен израз може да бъде заменен с .

Преобразуване на изрази с корени и степени

Често в изрази, в които се изискват някои трансформации, заедно със степени присъстват и корени с дробни показатели. За да трансформирате такъв израз в желаната форма, в повечето случаи е достатъчно да отидете само до корени или само до степени. Но тъй като е по-удобно да се работи с правомощия, те обикновено преминават от корени към правомощия. Въпреки това е препоръчително да извършите такъв преход, когато ODZ на променливите за оригиналния израз ви позволява да замените корените със степени, без да е необходимо да се позовавате на модула или да разделяте ODZ на няколко интервала (обсъдихме това подробно в членът преход от корени към степени и обратно След запознаване със степента с рационален показател се въвежда степен с ирационален показател, което ни позволява да говорим за степен с произволен реален показател На този етап училището започва да проучване. експоненциална функция , което е аналитично дадено чрез степен, чиято основа е число, а показателят е променлива. Така се сблъскваме със степенни изрази, съдържащи числа в основата на степента, а в степента - изрази с променливи, и естествено възниква необходимостта да се извършват трансформации на такива изрази.

Трябва да се каже, че трансформацията на изрази от посочения тип обикновено трябва да се извърши при решаването експоненциални уравненияИ експоненциални неравенстваи тези преобразувания са доста прости. В преобладаващата част от случаите те се основават на свойствата на степента и са насочени в по-голямата си част към въвеждане на нова променлива в бъдеще. Уравнението ще ни позволи да ги демонстрираме 5 2 x+1 −3 5 x 7 x −14 7 2 x−1 =0.

Първо, степените, в експонентите на които е сумата от определена променлива (или израз с променливи) и число, се заменят с продукти. Това се отнася за първия и последния член на израза от лявата страна:
5 2 x 5 1 −3 5 x 7 x −14 7 2 x 7 −1 =0,
5 5 2 x −3 5 x 7 x −2 7 2 x =0.

След това двете страни на равенството се разделят на израза 7 2 x, който приема само положителни стойности на ODZ на променливата x за оригиналното уравнение (това е стандартна техника за решаване на уравнения от този тип, ние не сме говорим за това сега, така че се фокусирайте върху последващите трансформации на изрази със степени):

Сега можем да съкратим дроби със степен, което дава .

И накрая, съотношението на степените с еднакви показатели се заменя със степени на отношенията, което води до уравнението , което е еквивалентно . Направените трансформации ни позволяват да въведем нова променлива, която редуцира решението на оригиналното експоненциално уравнение до решението на квадратно уравнение

  • И. В. Бойков, Л. Д. РомановаСборник от задачи за подготовка за единния държавен изпит. Част 1. Пенза 2003 г.