Что называется фигурой. Какие геометрические фигуры простейшие? Плоские геометрические фигуры

Геометрические объемные фигуры - это твердые тела, которые занимают ненулевой объем в евклидовом (трехмерном) пространстве. Эти фигуры изучает раздел математики, который носит название "пространственная геометрия". Знания о свойствах объемных фигур применяются в инженерии и в науках о природе. Рассмотрим в статье вопрос, геометрические объемные фигуры и их названия.

Геометрические объемные тела

Поскольку эти тела имеют конечную размерность в трех пространственных направлениях, то для их описания в геометрии используют систему из трех координатных осей. Эти оси обладают следующими свойствами:

  1. Они ортогональны друг другу, то есть перпендикулярны.
  2. Эти оси нормализированы, то есть базисные вектора каждой оси имеют одинаковую длину.
  3. Любая из осей координат - это результат векторного произведения двух других.

Говоря о геометрических объемных фигурах и их названиях, следует отметить, что все они принадлежат к одному из 2-х больших классов:

  1. Класс полиэдров. Эти фигуры, исходя из названия класса, имеют прямые ребра и плоские грани. Грань - это плоскость, которая ограничивает фигуру. Место соединения двух граней называется ребром, а точка соединения трех граней - это вершина. К полиэдрам относятся геометрическая фигура куб, тетраэдры, призмы, пирамиды. Для этих фигур справедлива теорема Эйлера, которая устанавливает связь между числом сторон (С), ребер (Р) и вершин (В) для каждого полиэдра. Математически эта теорема записывается так: С + В = Р + 2.
  2. Класс круглых тел или тел вращения. Эти фигуры имеют хотя бы одну поверхность, образующую их, изогнутой формы. Например, шар, конус, цилиндр, тор.

Что касается свойств объемных фигур, то следует выделить два самых важных из них:

  1. Наличие определенного объема, который фигура занимает в пространстве.
  2. Наличие у каждой объемной фигуры площади поверхности.

Оба свойства для каждой фигуры описываются конкретными математическими формулами.

Рассмотрим ниже самые простые геометрические объемные фигуры и их названия: куб, пирамиду, призму, тетраэдр и шар.

Фигура куб: описание

Под геометрической фигурой куб понимают объемное тело, которое образовано 6-тью квадратными плоскостями или поверхностями. Также эту фигуру называют правильный гексаэдр, поскольку она имеет 6 сторон, или прямоугольный параллелепипед, так как он состоит из 3-х пар параллельных сторон, которые взаимно перпендикулярны друг другу. Называют куб и у которой основание является квадратом, а высота равна стороне основания.

Поскольку куб является многогранником или полиэдром, то для него можно применить теорему Эйлера, чтобы определить число его ребер. Зная, что число сторон равно 6, а вершин у куба 8, число ребер равно: Р = С + В - 2 = 6 + 8 - 2 = 12.

Если обозначить буквой "a" длину стороны куба, тогда формулы для его объема и площади поверхности будут иметь вид: V = a 3 и S = 6*a 2 , соответственно.

Фигура пирамида

Пирамида - это полиэдр, который состоит из простого многогранника (основание пирамиды) и треугольников, которые соединяются с основанием и имеют одну общую вершину (вершина пирамиды). Треугольники называются боковыми гранями пирамиды.

Геометрические характеристики пирамиды зависят от того, какой многоугольник лежит в ее основании, а также от того, является ли пирамида прямой или косой. Под прямой пирамидой понимают такую пирамиду, для которой перпендикулярная основанию прямая, проведенная через вершину пирамиды, пересекает основание в ее геометрическом центре.

Одной из простых пирамид является четырехугольная прямая пирамида, в основании которой лежит квадрат со стороной "a", высота этой пирамиды "h". Для этой фигуры пирамиды объем и площадь поверхности будут равны: V = a 2 *h/3 и S = 2*a*√(h 2 +a 2 /4) + a 2 , соответственно. Применяя теорему Эйлера для нее, с учетом того, что число граней равно 5, и число вершин равно 5, получаем количество ребер: Р = 5 + 5 - 2 = 8.

Фигура тетраэдр: описание

Под геометрической фигурой тетраэдр понимают объемное тело, образованное 4-мя гранями. Исходя из свойств пространства, такие грани могут представлять только треугольники. Таким образом, тетраэдр является частным случаем пирамиды, у которой в основании лежит треугольник.

Если все 4-ре треугольника, образующие грани тетраэдра, являются равносторонними и равными между собой, то такой тетраэдр называется правильным. Этот тетраэдр имеет 4 грани и 4 вершины, число ребер составляет 4 + 4 - 2 = 6. Применяя стандартные формулы из плоской геометрии для рассматриваемой фигуры, получаем: V = a 3 * √2/12 и S = √3*a 2 , где a - длина стороны равностороннего треугольника.

Интересно отметить, что в природе некоторые молекулы имеют форму правильного тетраэдра. Например, молекула метана CH 4 , в которой атомы водорода расположены в вершинах тетраэдра, и соединены с атомом углерода ковалентными химическими связями. Атом углерода находится в геометрическом центре тетраэдра.

Простая в изготовлении форма фигуры тетраэдр используется также в инженерии. Например, тетраэдрическую форму используют при изготовлении якорей для кораблей. Отметим, что космический зонд НАСА, Mars Pathfinder, который совершил посадку на поверхность Марса 4 июля 1997 года, также имел форму тетраэдра.

Фигура призма

Эту геометрическую фигуру можно получить, если взять два многогранника, расположить их параллельно друг другу в разных плоскостях пространства, и соединить их вершины соответствующим образом между собой. В итоге получится призма, два многогранника называются ее основаниями, а поверхности, соединяющие эти многогранники, будут иметь форму параллелограммов. Призма называется прямой, если ее боковые стороны (параллелограммы) являются прямоугольниками.

Призма - это полиэдр, поэтому для нее верна Например, если в основании призмы лежит шестиугольник, тогда, количество сторон у призмы равно 8, а количество вершин - 12. Число ребер будет равно: Р = 8 + 12 - 2 = 18. Для прямой призмы высотой h, в основании которой лежит правильный шестиугольник со стороной a, объем равен: V = a 2 *h*√3/4, площадь поверхности равна: S = 3*a*(a*√3 + 2*h).

Говоря о простых геометрических объемных фигурах и их названиях, следует упомянуть шар. Под объемным телом под названием шар понимают тело, которое ограничено сферой. В свою очередь, сфера - это совокупность точек пространства, равноудаленных от одной точки, которая называется центром сферы.

Поскольку шар относится к классу круглых тел, то для него не существует понятия о сторонах, ребрах и вершинах. сферы, ограничивающей шар, находится по формуле: S = 4*pi*r 2 , а объем шара можно вычислить по формуле: V = 4*pi*r 3 /3, где pi - число пи (3,14), r - радиус сферы (шара).

На уроке вы узнаете, что такое геометрические фигуры. Речь пойдет о фигурах, изображаемых на плоскости, их свойствах. Вы узнаете о таких простейших формах геометрических фигур, как точка и линия. Рассмотрите, как образуются отрезок и луч. Познакомитесь с определением и различными видами углов. Следующая фигура, определение и свойства которой обсуждаются на уроке, - это окружность. Далее обсуждается определение треугольника и многоугольника и их разновидности.

Рис. 10. Круг и окружность

Подумайте, какие точки принадлежат кругу, а какие окружности (см. Рис. 11).

Рис. 11. Взаимное расположение точек и окружности, точек и круга

Правильный ответ: точки, принадлежат кругу, а окружности принадлежат только точки и.

Точка - это центр окружности или круга. Отрезки, - это радиусы окружности или круга, то есть отрезки, которые соединяют центр и любую точку, лежащую на окружности. Отрезок - это диаметр окружности или круга, то есть это отрезок, соединяющий две точки, лежащие на окружности, и проходящий через центр. Радиус составляет половину диаметра (см. Рис. 12).

Рис. 12. Радиус и диаметр

Давайте теперь вспомним, какую фигуру называют треугольником. Треугольник - это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Треугольник имеет три угла.

Рассмотрим треугольник (см. Рис. 13).


Рис. 13. Треугольник

Он имеет три угла - угол , угол и угол . Точки , , называют вершинами треугольника. Три отрезка - отрезок , , - это стороны треугольника.

Повторим, какие виды треугольников различают (см. Рис. 14).

Рис. 14. Виды треугольников

По видам углов треугольники можно разделить на остроугольные, прямоугольные и тупоугольные. В треугольнике все углы острые, такой треугольник называют остроугольным. В треугольнике есть прямой угол, такой треугольник называют прямоугольный. В треугольнике есть тупой угол, такой прямоугольник называют тупоугольный треугольник.

По тому, равны ли длины сторон, различают треугольники:

Разносторонние - у таких треугольников длины всех сторон разные;

Равносторонние - у этих треугольников длины всех сторон равные;

Равнобедренные - у них длины двух сторон совпадают. Две равные по длине стороны называются боковыми сторонам треугольника, а третья сторона является основанием треугольника (см. Рис. 15).


Рис. 15. Виды треугольников

А какие фигуры называют многоугольниками? Если последовательно соединить несколько точек так, чтобы их соединение дало замкнутую ломаную линию, то создается образ многоугольника, четырехугольника, пяти- или шестиугольника и т. д.

Многоугольники называют по числу углов. В каждом многоугольнике столько вершин и сторон, сколько углов (см. Рис. 16).

Рис. 16. Многоугольники

Все изображенные фигуры (см. Рис. 17) называют четырехугольниками. Почему?


Рис. 17. Четырехугольники

Наверное, вы заметили, что все фигуры имеют по четыре угла, но их все можно разделить на две группы. Как бы вы это сделали?

Наверное, в отдельную группу вы выделили четырехугольники, у которых все углы прямые, и такие четырехугольники назвали прямоугольными четырехугольниками. Противоположные стороны прямоугольников равны (см. Рис. 18).

Рис. 18. Прямоугольные четырехугольники

В прямоугольнике и - противоположные стороны, и они равны, и - тоже противоположные стороны, и они равны (см. Рис. 19).

Геометрия – точная математическая наука, которая занимается изучением пространственных и других подобных отношений и форм. Но ее часто называют «сухой», поскольку она не способна описать форму многих природных объектов, ведь облака – это не сферы, горы – не конусы, а молнии распространяются не по прямым линиям. Многие объекты в природе отличаются сложностью форм в сравнении со стандартной геометрией.

Тем не менее, существует ряд удивительных фигур, которые обычно не изучаются на школьных уроках геометрии, но именно они окружают человека в реальном мире: в природе и архитектуре, головоломках, компьютерных играх и т. д.

Главное свойство этой сложной геометрической фигуры – самоподобие, то есть она состоит из нескольких частей, каждая из которых подобна целому объекту. Именно это свойство отличает фракталы от объектов классической (или, как говорят, евклидовой) геометрии.

При этом сам термин «фрактал» не является математическим и не имеет однозначного определения, поэтому может применяться к объектам, которые являются самоподобными или приближенно самоподобными. Его придумал в 1975 г. Бенуа Мандельброт, позаимствовав латинское слово «fractus» (ломанный, дробленный).

Фрактальные формы как нельзя лучше подходят для описания реального мира и часто встречаются среди природных объектов: снежинок, листьев растений, системы кровеносных сосудов человека и животных.

Это одна из самых необыкновенных трехмерных фигур в геометрии, которую легко сделать в домашних условиях. Для этого достаточно взять бумажную полоску, ширина которой в 5-6 раз меньше ее длины, и, перекрутив один из концов на 180°, склеить их между собой.

Если все сделано правильно, то можно проверить самостоятельно ее удивительные свойства:

  • Наличие только одной стороны (без разделения на внутреннюю и внешнюю). Это легко проверить, если попробовать закрасить карандашом одну из ее сторон. Независимо от того, в каком месте и направлении будет начато закрашивание, в результате вся лента будет закрашена одним цветом.
  • Непрерывность: если вести ручкой линию вдоль всей поверхности, ее конец соединится с начальной точкой без пересечения границ поверхности.
  • Двухмерность (связность): при разрезании ленты Мебиуса вдоль она остается цельной, просто получаются новые фигуры (к примеру, при разрезании надвое получится одно кольцо большего размера).
  • Отсутствие ориентированности. Путешествие по такой ленте Мебиуса всегда будет бесконечным, оно приведет к начальной точке пути, только в зеркальном отображении.

Лента Мебиуса широко используется в промышленности и науке (в ленточных конвейерах, матричных принтерах, механизмах для заточки и пр.). Кроме этого существует научная гипотеза, по которой сама Вселенная также представляет собой ленту Мебиуса невероятных размеров.

Полимино

Это плоские геометрические фигуры, которые образуются за счет соединения нескольких квадратов равных размеров по их сторонам.

Названия полимино зависят от количества квадратов, из которых они сформированы:

  • мономино – 1;
  • домино – 2;
  • тримино – 3;
  • тетрамино – 4 и т. д.

При этом для каждой разновидности существует разное количество типов фигур: у домино 1 тип, у тримино – 3 типа, у гексамино (из 6 квадратов) – 35 типов. Число различный вариаций зависит от количества используемых квадратов, но при этом еще никому из ученых не удалось найти удивительную формулу, которая будет выражать эту зависимость. Из деталей полимино можно выкладывать как геометрические фигуры, так и изображения людей, животных, предметов. Несмотря на то, что это будут схематичные силуэты, основные признаки и формы предметов делают их вполне узнаваемыми.

Полиамонд

Наряду с полимино, существует еще одна удивительная геометрическая фигура, используемая для составления других фигур – полиамонд. Он представляет собой многоугольник, сформированный из нескольких равносторонних треугольников равного размера.

Название придумал математик Т. О’Бейрн на основании одного из названий ромба в английском языке – диамонд, который можно составить из 2-х равносторонних треугольников. По аналогии, фигуру из 3-х равносторонних треугольников О’Бейрн назвал триамондом, из 4-х – тетриамондом и т. д.

Главным вопросом их существования остается вопрос о возможном количестве полиамондов, которые можно составить из определенного количества треугольников. Применение полиамондов в реальной жизни также аналогично использованию полимино. Это могут быть разного рода головоломки и логические задачи.

Треугольник Рело

Как ни удивительно звучит, но с помощью дрели можно просверлить квадратное отверстие, а помогает в этом треугольник Рело. Он представляет собой область, образованную посредством пересечения 3 равных окружностей, центры которых являются вершинами правильного треугольника, а радиусы равны его стороне.

Сам треугольник Рело назван по фамилии немецкого ученого-инженера, который первым наиболее детально исследовал его особенности и использовал для своих механизмов на рубеже XIX-XX в. в., хотя его удивительные свойства были известны еще Леонардо да Винчи. Кто бы ни был его первооткрывателем, в современном мире эта фигура нашла широкое применение в виде:

  • сверла Уаттса, которое позволяет сверлить отверстия практически идеальной квадратной формы, только с чуть закругленными краями;
  • медиатора, необходимого для игры на музыкальных щипковых инструментах;
  • кулачковых механизмов, используемых для создания зигзагообразных швов в швейных машинах, а также немецких часах;
  • стрельчатых арок, характерных для готического стиля в архитектуре.

Невозможные фигуры

Отдельного внимания заслуживают так называемые невозможные фигуры – удивительные оптические иллюзии, которые на первый взгляд кажутся проекцией трехмерного объекта, но при ближайшем рассмотрении становятся заметны необычные соединения элементов. Наиболее популярными из их числа являются:

Трибар, созданный отцом и сыном Лайонелом и Роджером Пенроузами, который представляет собой изображение равностороннего треугольника, но имеет странные закономерности. Стороны, образующие верхнюю часть треугольника кажутся перпендикулярными, но правая и левая грани в нижней части также кажутся перпендикулярными. Если рассматривать каждую часть этого треугольника по отдельности, еще можно признать их существование, но в действительности такая фигура существовать не может, поскольку при ее создании были неправильно соединены правильные элементы.

Бесконечная лестница, авторство которой также принадлежит отцу и сыну Пенроузам, поэтому ее часто называют по их имени – «лестницей Пенроуза», а также «Вечной лестницей». На первый взгляд, она выглядит как обычная, ведущая вверх или вниз лестница, но при этом человек, шагающий по ней будет непрерывно подниматься (против часовой стрелки) или опускаться (по часовой стрелке). Если визуально путешествовать по такой лестнице, то по окончании «путешествия» взгляд останавливается в точке начала пути. Если бы такая лестница существовала в действительности, по ней пришлось бы подниматься и спускаться бесконечное число раз, что можно сравнить с бесконечным сизифовым трудом.

Невозможный трезубец – удивительный объект, глядя на который невозможно определить, где начинается средний зубец. Он также основан на принципе неправильных соединений, которые могут существовать только в двухмерном, но не трехмерном пространстве. Рассматривая части трезубца по отдельности, с одной стороны видны 3 круглых зуба, с другой стороны – 2 прямоугольных.

Таким образом, части фигуры вступают в своеобразный конфликт: во-первых, происходит смена переднего и заднего плана, во-вторых круглые зубцы в нижней части трансформируются в плоские в верхней.

Маленькие детки готовы учиться везде и всегда. Их юный мозг способен улавливать, анализировать и запоминать столько информации, сколько трудно даже взрослому человеку. То, чему родители должны научить малышей, имеет общепринятые возрастные рамки.

Основные геометрические фигуры и их названия дети должны узнать в возрасте от 3 до 5 лет.

Поскольку все дети разнообучаемы, то эти границы лишь условно приняты в нашей стране.

Геометрия — это наука о формах, размерах и расположении фигур в пространстве. Может создаться впечатление, что это сложно для малышей. Однако предметы изучения этой науки находятся повсюду вокруг нас. Вот почему иметь основные познания в этой области важно и для детей, и для старших.

Чтобы увлечь детей изучением геометрии, можно прибегнуть к веселым картинкам. Дополнительно хорошо бы иметь пособия, которые ребенок сможет потрогать, ощупать, обвести, раскрасить, узнать с закрытыми глазами. Основной принцип любых занятий с детьми — удержание их внимание и развития тяги к предмету с использованием игровых приемов и непринужденной веселой обстановки.

Сочетание нескольких средств восприятия сделает свое дело очень быстро. Воспользуйтесь нашей мини-методичкой, чтобы научить ребенка отличать геометрические фигуры, знать их названия.

Круг — самая первая из всех фигур. В природе вокруг нас многое имеет круглую форму: наша планета, солнце, луна, сердцевина цветка, многие фрукты и овощи, зрачки глаз. Объемный круг — это шар (мячик, клубок)

Начать изучение формы круга с ребенком лучше, рассматривая рисунки, а потом уже подкрепить теорию практикой, дав ребенку подержать что-нибудь круглое в руках.

Квадрат — это фигура, у которой все стороны имеют одинаковую высоту и ширину. Квадратные предметы — кубики, коробки, дом, окно, подушка, табурет и т. п.

Строить из квадратных кубиков всякие домики очень просто. Рисунок квадрата проще сделать на листочке в клетку.

Прямоугольник — родственник квадрата, который отличается тем, что имеет одинаковые противоположные стороны. Так же, как и у квадрата, у прямоугольника все равны 90 градусам.

Можно найти множество предметов, имеющих форму прямоугольника: шкафы, бытовая техника, двери, мебель.

В природе форму треугольника имеют горы и некоторые деревья. Из ближайшего окружения малышей можно привести в пример треугольную крышу дома, различные дорожные знаки.

В форме треугольника были построены некоторые древние сооружения, например храмы и пирамиды.

Овал — это круг, вытянутый с двух сторон. Формой овала обладают, например: яйцо, орехи, многие овощи и фрукты, человеческое лицо, галактики т. д.

Овал в объеме называется эллипсом. Даже Земля сплюснута с полюсов — эллипсовидная.

Ромб

Ромб — тот же квадрат, только вытянутый, т. е. имеет два тупых угла и пару острых.

Изучать ромб можно с помощью наглядных пособий — нарисованной картинки или объемного предмета.

Приемы запоминания

Геометрические фигуры по названиям запомнить несложно. В игру их изучение для детей можно превратить, применив следующие идеи:

  • Купите детскую книжку с картинками, в которой будут веселые и красочные рисунки фигур и их аналогии из окружающего мира.
  • Нарежьте из разноцветного картона побольше всяких фигурок, заламинируйте их скотчем и используйте как конструктор — очень много интересных сочетаний можно выложить, комбинируя разные фигурки.
  • Купите линейку с отверстиями в форме круга, квадрата, треугольника и других — для детей, которые уже дружат с карандашами, рисунки с помощью такой линейки — интереснейшее занятие.

Можно придумать много возможностей научить малышей знать названия геометрических фигур. Все способы хороши: рисунки, игрушки, наблюдения за окружающими предметами. Начните с малого, постепенно усложняя информацию и задания. Вы не ощутите, как пролетит время, а малыш обязательно порадует вас успехами в скором.

К простейшим геометрическим фигурам относятся точка, прямая, отрезок, луч, полуплоскость и угол.

Даже среди простейших фигур выделяется самая простейшая - это точка . Все остальные фигуры состоят из множества точек. В геометрии принято обозначать точки прописными (большими) латинскими буквами. Например, точка A, точка L.

Прямая - это бесконечная линия, на которой если взять две любые точки, то кратчайшее расстояние между ними будет проходить как раз по этой прямой. Прямые чаще всего обозначают одной строчной (маленькой) латинской буквой. Например, прямая a , прямая b . Однако в некоторых случаях и двумя большими. Например, прямая AB, прямая CD.

Отрезок - это часть прямой вместе с ограничивающими эту часть точками. То есть отрезок состоит из двух точек, лежащих на прямой, и участка этой прямой между этими двумя точками. Точки отрезка называют концами отрезка . Понятно, что две точки не должны совпадать, то есть лежать в одном и том же месте на прямой. Иначе отрезок будет иметь нулевую длину и по-сути будет точкой. Обозначают отрезки двумя большими буквами, которыми обозначаются концы отрезка. Например, если концами отрезка будут точки A и B, то отрезок будет обозначен как AB.

Если прямая поделена на две части одной точкой, то на ней можно выделить два луча . Один исходит из точки в одну сторону, а другой в другую. Таким образом, если отрезок ограничен с обоих концов, то луч только с одной, а другая сторона луча бесконечна, как у прямой. Обозначают лучи также как и прямые: либо одной маленькой буквой, либо двумя большими.

Полуплоскость - это часть плоскости, лежащая с той или иной стороны от прямой. Отсюда следует, что прямая делит плоскость на две полуплоскости, а сама является их границей.

Угол , состоит из точки и отходящих от нее двух лучей. Такое понятие угла близко к тому, как выше было введено понятие о луче: точка делит прямую на два луча. Но в том случае речь шла о том, что оба луча лежат на одной прямой. А здесь это далеко не обязательно. Два луча могут принадлежать разным прямым, главное - это то, что точка, из которой они исходят, является для них общей. Эта точка называется вершиной угла , в то время как лучи называются сторонами угла .

Углы обозначают по-разному - одной буквой, двумя, тремя. Но всегда перед ними стоит знак ∠ (угол). Например ∠ABC, ∠B, ∠ac.