Нормальное распределение описывается. Нормальное распределение. Непрерывные распределения в EXCEL. Связь с другими распределениями

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b . Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая . У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Формула состоит из двух математических констант:

π – число пи 3,142;

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a );

σ 2 – дисперсия;

ну и сама переменная x , для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: (m ) и (σ 2 ). Кратко обозначается N(m, σ 2) или N(m, σ) . Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x , определяется функцией нормального распределения :

Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

P(a ≤ X < b) = Ф(b) – Ф(a)

Стандартное нормальное распределение

Нормальное распределение зависит от параметров средней и дисперсии, из-за чего плохо видны его свойства. Хорошо бы иметь некоторый эталон распределения, не зависящий от масштаба данных. И он существует. Называется стандартным нормальным распределением . На самом деле это обычное нормальное нормальное распределение, только с параметрами математического ожидания 0, а дисперсией – 1, кратко записывается N(0, 1).

Любое нормальное распределение легко превращается в стандартное путем нормирования:

где z – новая переменная, которая используется вместо x;
m – математическое ожидание;
σ – стандартное отклонение.

Для выборочных данных берутся оценки:

Среднее арифметическое и дисперсия новой переменной z теперь также равны 0 и 1 соответственно. В этом легко убедиться с помощью элементарных алгебраических преобразований.

В литературе встречается название z-оценка . Это оно самое – нормированные данные. Z-оценку можно напрямую сравнивать с теоретическими вероятностями, т.к. ее масштаб совпадает с эталоном.

Посмотрим теперь, как выглядит плотность стандартного нормального распределения (для z-оценок ). Напомню, что функция Гаусса имеет вид:

Подставим вместо (x-m)/σ букву z , а вместо σ – единицу, получим функцию плотности стандартного нормального распределения :

График плотности:

Центр, как и ожидалось, находится в точке 0. В этой же точке функция Гаусса достигает своего максимума, что соответствует принятию случайной величиной своего среднего значения (т.е. x-m=0 ). Плотность в этой точке равна 0,3989, что можно посчитать даже в уме, т.к. e 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности ;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1 , т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы.

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец 0 , т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен).

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z) , т.е. плотность для 1 тождественна плотности для -1 , что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z .

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения .

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z) . Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z) , то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Для наглядности можно взглянуть на рисунок.

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z .

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Рисунок ниже.

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z : 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64 , для которого табличное значение составляет 0,4495 . Проще всего пояснить смысл на рисунке.

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от 0 до 1,64 , равна 0,4495 . При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64 , т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3 , оно равно по нашей таблице 0,4986 . Умножим на 2 и получим 0,997 . Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Нормальное распределение в Excel

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

Функция НОРМ.СТ.РАСП

Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ(z ) или вероятности Φ(z) по нормированным данным (z ).

=НОРМ.СТ.РАСП(z;интегральная)

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ(z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z

Рассчитаем плотность и значение функции для различных z: -3, -2, -1, 0, 1, 2, 3 (их укажем в ячейке А2).

Для расчета плотности потребуется формула =НОРМ.СТ.РАСП(A2;0). На диаграмме ниже – это красная точка.

Для расчета значения функции =НОРМ.СТ.РАСП(A2;1). На диаграмме – закрашенная площадь под нормальной кривой.

В реальности чаще приходится рассчитывать вероятность того, что случайная величина не выйдет за некоторые пределы от средней (в среднеквадратичных отклонениях, соответствующих переменной z ), т.е. P(|Z|.

Определим, чему равна вероятность попадания случайной величины в пределы ±1z, ±2z и ±3z от нуля. Потребуется формула 2Ф(z)-1 , в Excel =2*НОРМ.СТ.РАСП(A2;1)-1.

На диаграмме отлично видны основные основные свойства нормального распределения, включая правило трех сигм. Функция НОРМ.СТ.РАСП – это автоматическая таблица значений функции нормального распределения в Excel.

Может стоять и обратная задача: по имеющейся вероятности P(Z найти стандартизованную величину z ,то есть квантиль стандартного нормального распределения.

Функция НОРМ.СТ.ОБР

НОРМ.СТ.ОБР рассчитывает обратное значение функции стандартного нормального распределения. Синтаксис состоит из одного параметра:

=НОРМ.СТ.ОБР(вероятность)

вероятность – это вероятность.

Данная формула используется так же часто, как и предыдущая, ведь по тем же таблицам искать приходится не только вероятности, но и квантили.

Например, при расчете доверительных интервалов задается доверительная вероятность, по которой нужно рассчитать величину z .

Учитывая то, что доверительный интервал состоит из верхней и нижней границы и то, что нормальное распределение симметрично относительно нуля, достаточно получить верхнюю границу (положительное отклонение). Нижняя граница берется с отрицательным знаком. Обозначим доверительную вероятность как γ (гамма), тогда верхняя граница доверительного интервала рассчитывается по следующей формуле.

Рассчитаем в Excel значения z (что соответствует отклонению от средней в сигмах) для нескольких вероятностей, включая те, которые наизусть знает любой статистик: 90%, 95% и 99%. В ячейке B2 укажем формулу: =НОРМ.СТ.ОБР((1+A2)/2). Меняя значение переменной (вероятности в ячейке А2) получим различные границы интервалов.

Доверительный интервал для 95% равен 1,96, то есть почти 2 среднеквадратичных отклонения. Отсюда легко даже в уме оценить возможный разброс нормальной случайной величины. В общем, доверительным вероятностям 90%, 95% и 99% соответствуют доверительные интервалы ±1,64, ±1,96 и ±2,58 σ.

В целом функции НОРМ.СТ.РАСП и НОРМ.СТ.ОБР позволяют произвести любой расчет, связанный с нормальным распределением. Но, чтобы облегчить и уменьшить количество действий, в Excel есть несколько других функций. Например, для расчета доверительных интервалов средней можно использовать ДОВЕРИТ.НОРМ. Для проверки о средней арифметической есть формула Z.ТЕСТ.

Рассмотрим еще пару полезных формул с примерами.

Функция НОРМ.РАСП

Функция НОРМ.РАСП отличается от НОРМ.СТ.РАСП лишь тем, что ее используют для обработки данных любого масштаба, а не только нормированных. Параметры нормального распределения указываются в синтаксисе.

=НОРМ.РАСП(x;среднее;стандартное_откл;интегральная)

среднее – математическое ожидание, используемое в качестве первого параметра модели нормального распределения

стандартное_откл – среднеквадратичное отклонение – второй параметр модели

интегральная – если 0, то рассчитывается плотность, если 1 – то значение функции, т.е. P(X

Например, плотность для значения 15, которое извлекли из нормальной выборки с матожиданием 10, стандартным отклонением 3, рассчитывается так:

Если последний параметр поставить 1, то получим вероятность того, что нормальная случайная величина окажется меньше 15 при заданных параметрах распределения. Таким образом, вероятности можно рассчитывать напрямую по исходным данным.

Функция НОРМ.ОБР

Это квантиль нормального распределения, т.е. значение обратной функции. Синтаксис следующий.

=НОРМ.ОБР(вероятность;среднее;стандартное_откл)

вероятность – вероятность

среднее – матожидание

стандартное_откл – среднеквадратичное отклонение

Назначение то же, что и у НОРМ.СТ.ОБР , только функция работает с данными любого масштаба.

Пример показан в ролике в конце статьи.

Моделирование нормального распределения

Для некоторых задач требуется генерация нормальных случайных чисел. Готовой функции для этого нет. Однако В Excel есть две функции, которые возвращают случайные числа: СЛУЧМЕЖДУ и СЛЧИС. Первая выдает случайные равномерно распределенные целые числа в указанных пределах. Вторая функция генерирует равномерно распределенные случайные числа между 0 и 1. Чтобы сделать искусственную выборку с любым заданным распределением, нужна функция СЛЧИС .

Допустим, для проведения эксперимента необходимо получить выборку из нормально распределенной генеральной совокупности с матожиданием 10 и стандартным отклонением 3. Для одного случайного значения напишем формулу в Excel.

НОРМ.ОБР(СЛЧИС();10;3)

Протянем ее на необходимое количество ячеек и нормальная выборка готова.

Для моделирования стандартизованных данных следует воспользоваться НОРМ.СТ.ОБР.

Процесс преобразования равномерных чисел в нормальные можно показать на следующей диаграмме. От равномерных вероятностей, которые генерируются формулой СЛЧИС, проведены горизонтальные линии до графика функции нормального распределения. Затем от точек пересечения вероятностей с графиком опущены проекции на горизонтальную ось.

по сравнению с другими видами распределений. Главной особенностью этого распределения является то, что к этому закону стремятся все другие законы распределений при бесконечном повторении количества испытаний. Как получается это распределение?

Представим себе, что, взяв ручной динамометр, Вы расположились в самом людном месте Вашего города. И каждому, кто проходит мимо, Вы предлагаете измерить свою силу, сжав динамометр правой или левой рукой. Показания динамометра Вы аккуратно за-писываете. Через некоторое время, при достаточно большом количестве испытаний, Вы нанесли на ось абсцисс показания динамометра, а на ось ординат – количество людей, кото-рые "выжали" это показание. Полученные точки соединили плавной линией. В результате получается кривая, изображенная на рис.9.8 . Вид этой кривой не будет особо изменяться при увеличении времени опыта. Более того, с некоторого момента новые значения будут только уточнять кривую, не изменяя ее формы.


Рис. 9.8.

Теперь переместимся с нашим динамометром в атлетический зал и повторим эксперимент. Теперь максимум кривой сместится вправо, левый конец будет несколько затянут, в то время как правый конец ее будет более крутой (рис.9.9).


Рис. 9.9.

Заметим, что максимальная частота для второго распределения (точка В) будет ниже, чем максимальная частота первого распределения (точка А). Это можно объяснить тем, что общее количество людей, посещающих атлетический зал, будет меньше, чем количество людей, которое прошли возле экспериментатора в первом случае (в центре города в достаточно людном месте). Максимум сместился вправо, так как атлетические залы посещают физически более сильные люди по сравнению с общим фоном.

И, наконец, посетим школы, детские сады и дома престарелых с той же целью: выявить силу рук посетителей этих мест. И опять кривая распределения будет иметь похожую форму, но теперь, очевидно, более крутым будет ее левый конец, а правый более затянут. И как во втором случае, максимум (точка С) будет ниже точки А (рис.9.10).


Рис. 9.10.

Это замечательное свойство нормального распределения – сохранять форму кривой плотности распределения вероятностей (рис. 8 – 10) было замечено и описано в 1733 году Муавром, а затем исследовано Гауссом.

В научных исследованиях, в технике, в массовых явлениях или экспериментах, когда речь идет о многократно повторяющихся случайных величинах при неизменных условиях опыта, говорят, что результаты испытаний испытывают случайное рассеяние, подчиняющееся закону нормальной кривой распределения

(21)

Где - это наиболее часто встречающееся событие. Как правило, в формулу (21) вместо параметра ставят . Причем, чем длин-нее экспериментальный ряд, тем меньше параметр будет отличаться от математического ожидания. Площадь под кривой (рис.9.11) при-нимается равной единице. Площадь , отвечающая какому-либо интервалу оси абсцисс, численно равна вероятности попадания случайного результата в данный интервал .


Рис. 9.11.

Функция нормального распределения имеет вид


(22)

Заметим, что нормальная кривая (рис.9.11) симметрична относительно прямой и асимптотически приближается к оси ОХ при .

Вычислим математическое ожидание для нормального закона


(23)

Свойства нормального распределения

Рассмотрим основные свойства этого важнейшего распределения.

Свойство 1 . Функция плотности нормального распределения (21) определения на всей оси абсцисс.

Свойство 2 . Функция плотности нормального распределения (21) больше нуля для любого из области определения ().

Свойство 3 . При бесконечном увеличении (уменьшении) функция распределения (21) стремится к нулю .

Свойство 4 . При функция распределения , заданная (21), имеет наибольшее значение , равное

(24)

Свойство 5 . График функции (рис.9.11) симметричен относительно прямой .

Свойство 6 . График функции (рис.9.11) имеет по две точки перегиба симметричные относительно прямой :

(25)

Свойство 7 . Все нечетные центральные моменты равны нулю. Заметим, что используя свойство 7, определяют асимметрию функции по формуле . Если , то делают вывод , что исследуемое распределение симметрично относительно прямой . Если , то говорят, что ряд смещен вправо (более пологая правая ветвь графика или затянута). Если , тогда считают, что ряд смещен влево (более пологая левая ветвь графика рис.9.12).


Рис. 9.12.

Свойство 8 . Эксцесс распределения равен 3. Часто на практике вычисляют и по близости этой величины к нулю определяют степень "сжатия" или "размытости" графика (рис.9.13). А так как связан с , то, в конечном итоге характеризует степень рассеяния частоты данных. А так как определяет

(вещественный, строго положительный)

Норма́льное распределе́ние , также называемое распределением Гаусса или Гаусса - Лапласа - распределение вероятностей , которое в одномерном случае задаётся функцией плотности вероятности , совпадающей с функцией Гаусса :

f (x) = 1 σ 2 π e − (x − μ) 2 2 σ 2 , {\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {(x-\mu)^{2}}{2\sigma ^{2}}}},}

где параметр μ - математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ - среднеквадратическое отклонение ( σ  ² - дисперсия) распределения.

Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в статье «Многомерное нормальное распределение ».

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1 .

Энциклопедичный YouTube

  • 1 / 5

    Важное значение нормального распределения во многих областях науки (например, в математической статистике и статистической физике) вытекает из центральной предельной теоремы теории вероятностей . Если результат наблюдения является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то при увеличении числа слагаемых распределение центрированного и нормированного результата стремится к нормальному. Этот закон теории вероятностей имеет следствием широкое распространение нормального распределения, что и стало одной из причин его наименования.

    Свойства

    Моменты

    Если случайные величины X 1 {\displaystyle X_{1}} и X 2 {\displaystyle X_{2}} независимы и имеют нормальное распределение с математическими ожиданиями μ 1 {\displaystyle \mu _{1}} и μ 2 {\displaystyle \mu _{2}} и дисперсиями σ 1 2 {\displaystyle \sigma _{1}^{2}} и σ 2 2 {\displaystyle \sigma _{2}^{2}} соответственно, то X 1 + X 2 {\displaystyle X_{1}+X_{2}} также имеет нормальное распределение с математическим ожиданием μ 1 + μ 2 {\displaystyle \mu _{1}+\mu _{2}} и дисперсией σ 1 2 + σ 2 2 . {\displaystyle \sigma _{1}^{2}+\sigma _{2}^{2}.} Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.

    Максимальная энтропия

    Нормальное распределение имеет максимальную дифференциальную энтропию среди всех непрерывных распределений, дисперсия которых не превышает заданную величину .

    Моделирование нормальных псевдослучайных величин

    Простейшие приближённые методы моделирования основываются на центральной предельной теореме . Именно, если сложить несколько независимых одинаково распределённых величин с конечной дисперсией , то сумма будет распределена приблизительно нормально. Например, если сложить 100 независимых стандартно равномерно  распределённых случайных величин, то распределение суммы будет приближённо нормальным .

    Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса - Мюллера . Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.

    Нормальное распределение в природе и приложениях

    Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

    • отклонение при стрельбе.
    • погрешности измерений (однако погрешности некоторых измерительных приборов имеют не нормальные распределения).
    • некоторые характеристики живых организмов в популяции.

    Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например, биномиальное и пуассоновское . Этим распределением моделируются многие не детерминированные физические процессы.

    Связь с другими распределениями

    • Нормальное распределение является распределением Пирсона типа XI .
    • Отношение пары независимых стандартных нормально распределенных случайных величин имеет распределение Коши . То есть, если случайная величина X {\displaystyle X} представляет собой отношение X = Y / Z {\displaystyle X=Y/Z} (где Y {\displaystyle Y} и Z {\displaystyle Z} - независимые стандартные нормальные случайные величины), то она будет обладать распределением Коши.
    • Если z 1 , … , z k {\displaystyle z_{1},\ldots ,z_{k}} - совместно независимые стандартные нормальные случайные величины, то есть z i ∼ N (0 , 1) {\displaystyle z_{i}\sim N\left(0,1\right)} , то случайная величина x = z 1 2 + … + z k 2 {\displaystyle x=z_{1}^{2}+\ldots +z_{k}^{2}} имеет распределение хи-квадрат с k степенями свободы.
    • Если случайная величина X {\displaystyle X} подчинена логнормальному распределению , то её натуральный логарифм имеет нормальное распределение. То есть, если X ∼ L o g N (μ , σ 2) {\displaystyle X\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} , то Y = ln ⁡ (X) ∼ N (μ , σ 2) {\displaystyle Y=\ln \left(X\right)\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} . И наоборот, если Y ∼ N (μ , σ 2) {\displaystyle Y\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} , то X = exp ⁡ (Y) ∼ L o g N (μ , σ 2) {\displaystyle X=\exp \left(Y\right)\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} .
    • Отношение квадратов двух стандартных нормальных случайных величин имеет имеет

    Нормальное распределение (normal distribution ) - играет важную роль в анализе данных.

    Иногда вместо термина нормальное распределение употребляют термин гауссовское распределение в честь К. Гаусса (более старые термины, практически не употребляемые в настоящее время: закон Гаусса, Гаусса-Лапласа распределение).

    Одномерное нормальное распределение

    Нормальное распределение имеет плотность::

    В этой формуле , фиксированные параметры, - среднее , - стандартное отклонение .

    Графики плотности при различных параметрах приведены .

    Характеристическая функция нормального распределения имеет вид:

    Дифференцируя характеристическую функцию и полагая t = 0 , получаем моменты любого порядка.

    Кривая плотности нормального распределения симметрична относительно и имеет в этой точке единственный максимум, равный

    Параметр стандартного отклонения меняется в пределах от 0 до ∞.

    Среднее меняется в пределах от -∞ до +∞.

    При увеличении параметра кривая растекается вдоль оси х , при стремлении к 0 сжимается вокруг среднего значения (параметр характеризует разброс, рассеяние).

    При изменении кривая сдвигается вдоль оси х (см. графики).

    Варьируя параметры и , мы получаем разнообразные модели случайных величин, возникающие в телефонии.

    Типичное применение нормального закона в анализе, например, телекоммуникационных данных - моделирование сигналов, описание шумов, помех, ошибок, трафика.

    Графики одномерного нормального распределения

    Рисунок 1. График плотности нормального распределения: среднее равно 0, стандартное отклонение 1

    Рисунок 2. График плотности стандартного нормального распределения с областями, содержащими 68% и 95% всех наблюдений

    Рисунок 3. Графики плотностей нормальных распределений c нулевым средним и разными отклонениями (=0.5, =1, =2)

    Рисунок 4 Графики двух нормальных распределений N(-2,2) и N(3,2).

    Заметьте, центр распределения сдвинулся при изменении параметра .

    Замечание

    В программе STATISTICA под обозначением N(3,2) понимается нормальный или гауссов закон с параметрами: среднее = 3 и стандартное отклонение =2.

    В литературе иногда второй параметр трактуется как дисперсия , т.е. квадрат стандартного отклонения.

    Вычисления процентных точек нормального распределения с помощью вероятностного калькулятора STATISTICA

    С помощью вероятностного калькулятора STATISTICA можно вычислить различные характеристики распределений, не прибегая к громоздким таблицам, используемым в старых книгах.

    Шаг 1. Запускаем Анализ / Вероятностный калькулятор / Распределения .

    В разделе распределения выберем нормальное .

    Рисунок 5. Запуск калькулятора вероятностных распределений

    Шаг 2. Указываем интересующие нас параметры.

    Например, мы хотим вычислить 95% квантиль нормального распределения со средним 0 и стандартным отклонением 1.

    Укажем эти параметры в полях калькулятора (см. поля калькулятора среднее и стандартное отклонение).

    Введем параметр p=0,95.

    Галочка «Обратная ф.р». отобразится автоматически. Поставим галочку «График».

    Нажмем кнопку «Вычислить» в правом верхнем углу.

    Рисунок 6. Настройка параметров

    Шаг 3. В поле Z получаем результат: значение квантиля равно 1,64 (см. следующее окно).

    Рисунок 7. Просмотр результата работы калькулятора

    Рисунок 8. Графики плотности и функции распределения. Прямая x=1,644485

    Рисунок 9. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=-1.5, x=-1, x=-0.5, x=0

    Рисунок 10. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=0.5, x=1, x=1.5, x=2

    Оценка параметров нормального распределения

    Значения нормального распределения можно вычислить с помощью интерактивного калькулятора .

    Двумерное нормальное распределение

    Одномерное нормальное распределение естественно обобщается на двумерное нормальное распределение.

    Например, если вы рассматриваете сигнал только в одной точке, то вам достаточно одномерного распределения, в двух точках - двумерного, в трех точках - трехмерного и т.д.

    Общая формула для двумерного нормального распределения имеет вид:

    Где - парная корреляция между X 1 и X 2 ;

    X 1 соответственно;

    Среднее и стандартное отклонение переменной X 2 соответственно.

    Если случайные величины Х 1 и Х 2 независимы, то корреляция равна 0, = 0, соответственно средний член в экспоненте зануляется, и мы имеем:

    f(x 1 ,x 2) = f(x 1)*f(x 2)

    Для независимых величин двумерная плотность распадается в произведение двух одномерных плотностей.

    Графики плотности двумерного нормального распределения

    Рисунок 11. График плотности двумерного нормального распределения (нулевой вектор средних, единичная ковариационная матрица)

    Рисунок 12. Сечение графика плотности двумерного нормального распределения плоскостью z=0.05

    Рисунок 13. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной)

    Рисунок 14. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной) плоскостью z= 0.05

    Рисунок 15. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной)

    Рисунок 16. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной) плоскостью z=0.05

    Рисунок 17. Сечения графиков плотностей двумерного нормального распределения плоскостью z=0.05

    Для лучшего понимания двумерного нормального распределения попробуйте решить следующую задачу.

    Задача. Посмотрите на график двумерного нормального распределения. Подумайте, можно ли его представить, как вращение графика одномерного нормального распределения? Когда нужно применить прием деформации?

    ) играет осо-бо важную роль в теории вероятностей и чаще других применяется в решении практических задач. Его главная особенность в том, что он является предельным законом, к которому приближаются дру-гие законы распределения при весьма часто встречающихся типич-ных условиях. Например, сумма достаточно большого числа неза-висимых (или слабо зависимых) случайных величин приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем больше случайных величин суммируется.

    Экспериментально доказано, что нормальному закону под-чиняются погрешности измерений, отклонения геометрических размеров и положения элементов строительных конструкций при их изготовлении и монтаже, изменчивость физико-механических характеристик материалов и нагру-зок, действующих на строительные конструкции.

    Распределению Гаусса подчи-няются почти все случайные вели-чины, отклонение которых от сред-них значений вызывается большой совокупностью случайных факто-ров, каждый из которых в отдельности незначителен (центральная предельная теорема).

    Нормальным распределением называется распределение случайной непрерывной величины, для которых плотность вероят-ностей имеет вид (рис. 18.1).

    Рис. 18.1. Нормальный закон распределения при а 1 < a 2 .

    (18.1)

    где а и — параметры распределения.

    Вероятностные характеристики случайной величины, распре-деленной по нормальному закону, равны:

    Математическое ожидание (18.2)

    Дисперсия (18.3)

    Среднеквадратичное отклонение (18.4)

    Коэффициент асимметрии А = 0 (18.5)

    Эксцесс Е = 0. (18.6)

    Параметр σ, входящий в распределение Гаусса равен сред-неквадратичному отношению слу-чайной величины. Величина а оп-ределяет положение центра рас-пределения (см. рис. 18.1), а величина а — ширину распределе-ния (рис. 18.2), т.е. статистический разброс вокруг средней величины.

    Рис. 18.2. Нормальный закон распределения при σ 1 < σ 2 < σ 3

    Вероятность попадания в заданный интервал (от x 1 до x 2) для нормального распределения, как и во всех случаях, определяется интегралом от плотности вероятности (18.1), который не выража-ется через элементарные функции и представляется специальной функцией, называется функцией Лапласа (интеграл вероятностей).

    Одно из представлений интеграла вероятностей:

    (18.7)

    Величина и называется квантилем.

    Видно, что Ф(х) — нечетная функция, т. е. Ф(-х) = -Ф(х). Значения этой функции вычислены и представлены в виде таблиц в технической и учебной литературе.


    Функция распределения нормального закона (рис. 18.3) может быть выражена через ин-теграл вероятностей:

    (18.9)

    Рис. 18.2. Функция нормального закона распределения.

    Вероятность попадания случайной величины, распределенной по нормальному закону, в интервал от х. до х, определяется выра-жением:

    Следует заметить, что

    Ф(0) = 0; Ф(∞) = 0,5; Ф(-∞) = -0,5.

    При решении практических задач, связанных с распределе-нием, часто приходится рассматривать вероятность попадания в интервал, симметричный относительно математического ожидания, если длина этого интервала т.е. если сам интервал имеет грани-цу от до , имеем:

    При решении практических задач границы отклонений слу-чайных величин выражаются через стандарт, среднеквадратичное отклонение, умноженное на некоторый множитель, определяющий границы области отклонений случайной величины.

    Принимая и а также используя формулу (18.10) и таблицу Ф(х) (приложение № 1), получим

    Эти формулы показывают , что если случайная величина име-ет нормальное распределение, то вероятность ее отклонения от сво-его среднего значения не более чем на σ составляет 68,27 %, не бо-лее чем на 2σ — 95,45 % и не более чем на Зσ — 99,73 %.

    Поскольку величина 0,9973 близка к единице, практически считается невозможным отклонение нормального распределения случайной величины от математического ожидания более чем на Зσ. Это правило, справедливое только для нормального распределения, называется правилом трех сигм. Нарушение его имеет вероятность Р = 1 - 0,9973 = 0,0027. Этим правилом пользуются при установле-нии границ допустимых отклонений допусков геометрических ха-рактеристик изделий и конструкций.