Каков общий принцип построения графиков физических величин. Методические рекомендации к проведению зачетов по физике в старших классах методическая разработка по физике (10 класс) на тему. Графики равноускоренного движения

Графики дают визуальное представление о связи между величинами, что крайне важно при интерпретации полученных данных, так как графическая информация легко воспринимается, вызывает больше доверия, обладает значительной емкостью. На основе графика легче сделать вывод о соответствии теоретических представлений данным эксперимента.

Графики строят на миллиметровой бумаге. Допускается построение графиков на тетрадном листе в клеточку. Размерграфика – не менее чем 1012 см. Графики строят в прямоугольной системе координат, где по горизонтальной оси (оси абсцисс) откладывают аргумент, независимую физическую величину, а по вертикальной оси (оси ординат) – функцию, зависимую физическую величину.

Обычно график строят на основании таблицы экспериментальных данных, откуда легко установить интервалы, в которых изменяются аргумент и функция. Их наименьшее и наибольшее значения задают значения масштабов, откладываемых вдоль осей. Не следует стремиться поместить на осях точку (0,0), используемую как начало отсчета на математических графиках. Для экспериментальных графиков масштабы по обеим осям выбирают независимо друг от друга и, как правило, соотносят с погрешностью измерения аргумента и функции: желательно, чтобы цена наименьшего деления каждой шкалы примерно равнялась соответствующей погрешности.

Масштабная шкала должна легко читаться, а для этого необходимо выбрать удобную для восприятия цену деления шкалы: одной клетке должно соответствовать кратное 10 количество единиц откладываемой физической величины: 10 n , 210 n или 510 n , где n – любое целое число, положительное или отрицательное. Так, числа 2; 0,5; 100; 0,02 – подходят, а числа 3; 7; 0,15 – не подходят для этой цели.

При необходимости масштаб по одной и той же оси для положительных и отрицательных значений откладываемой величины может быть выбран разным, но только в том случае, если эти значения отличаются не менее чем на порядок, т.е. в 10 раз и более. Примером может служить вольтамперная характеристика диода, когда прямой и обратный токи отличаются не менее чем в тысячу раз: прямой ток составляет миллиамперы, обратный – микроамперы.

Стрелки, задающие положительное направление, на координатных осях обычно не указывают, если выбрано принятое положительное направление осей: снизу – вверх и слева – направо. Оси подписывают: ось абсцисс – справа внизу, ось ординат – слева вверху. Против каждой оси указывают название или символ откладываемой по оси величины, а через запятую – единицы ее измерения, причем все единицы измерения приводят в русском написании в системе СИ. Числовой масштаб выбирают в виде равноотстоящих по значению «круглых чисел», например: 2; 4; 6; 8 … или 1,82; 1,84; 1,86 …. Масштабные риски проставляют по осям на одинаковом расстоянии друг от друга, чтобы они выходили на поле графика. По оси абсцисс цифры числового масштаба пишут под рисками, по оси ординат – слева от рисок. Координаты экспериментальных точек возле осей проставлять не принято.

Экспериментальные точки аккуратно наносят на поле графика карандашом . Их всегда проставляют так, чтобы они были отчетливо различимы. Если в одних осях строят различные зависимости, полученные, например, при измененных условиях эксперимента или на разных этапах работы, то точки таких зависимостей должны отличаться друг от друга. Их следует отмечать разными значками (квадратами, кружками, крестиками и т.п.) или наносить карандашами разного цвета.

Расчетные точки, полученные путем вычислений, размещают на поле графика равномерно. В отличие от экспериментальных точек, они должны слиться с теоретической кривой после ее построения. Расчетные точки, как и экспериментальные, наносят карандашом – при ошибке неверно поставленную точку легче стереть.

На рисунке 1.5 приведена полученная по точкам экспериментальная зависимость, которая построена на бумаге, имеющей координатную сетку.

Через экспериментальные точки с помощью карандаша проводят плавную кривую так, чтобы точки в среднем были одинаково расположены по обе стороны от проведенной кривой. Если известно математическое описание наблюдаемой зависимости, то теоретическая кривая проводится точно так же. Нет смысла стремиться провести кривую через каждую экспериментальную точку – ведь кривая является только интерпретацией результатов измерений, известных из эксперимента с погрешностью. По сути, есть только экспериментальные точки, а кривая – произвольное, не обязательно верное, домысливание эксперимента. Представим, что все экспериментальные точки соединены и на графике получилась ломаная линия. Она не имеет ничего общего с истинной физической зависимостью! Это следует из того, что форма полученной линии не будет воспроизводиться при повторных сериях измерений.

Рисунок 1.5 – Зависимость коэффициента динамической

вязкости воды от температуры

Напротив, теоретическую зависимость строят на графике таким образом, чтобы она плавно проходила по всем расчетным точкам. Это требование очевидно, так как теоретические значения координат точек могут быть вычислены сколь угодно точно.

Правильно построенная кривая должна заполнять все поле графика, что будет свидетельством правильного выбора масштабов по каждой из осей. Если же значительная часть поля оказывается незаполненной, то необходимо заново выбрать масштабы и перестроить зависимость.

Результаты измерений, на основании которых строят экспериментальные зависимости, содержат погрешности. Чтобы указать их значения на графике, используют два основных способа.

Первый упоминался при обсуждении вопроса выбора масштабов. Он состоит в выборе цены деления масштабной шкалы графика, которая должна равняться погрешности откладываемой по данной оси величины. В таком случае точность измерений не требует дополнительных пояснений.

Если достичь соответствия погрешности и цены деления не удается, используют второй способ, заключающийся в прямом отображении погрешностей на поле графика. А именно, вокруг проставленной экспериментальной точки строят два отрезка, параллельные осям абсцисс и ординат. В выбранном масштабе длина каждого отрезка должна равняться удвоенной погрешности величины, откладываемой по параллельной оси. Центр отрезка должен приходиться на экспериментальную точку. Вокруг точки образуются как бы ”усы”, задающие область возможных значений измеряемой величины. Погрешности становятся зримыми, хотя “усы” могут невольно засорить поле графика. Отметим, что указанный способ чаще всего применяют тогда, когда погрешности меняются от измерения к измерению. Иллюстрацией способа служит рисунок 1.6.

Рисунок 1.6 – Зависимость ускорения тела от силы,

приложенной к нему

2. Отт В.Д., Фесенко М.Е. и др. Диагностика и лечение обструктивного бронхита у детей раннего возраста. Киев-1991.

3. Рачинский С.В., Таточенко В.К. Болезни органов дихания у детей. М.: Медицина, 1987.

4. Рачинский С.В., Таточенко В.К. Бронхиты у детей. Ленинград: Медицина, 1978.

5. Сміян І.С. Педіатрія (курс лекцій). Тернопіль: Укрмедкнига, 1999.

Каков общий принцип построения системы единиц физических величин?

Физическая величина – свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта. Физические величины объективно взаимосвязаны. С помощью уравнений физических величин можно выразить связи между физическими величинами. Выделяют группу основных величин (соответствующие этим величинам единицы называют основными единицами) (их число в каждой области науки определяется как разность между числом независимых уравнений и числом входящих в них физических величин) и производных величин (соответствующие этим величинам единицы называют производными единицами), которые образуются с помощью основных величин и единиц с использованием уравнений физических величин. В качестве основных выбирают величины и единицы, которые могут быть воспроизведены с наибольшей точностью. Совокупность выбранных основных физических величин называется системой величин, а совокупность единиц основных величин – системой единиц физических величин. Этот принцип построения систем физических величин и их единиц был предложен Гауссом в 1832 году.

Разделы: Физика

Графический метод, основа которого - математика, используется в курсе физики на различных этапах ее изучения. Это естественно, так как график позволяет показать специфику происходящего, прогнозировать ожидаемый результат, наглядно пояснить ответ.

Он используется в физике для формирования и анализа изучаемых физических понятий путем раскрытия их связей с другими понятиями, для решения задач обобщения, систематизации знаний.

Графические задачи делятся на две большие группы:

  • Задачи на построение графиков
  • Задачи на получение информации из графиков

В свою очередь задачи на построение графиков делятся (по способу задания) на два вида:

  • Табличный способ задания зависимости
  • Функциональный способ задания зависимости
  • Задачи на получение информации из графика делятся (по характеру информации) на три вида:
  • Словесное описание процессов
  • Аналитическое выражение функциональной зависимости, представленной графиком
  • Определение по графику неизвестных величин

Чаще всего при построении графиков на зависимость одних величин от других учащиеся запоминают вид графика, не вдаваясь в подробности, почему он проходит именно так, а не иначе. Когда зависимостей накапливается достаточно много, начинаются ошибки в построении графиков. В своей работе при построении графиков на различные зависимости физических величин я использую функциональный подход. В школьном курсе физики для построения графиков используются всего семь функций. Почти все физические величины положительные, поэтому графики функций будем рассматривать только в первой четверти.

Название функции График
Прямая пропорциональность y = k x
Линейная y = k x + b

Обратная пропорциональность y = k\x

Показательная y = k a x

Функция y =
Квадратичная функция y = ax 2 + b x + c, y = ax 2
Тригонометрическая функция y = k sin x

Графики этих функций учащиеся изучают в курсе математики. Они знают эти графики либо умеют их строить по точкам. Моя задача сводится к тому, чтобы научить учащихся в физической формуле увидеть зависимость, определить ее вид, а затем установить соответствующий график.

Покажу это на примере:

Пример № 1. Необходимо построить график зависимости силы тока от напряжения, которая выражена зависимостью I = . Учащиеся должны понимать, если необходимо построить зависимость силы тока от напряжения, то изменяться будет только напряжение и в зависимости от него сила тока, а остальные величины будут постоянными в частности сопротивление. Тогда нашу функцию (формулу) можно представить в виде . Если R -сопротивление постоянная величина, то и единица, деленная на сопротивление величина постоянная. Заменим эту величину на k, получим I = k U. Определяем вид функции, это прямая пропорциональность. Графиком будет прямая проходящая через начало координат.

Пример № 2. Необходимо построить график зависимости силы тока от сопротивления, которая выражена зависимостью I = . В донном примере изменяться будет сопротивление и в зависимости от него сила тока, а напряжение будет величиной постоянной. Сделаем следующие замены I = y; U = k; R = x; Получим функцию y = k\ x, графиком которой является ветвь гиперболы

Графическое представление информации бывает весьма полезным именно в силу своей наглядности. По графикам можно определять характер функциональной зависимости, определять значения величин. Графики позволяют сравнить результаты, полученные экспериментально, с теорией. На графиках легко находить максимумы и минимумы, легко выявлять промахи и т. д.

1. График строят на бумаге, размеченной сеткой. Для ученических практических работ лучше всего брать миллиметровую бумагу.

2. Особо следует сказать о размере графика: он определяется не размером имеющегося у вас кусочка «миллиметровки», а масштабом. Масштаб выбирают прежде всего с учетом интервалов измерения (по каждой оси он выбирается отдельно).

3. Если планируете некую количественную обработку данных по графику, то экспериментальные точки надо наносить настолько «просторно», чтобы абсолютные погрешности величин можно было изобразить отрезками достаточно заметной длины. Погрешности в этом случае отображают на графиках отрезками, пересекающимися в экспериментальной точке, либо прямоугольниками с центром в экспериментальной точке. Их размеры по каждой из осей должны соответствовать выбранным масштабам. Если погрешность по одной из осей (или по обеим осям) оказывается слишком малой, то предполагается, что она отображается на графике размером самой точки.

4. По горизонтальной оси откладывают значения аргумента, по вертикальной - значения функции. Чтобы различать линии, можно одну проводить сплошной, другую - пунктирной, третью - штрихпунктирной и т.п. Допустимо выделять линии различным цветом. Вовсе не обязательно, чтобы в точке пересечения осей было начало координат 0:0). По каждой из осей можно отображать только интервалы измерения исследуемых величин.

5. Когда приходится откладывать по оси «длинные», многозначные числа, лучше множитель, указывающий порядок числа, учитывать при записи обозначения.

6. На тех участках графика, где имеются некие особенности, такие как резкое изменение кривизны, максимум, минимум, перегиб и др., следует брать большую густоту экспериментальных точек. Чтобы не пропустить такие особенности, есть смысл строить график сразу во время эксперимента.

7. В ряде случаев удобно пользоваться функциональными масштабами. В этих случаях на осях откладывают не сами измеряемые величины, а функции этих величин.

8. Проводить линию «на глаз» по экспериментальным точкам всегда довольно сложно, наиболее простым случаем, в этом смысле, является проведение прямой. Поэтому посредством удачного выбора функционального масштаба можно привести зависимость к линейной.

9. Графики обязательно нужно подписывать. Подпись должна отражать содержание графика. Следует объяснить в подписи либо основном тексте изображенные на графике линии.

10. Экспериментальные точки, как правило, не соединяются между собой ни отрезками прямой, ни произвольной кривой. Вместо этого строится теоретический график той функции (линейной, квадратичной, экспоненциальной, тригонометрической и т.д.), которая отражает проявляющуюся в данном опыте известную или предполагаемую физическую закономерность, выраженную в виде соответствующей формулы.

11. В лабораторном практикуме встречаются два случая: проведение теоретического графика преследует цель извлечения из эксперимента неизвестных параметров функции (тангенса угла наклона прямой, показателя экспоненты и т.д.), либо делается сравнение предсказаний теории с результатами эксперимента.

12. В первом случае график соответствующей функции проводится "на глаз" так, чтобы он проходил по всем областям погрешности возможно ближе к экспериментальным точкам. Существуют математические методы, позволяющие провести теоретическую кривую через экспериментальные точки в определенном смысле наилучшим образом. При проведении графика "на глаз" рекомендуется пользоваться зрительным ощущением равенства нулю суммы положительных и отрицательных отклонений точек от проводимой кривой.

13. Во втором случае график строится по результатам расчетов, причем расчетные значения находятся не только для тех точек, которые были получены в опыте, а с некоторым шагом по всей области измерений для получения плавной кривой. Нанесение на миллиметровку результатов расчетов в виде точек является рабочим моментом - после проведения теоретической кривой эти точки с графика убираются. Если в расчетную формулу входит уже определенный (или заранее известный) экспериментальный параметр, то расчеты проводятся как со средним значением параметра, так и с его максимальным и минимальным (в пределах погрешности) значениями. На графике в этом случае изображается кривая, полученная со средним значением параметра, и полоса, ограниченная двумя расчетными кривыми для максимального и минимального значений параметра.

Литература:

1. http://iatephysics.narod.ru/knowhow/knowhow7.htm

2. Мацукович Н.А., Слободянюк А.И. Физика: рекомендации к лабораторному практикуму. Минск, БГУ, 2006 г.