Строение вещества. Способы изображения органических молекул Модели молекул различных веществ

ГБПОУ НСО «Колыванский аграрный колледж»

Инструкционная технологическая карта № 1

по ОУД. 11 Химия

профессии 35.01.23 Хозяйка (ин) усадьбы, 19.01.04 Пекарь

Раздел 1: Органическая химия

Тема 1.1: Основные понятия органической химии и теория строения органических соединений.

Наименование работы : Изготовление моделей молекул – представителей различных классов органических соединений.

Цель работы:

    обобщить и систематизировать знания учащихся о теории строения органических соединений;

    закрепить умение составлять структурные формулы углеводородов;

Студент должен достичь следующих результатов:

    личностных:

чувство гордости и уважения к истории и достижениям отечественной химической науки; химически грамотное поведение в профессиональной деятельности и в быту при обращении с химическими веществами, материалами и процессами;

готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли химических компетенций в этом;

умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

    метапредметных:

использование различных видов познавательной деятельности и основных интеллектуальных операций (постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов) для решения поставленной задачи, применение основных методов познания (наблюдения, научного эксперимента) для изучения различных сторон химических объектов и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;

использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

    предметных :

сформированность представлений о месте химии в современной научной картине мира;

Понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;

владение основополагающими химическими понятиями, теориями, законами и закономерностями;

Уверенное пользование химической терминологией и символикой;

владение основными методами научного познания, используемыми в химии: наблюдением, описанием, измерением, экспериментом;

Умение обрабатывать, объяснять результаты проведенных опытов и делать выводы;

готовность и способность применять методы познания при решении практических задач;

сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям;

владение правилами техники безопасности при использовании химических веществ;

сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.

Форма обучения : индивидуальная

Норма времени: 2 часа

Оснащение рабочего места : Набор шаростержневых моделей молекул, таблица “Предельные углеводороды”, периодическая таблица, инструкционные технологические карты, тетради

Литература:

Средства обучения: словесные (вербальные), наглядные

Техника безопасности: с правилами техники безопасности на рабочем месте и в кабинете ознакомлены.

Методические указания

Углеводороды это органические вещества, состоящие из атомов углерода и водорода. Атом углерода во всех органических соединениях четырехвалентен. Атомы углерода могут образовывать цепочки прямые, разветвленные, замкнутые. Свойства веществ завися не только от качественного и количественного состава, но и от порядка соединения атомов между собой. Вещества, имеющие одинаковую молекулярную формулу, но разное строение называются изомерами. Приставки указывают количество ди – два, три – три, тетра - четыре; цикло - означает замкнутый.

Суффиксы в названии углеводородов указывают на наличие кратной связи:

ан одинарная связь между атомами углерода (С - С); ен двойная связь между атомами углерода (С = С);
ин
тройная связь между атомами углерода = С);
диен
две двойных связи между атомами углерода (С = С - С = С);

Радикалы: метил -СН 3 ; этил -С 2 Н 5 ; хлор -Сl; бром -Br.

Пример. Составьте модель молекулы пропана.

Молекула пропана C 3 H 8 содержит три атома углерода и восемь атомов водорода. Атомы углерода соединены между собой. Суффикс – ан указывает на наличие одинарной связи между атомами углерода. Атомы углерода располагаются под углом 109 28 минут.

Молекула имеет форму пирамиды. Атомы углерода изображайте черными кругами, а атомы водорода – белыми, атомы хлора – зелеными.

При изображении моделей соблюдайте соотношение размеров атомов.

Молярную массу находим, пользуясь периодической таблицей

М (С 3 Н 8 ) = 12 · 3 + 1 · 8 = 44 г/моль.

Что бы назвать углеводород надо:

    Выбрать самую длинную цепочку.

    Пронумеровать, начиная с того края, к которому ближе радикал или кратная связь.

    Указать радикал, если радикалов несколько указывают каждый. (Цифра перед названием).

    Назвать радикал, начиная с меньшего радикала.

    Назвать самую длинную цепочку.

    Указать положение кратной связи. (Цифра после названия).

Пример

При составлении формул по названию надо:

    Определить число атомов углерода в цепочке.

    Определить положение кратной связи. (Цифра после названия).

    Определить положение радикалов. (Цифра перед названием).

    Записать формулы радикалов.

    В последнюю очередь определить количество и расставить атомы водорода.

Порядок выполнения работы

Задание №1 . Составьте модели молекул:

1) ряда алканов: метана, этана, бутана, пентана,гексана, гептана, октана, нонана и декана;

2) Циклоалканов: циклопропана, циклопетана

3) 2-метилпропана,

4) 1,2-дихлорэтана.

Зарисуйте модели молекул в тетради. Напишите структурные формулы этих веществ. Найдите их молекулярные массы.

Задание №2. Назовите вещества:

Задание №3. Составьте структурные формулы веществ:

а) бутен-2, напишите его изомер;

б) 3,3 - диметилпентин-1.

Контрольные вопросы

    Назовите общую формулу предельных углеводородов.

    Какие вещества называются гомологами, какие изомерами?

Преподаватель: Рачковская А.И.

Органическая химия.

2.1.Тема: «Теория строения органических соединений»

2.1.1. Основные положения теории строения органических соединений и классификация органических соединений.

1. Природные и синтетические органические вещества. Немного из истории органической химии. Общие свойства органических веществ (состав, тип химической связи, кристаллическое строение, растворимость, отношение к нагреванию в присутствии кислорода и без него).

2. Теория строения органических соединений А.М.Бутлерова. Развитие теории и ее значение.

3. Классификация органических веществ.

Свое название органические вещества получили потому, что первые из изученных веществ этой группы входили в состав живых организмов. Большинство известных сейчас органических веществ не встречаются в живых организмах, они получены (синтезированы) в лаборатории. Поэтому различают природные (натуральные) органические вещества (хотя большинство из них может быть сейчас получено в лаборатории), а органические вещества, не существующие в природе – синтетические органические веществами. Т.е. название «органические вещества» историческое и особого смысла не имеет. Все органические соединения являются соединениями углерода. К органическим веществам относятся соединения углерода, кроме изучаемых в курсе неорганической химии простых веществ, образованных Карбоном, его оксидов, угольной кислоты и ее солей. Другими словами: органическая химия – это химия соединений углерода.



Краткая история развития орг.химии:

Берцелиус, 1827, первый учебник органической химии. Виталисты. Учение о «жизненной силе».

Первые органические синтезы. Велер, 1824, синтез щавелевой кислоты и мочевины. Кольбе,1845, уксусная кислота. Бертло,1845, жир. Бутлеров,1861, сахаристое вещество.

Но как наука органическая химия началась с создания теории строения органических соединений. Существенный вклад в нее внесли немецкий ученый Ф.А.Кекуле и шотландец А.С.Купер. Но решающий вклад несомненно принадлежит русскому химику А.М.Бутлерову.

Среди всех элементов углерод выделяется своей способностью образовывать устойчивые соединения, в которых его атомы связаны друг с другом в длинные цепи различной конфигурации (линейные, разветвленные, замкнутые). Причина этой способности: примерно одинаковая энергия связи С-С и С-О (для других элементов энергия второй – намного больше). Кроме того, атом углерода может находиться в одном из трех видов гибридизации, образуя соответственно одинарные, двойные или тройные связи, причем не только между собой, но и с атомами кислорода или азота. Правда, гораздо чаще (практически всегда) атомы углерода соединены с атомами водорода. Если в состав органического соединения входит только углерод и водород, то соединения называются углеводородами. Все остальные соединения можно рассматривать как производные углеводородов, в которых некоторые атомы водорода замещены на другие атомы или группы атомов. Поэтому более точное определение: Органические соединения – это углеводороды и их производные.

Органических соединений очень много - более 10 млн. (неорганических около 500 тыс.). Состав, строение и свойства всех органических веществ имеют много общего.

Органические вещества имеют ограниченный качественный состав . Обязательно С и Н, часто О или N, реже галогены, фосфор, сера. Другие элементы входят в состав очень редко. А вот число атомов в молекуле может достигать млн, и молекулярная масса может быть очень большая.

Строение органических соединений. Т.к. состав – неметаллы. => Химическая связь: ковалентная . Неполярная и полярная. Ионная очень редко. => Кристаллическая решетка чаще всего молекулярная.

Общие физические свойства : невысокая температура кипения и плавления. Среди органических веществ есть газы, жидкости и легкоплавкие твердые вещества. Часто летучи, могут иметь запах. Обычно бесцветные. Большинство органических веществ нерастворимо в воде.

Общие химические свойства :

1) при нагревании без доступа воздуха все органические вещества «обугливаются», т.е. при этом образуется уголь (точнее сажа) и некоторые другие неорганические вещества. Происходит разрыв ковалентных связей, сначала полярных, потом и неполярных.

2) При нагревании в присутствии кислорода все органические вещества легко окисляются, и при этом конечными продуктами окисления являются углекислый газ и вода.

Особенности протекания органических реакций. В органических реакциях участвуют молекулы, в процессе реакции должны разорваться одни ковалентные связи и образуются другие. Поэтому химические реакции с участием органических соединений идут обычно очень медленно, для их проведения необходимо применять повышенную температуру, давление и катализаторы.В неорганических реакциях обычно участвуют ионы, реакции протекают очень быстро, иногда мгновенно, при нормальной температуре. Органические реакции редко приводят к высокому выходу продукции (обычно менее 50%). Они часто являются обратимыми, кроме того, может протекать не одна, а несколько реакций, конкурирующих между собой, а значит продуктами реакции будет смесь различных соединений. Поэтому и форма записи органических реакций тоже несколько другая. Т.е. используют не химические уравнения, а схемы химических реакций, в которых нет коэффициентов, но зато подробно указаны условия реакции. Принято также под уравнением записывать названия орг. веществ и тип реакции.

Но в целом органические вещества и реакции подчиняются общим законам химии, а органические вещества превращаются в неорганические или могут образовываться из неорганических. Что еще раз подчеркивает единство окружающего нас мира.

Основные принципы теории химического строения, изложенные молодым А.М.Бутлеровым на международном съезде естествоиспытателей в 1861 г.

1). Атомы в молекулах соединены между собой в определенном порядке, в соответствии с их валентностью. Последовательность соединения атомов называют химическим строением.

Валентность - это способность атомов образовывать определенное количество связей (ковалентных). Валентность зависит от числа неспаренных электронов в атоме элемента, потому что ковалентные связи образуются за счет общих электронных пар при спаривании электронов. Углерод во всех органических веществах четырехвалентен. Водород - 1, Кислород -П, азот – Ш, сера – П, хлор – 1.

Способы изображения органических молекул.

Молекулярная формула – условное изображение состава вещества. Н 2 СО 3 - угольная кислота, С 12 Н 22 О 11 – сахароза. Такие формулы удобны для расчетов. Но они не дают информацию о строении и свойствах вещества. Поэтому даже молекулярные формулы в органике пишут особым образом: СН 3 ОН. Но гораздо чаще пользуются структурными формулами. Структурная формула отражает порядок соединения атомов в молекуле (т.е. химическое строение). И в основе любой органической молекулы лежит углеродный скелет – это цепочка связанных между собой ковалентными связями атомы углерода .

Электронные формулы молекул – связи между атомами показаны парами электронов.

Полная структурная формула показаны все связи черточками. Химическая связь, образованная одной парой электронов, называется одинарной и в структурной формуле изображается одной черточкой. Двойная связь (=) образована двумя парами электронов. Тройная (≡) образована тремя парами электронов. И общее количество этих связей должно соответствовать валентности элемента.

В сжатой структурной формуле опускаются черточки одинарных связей, а атомы, связанные с тем или иным атомом углерода, пишутся сразу после него (иногда в скобках).

Еще более сокращенными являются скелетные формулы. Но они используются реже. Например:

Структурные формулы отражают только порядок соединения атомов. Но молекулы органических соединений редко имеют плоское строение. Объемный образ молекулы важен для понимания многих химических реакций. Образ молекулы описывают с помощью таких понятий как длина связи и валентный угол. Кроме того, возможно свободное вращение вокруг одинарных связей. Наглядное представление дают молекулярные модели.

органический химия молекула изология

В настоящее время считается общепринятым, что одна прямая линия, соединяющая два атома, обозначает одну двухэлектронную связь (простая связь), на образование которой затрачивается по одной валентности от каждого из связанных атомов, две линии - одну четырехэлектронную связь (двойная связь), три линии - одну шестиэлектронную связь (тройная связь).

Изображение соединения с известным порядком связей между всеми атомами с помощью связей такого типа называется структурной формулой:

Для экономии времени и места чаще применяют сокращенные формулы, в которых часть связей подразумевается, но не пишется:

Иногда, особенно в карбоциклических и гетероциклических рядах, формулы еще больше упрощаются: не пишутся не только некоторые связи, но и часть атомов углерода и водорода не изображается, а лишь подразумевается (в местах пересечения линий); упрощенные формулы:

Тетраэдрическая модель атома углерода

Основные представления о химическом строении, заложенные А. М. Бутлеровым, были дополнены Вант-Гоффом и Ле-Белем (1874), которые развили идею о пространственном расположении атомов в молекуле органического вещества и поставили вопрос о пространственной конфигурации и конформации молекул. Работа Вант-Гоффа «Химия в пространстве» (1874) положила начало плодотворному направлению органической химии - стереохимии, т. е. учению о пространственном строении.

Рис. 1 - Модели по Вант-Гоффу: метана (а), этана (б), этилена (в) и ацетилена (г)

Вант-Гофф предложил тетраэдрическую модель атома углерода. Согласно этой теории, четыре валентности атома углерода в метане направлены к четырем углам тетраэдра, в центре которого находится углеродный атом, а в вершинах - атомы водорода (а). Этан, согласно Вант-Гоффу, можно представить себе как два тетраэдра, соединенных вершинами и свободно вращающихся около общей оси (6). Модель молекулы этилена представляет собой два тетраэдра, соединенных ребрами (в), а молекулы с тройной связью изображаются моделью, в которой тетраэдры соприкасаются плоскостями (г).

Такого типа модели оказались весьма удачными и для сложных молекул. Они с успехом используются и сегодня для объяснения ряда стереохимических вопросов. Теория, предложенная Вант-Гоффом, хотя и пригодная почти во всех случаях, не давала, однако, обоснованного объяснения типа и существа связывающих сил в молекулах.

Инновационный путь развития технологии создания новых лекарственных средств

Вначале создается компьютерная модель объекта, а также применяется компьютерное моделирование для формирования молекул на месте проведения исследования. Модель может быть как двухмерной, так и трехмерной...

Инфракрасные спектры молекул

В отличие от видимого и ультрафиолетового диапазонов, которые обусловлены главным образом переходами электронов из одного стационарного состояния в другое...

Исследование строения органических соединений с помощью физических методов

Всевозможные положения молекул в трехмерном пространстве сводятся к поступательному, вращательному и колебательному движению. Молекула, состоящая из N атомов, имеет всего 3N степеней свободы движения...

Метод моделирования в химии

В настоящее время можно найти множество различных определений понятий «модель» и «моделирование». Рассмотрим некоторые из них. «Под моделью понимают отображение фактов, вещей и отношений определенной области знаний в виде более простой...

Научные основы реологии

Напряженно-деформированное состояние тела в общем случае является трехмерным и описать его свойства с использованием простых моделей нереально. Однако в тех редких случаях, когда деформируются одноосные тела...

Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование. Одна из главных целей наблюдения - поиск закономерностей в результатах экспериментов...

Растворение твердых веществ

Для подавляющего большенства процессов кинетическая функция инвариантна относительно концентрации активного реагента и температуры. Иными словами, каждому значению безразмерного времени х соответствует вполне определенное значение...

Расчет квантово-химических параметров ФАВ и определение зависимости "структура-активность" на примере сульфаниламидов

Рефрактометрический метод анализа в химии

Синтез и анализ ХТС в производстве бензина

Химическая модель процесса каталитического крекинга имеет очень сложный вид. Рассмотрим наиболее простую из реакций протекающих вс процессе крекинга: СnН2n+2 > CmH2m+2 + CpH2p...

Синтез химико-технологической системы (ХТС)

Производственные процессы разнообразны по своим особенностям и степени сложности. Если процесс сложный и расшифровка его механизма требует большой затраты сил и времени, используют эмпирический подход. Математические модели...

Сравнение реакторов идеального вытеснения и полного смешения в изотермическом режиме работы

7.1. На рисунке показан опыт, иллюстрирующий, что тела при нагревании расширяются. Обведите ручкой на рисунке предмет, который нагревали в этом опыте – шар или кольцо. Ответ обоснуйте.

7.2. Выберите правильное утверждение.
Согласно современным представлениям, при остывании колбы с водой уровень воды в трубке опускается потому, что… .


7.3. Вещества состоят из мельчайших частиц. Какие явления и эксперименты это подтверждают?

7.4. В таблице приведены точные данные об изменении объема воды V от времени t при нагревании.

Ответьте на вопросы.
а) Можно ли утверждать, что в течение всего времени наблюдения вода в колбе нагревалась равномерно? Ответ поясните.

б) Как изменялся объем воды при нагревании?

8.1. Выберите правильное утверждение.
Если нагреть гвоздь, то он удлиняется и становится толще. Это происходит потому, что при нагревании… .

8.2. Слова молекула, капля, атом запишите в таком порядке, чтобы каждый последующий элемент входил в состав предыдущего.

8.3. На рисунке представлены модели молекул воды, кислорода и углекислого газа. В состав всех молекул входит атом кислорода (черный). Заполните пропуски в тексте.

8.4. Измерьте длину своей руки от локтя до мизинца и сравните полученное значение с размером молекулы воды.


9.1. Заполните пропуски в тексте. «В ____ г. английский ботаник Роберт Броун, рассматривая в микроскоп…»

9.2. На рисунке схематически представлены молекулы жидкости, окружающие крупинку краски, помещенную в эту жидкость. Стрелками указаны направления движения молекул жидкости в определенный момент времени.

9.3. Отметьте те явления, которые являются примером броуновского движения.

9.4. На рисунке показана ломаная линия, вдоль которой перемещалась пылинка в воздухе в течение нескольких секунд.

а) Объясните, почему пылинка много раз поменяла направление своего движения за время наблюдения за ней.
Из-за столкновения с молекулами воздуха и другими пылинками.

б) На рисунке обозначьте точки, в которых на пылинку действовали окружающие ее молекулы.

10.1. В стеклянный цилиндр сверху налита чистая вода, а на дно через узкую трубку залит раствор медного купороса. Цилиндр находится в покое при постоянной температуре. Покажите на рисунке, как будет выглядеть содержимое цилиндра через различные промежутки времени.

10.2. Два одинаковых резиновых шарика соединены прозрачным шлангом (см. рис.), причем левый шарик в обоих случаях заполнен водородом (закрасьте водород синим цветом), правый – на рисунке а пуст, а на рисунке б заполнен воздухом (закрасьте воздух зеленым цветом). Шланг между шариками зажат зажимом.

10.3. Зачеркните по одному из выделенных слов, чтобы получилось верное объяснение описанного эксперимента.

10.4. Домашний эксперимент.
Положите на дно стакана с холодной водой кусочек сахара, но не перемешивайте. Запишите, через какое время вам удалось обнаружить присутствие молекул сахара на поверхности воды в стакане и какой «прибор» при этом вы использовали.

11.1. Заполните пропуски в тексте, используя слова: сильнее; слабее; притяжение; отталкивание.

11.2. Соедините линиями явления и соответствующие им объяснения.

11.3. Зачеркните по одному из выделенных слов, чтобы получилось верное объяснение описанного эксперимента.

11.4. Допишите предложение, чтобы получилось правильное объяснение явления.

11.5. Заполните пропуски в тексте. «В быту мы часто сталкиваемся с явлениями смачивания и несмачивания.»

12.1. Какое состояние вещества характеризуется перечисленными признаками?