Теоретическая механика принцип даламбера. Аналитическая механика материальной точки и динамика твердого тела эйлера. Принцип возможных перемещений

В предыдущих лекциях рассматривались способы решения задач динамики, основанные на законах Ньютона. В теоретической механике разработаны и другие способы решения динамических задач, в основе которых лежат некоторые иные исходные положения, называемые принципами механики.

Важнейшим из принципов механики является принцип Даламбера. С принципом Даламбера тесно связан метод кинетостатики - способ решения задач динамики, в котором динамические уравнения записываются в форме уравнений равновесия. Метод кинетостатики широко применяется в таких общеинженерных дисциплинах, как сопротивление материалов, теория механизмов и машин, в других областях прикладной механики. Принцип Даламбера результативно используется и внутри самой теоретической механики, где с его помощью созданы эффективные способы решения задач динамики.

Принцип Даламбера для материальной точки

Пусть материальная точка массы совершает несвободное движение относительно инерциальной системы координат Oxyz под действием активной силы и реакции связи R (рис. 57).

Определим вектор

численно равный произведению массы точки на ее ускорение и направленный противоположно вектору ускорения. Вектор имеет размерность силы и называется силой инерции (даламберовой) материальной точки.

Принцип Даламбера для материальной точки сводится к следующему утверждению: если к силам, действующим на материальную точку, условно присоединить силу инерции точки, то получим уравновешенную систему сил, т. е.

Вспоминая из статики условие равновесия сходящихся сил, принцип Даламбера можем записать также в следующей форме:

Легко видеть, что принцип Даламбера эквивалентен основному уравнению динамики, и наоборот, из основного уравнения динамики следует принцип Даламбера. Действительно, перенося в последнем равенстве вектор в другую часть равенства и заменяя на , получаем основное уравнение динамики. Наоборот, перенося в основном уравнении динамики член та в одну сторону с силами и используя обозначение , получаем запись принципа Даламбера.

Принцип Даламбера для материальной точки, будучи вполне эквивалентным основному закону динамики, выражает этот закон в совершенно иной форме - в форме уравнения статики. Это дает возможность пользоваться при составлении уравнений динамики методами статики, что и называется методом кинетостатики.

Метод кинетостатики особенно удобен при решении первой задачи динамики.

Пример. Из наивысшей точки гладкого сферического купола радиуса R соскальзывает материальная точка М массы с пренебрежимо малой начальной скоростью (рис. 58). Определить, в каком месте точка сойдет с купола.

Решение. Точка будет двигаться по дуге некоторого меридиана . Пусть в некоторый (текущий) момент радиус ОМ составляет с вертикалью угол . Раскладывая ускорение точки а на касательное ) и нормальное представим силу инерции точки также в виде суммы двух составляющих:

Касательная составляющая силы инерции имеет модуль и направлена противоположно касательному ускорению, нормальная составляющая - модуль и направлена противоположно нормальному ускорению.

Добавляя эти силы к фактически действующим на точку активной силе и реакции купола N, составляем уравнение кинетостатики

Принцип Даламбера позволяет свести процесс составления уравнений динамики к составлению уравнений статики.

Этот принцип, который мы здесь изложим для свободной материальной точки и для точки, движущейся по поверхности или по кривой, применим к любой задаче динамики. Он позволит нам подвести итог всей теории движения точки.

Рассмотрим материальную точку М массы находящуюся под действием сил, равнодействующая которых имеет проекции Уравнения движения этой точки могут быть написаны так:

Будем рассматривать наряду с векторами, представляющими приложенные к точке М силы, вектор с проекциями - Этот вектор, численно равный произведению массы на ускорение и направленный противоположно ускорению, называется силой инерции, хотя это никоим образом не будет силой, приложенной к точке. Тогда уравнения выражают, что геометрическая сумма векторов и равна нулю, или, что в каждый момент времени существует равновесие между силой инерции и силами, действительно приложенными к точке.

Вывод уравнений движения из принципа Даламбера. На основании только что сказанного, для нахождения уравнений движения точки при любых условиях достаточно выразить, что имеет место равновесие между всеми силами, приложенными к точке, и силой инерции. Но это можно сделать методами статики. Можно, например, применить теорему о возможной работе. Для этого нужно различать среди сил, приложенных к точке, силы заданные и реакции связей. Через мы обозначим проекции заданных сил.

Чтобы написать, что существует равновесие между силами, действующими на точку, и силой инерции, достаточно написать, что на

всех возможных перемещениях допускаемых связями, существующими в момент сумма работ заданных сил и силы инерции Равна нулю:

Следует различать три случая:

1°. Свободная точка. произвольны. Если, как в п. 282, применяется произвольная система координат то, заменяя вариациями получим:

где произвольны.

Подставляя в равенство (2) и приравнивая результат нулю при произвольных получим уравнения движения в форме, указанной в п. 282, из которых мы вывели уравнения Лагранжа для свободной точки.

2°. Точка на поверхности. Пусть

есть уравнение поверхности, которая для общности предполагается движущейся. Давая переменному определенное значение, мы видим, что должны удовлетворять условию

выражающему, что возможное перемещение допускается связью, существующей в момент Если, как в п. 263, выразить координаты точки поверхности в функциях двух параметров, то получим

и соотношение (2) должно иметь место, каковы бы ни были Таким путем получатся уравнения движения в форме (4) п. 263. 3°. Точка на кривой. Пусть

Все методы решения задач динамики, которые мы до сих пор рассматривали, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствиями этих законов. Однако, этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Пусть мы имеем систему, состоящих из n материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил и (в которые входят и активные силы, и реакции связи) точка получает по отношению к инерционной системе отсчета некоторое ускорение .

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки(иногда даламберовой силой инерции).

Тогда оказывается, что движение точки обладает следующим общим свойством: если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Повторяя проделанные высшее рассуждения по отношению к каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; что делает единообразный подход к решению задач и обычно намного упрощает соответствующие расчёты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики.


Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причём по принципу отвердевания это справедливо для сил, действующих не только на твёрдое тело, но и на любую изменяемую систе6му. Тогда на основании принципа Даламбера должно быть.

Если рассматривать систему, которая состоит из нескольких материальных точек, выделяя одну определенную точку с известной массой, то под действием приложенных к ней внешних и внутренних сил она получает некоторое ускорение по отношению к инерциальной системе отсчета. Среди таких сил могут быть как активные силы, так и реакции связи.

Сила инерции точки - это векторная величина, которая равна по модулю произведению массы точки на ее ускорение. Данную величину иногда упоминают как даламберовскую силу инерции, она направлена противоположно ускорению. В этом случае обнаруживается следующее свойство движущейся точки: если в каждый момент времени прибавить силу инерции к фактически действующим на точку силам, то полученная система сил будет уравновешена. Так можно сформулировать принцип Даламбера для одной материальной точки. Данное утверждение полностью соответствует второму закону Ньютона.

Принципы Даламбера для системы

Если повторить все рассуждения для каждой точки в системе, они приводят к следующему выводу, который выражает принцип Даламбера, сформулированный для системы: если в любой момент времени приложить к каждой из точек в системе, помимо фактически действующих внешних и внутренних сил, то данная система будет находиться в равновесии, поэтому к ней можно применять все уравнения, которые используются в статике.

Если применять принцип Даламбера для решения задач динамики, то уравнения движения системы можно составить в форме известных нам уравнений равновесия. Данный принцип значительно упрощает расчеты и делает подход к решению задач единым.

Применение принципа Даламбера

Следует учитывать, что на движущуюся точку в механической системе действуют только внешние и внутренние силы, которые возникают как результат взаимодействия точек между собой, а также с телами, не входящими в данную систему. Точки движутся с определенными ускорениями под действием всех этих сил. Силы инерции не действуют на движущиеся точки, в противном случае они бы двигались без ускорения или были в покое.

Силы инерции вводятся лишь для того, чтобы составить уравнения динамики при помощи более простых и удобных методов статики. Учитывается также, что геометрическая сумма внутренних сил и сумма их моментов равна нулю. Использование уравнений, которые вытекают из принципа Даламбера, делает процесс решения задач проще, так как данные уравнения уже не содержат внутренних сил.

Просмотр: эта статья прочитана 44027 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Общие принципы динамики

Принцип Германа - Эйлера - Даламбера

Сила инерции

Принцип Даламбера (принцип кинетостатики) является одним из общих принципов механики, с помощью которого уравнениям динамики по форме придается вид уравнений статики. Принцип был предложен Германом в 1716 году, обобщен Эйлером в 1737 году.

Материальная точка М движется с ускорением под действием приложенных сил. Третий закон динамики отображает двусторонность механических процессов природы. При взаимодействии двух тел приложенные к каждому из них силы равны по модулю и направлены противоположно. Так как эти силы приложены к разным телам, они не уравновешиваются. Например, при взаимодействия некоторого тела А и точки М , которая имеет массу m , точка получает ускорение. Тело А действует на точку М с силой F=-ma . По закону действия и противодействия материальное точка М действует на тело А с силой Ф=-F=-ma , которая называется силой инерции.

Сила инерции или сила Даламбера - векторная величина, имеющая размерность силы, по модулю равна произведению массы точки на ее ускорение, и направлена противоположно этому ускорению.

Принцип Даламбера для материальной точки

Если в любой момент времени к фактически действующим на материальную точку силам добавить силу инерции, то полученная система сил будет уравновешенной.

Это означает, что для решения задачи динамики по принципу Германа - Эйлера - Даламбера следует, помимо приложенных к точке сил, условно приложить к этой точке силу инерции. приложение силы инерции к точке является условным приемом, сводящим задачу динамики лишь по форме решения к задаче статики.

Принцип Даламбера для системы материальных точек

Если в любой момент времени к каждой из точек системы, кроме фактически действующих на нее внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и для нее можно будет применить все уравнения статики.

Принцип Даламбера для несвободной механической системы

В любой момент времени для каждой точки несвободной механической системы, кроме фактически действующих на нее сил, добавить соответствующие силы инерции, то полученная система сил будет уравновешенной и для нее можно будет применить все уравнения статики.

То есть, в любой момент времени для каждой точки несвободной механической системы геометрическая сумма главных векторов заданных сил, реакций опор и сил инерции материальных точек системы равна нулю.

В любой момент времени для любой точки несвободной механической системы геометрическая сумма главных моментов заданных сил, реакций опор и сил инерции материальных точек системы относительно любого неподвижного центра равна нулю.

Обобщенная форма уравнений равновесия по принципу Даламбера

Приведение сил инерции точек твердого тела к простейшему виду.

Случаи приведения системы сил инерции твердого тела простейшему виду.

Поступательное движение

При поступательном движении силы инерции твердого тела приводятся до одной равнодействующей, проходящей через центр масс тела, и равной по модулю произведению массы тела на модуль ускорения его центра масс и направленной противоположно этому ускорению.

Вращения вокруг центра масс нет, поэтому момент силы инерции равен нулю.

Вращательное движение тела вокруг оси, проходящей через центр масс тела.

Если тело вращается вокруг неподвижной оси проходящей через центр масс тела, то силы инерции приводятся к одной паре сил, лежащей в плоскости перпендикулярной оси вращения.

Поскольку центр масс не движется главный вектор сил инерции равен нулю.

Плоскопаралельний движение

При плоском движении тела система сил инерции приводится к силе, приложенной в центре масс тела и паре сил. Направление момента силы инерции противоположен угловому ускорению тела.

Принцип возможных перемещений

Принцип возможных перемещений в общем виде определяет условия равновесия любой механической системы, то есть позволяет решать задачи статики, как задачи динамики.

Перемещение точек несвободной механической системы ограничено имеющимися связями. Положение точек системы определяется заданием независимых координат.

Независимые величины, заданием которых можно однозначно определяется положение всех точек механической системы, называются обобщенными координатами этой системы. Как правило, число обобщенных координат механической системы равно числу степеней свободы этой системы. Например, положение всех точек кривошипно-шатунного механизма определяется заданием угла поворота кривошипа.

Возможные или виртуальные перемещения

Возможные или виртуальные перемещения системы - это воображаемые бесконечно малые перемещения точек системы, допускаемые в данный момент наложенными на систему связями.

Криволинейные перемещения точек заменяют прямолинейными отрезками, отложенными по касательной к траекториям точек.

Число независимых между собой возможных перемещений системы называется числом степеней свободы этой системы.

Возможная или виртуальная работа

Возможная (или виртуальная) работа − это элементарная работа, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки.

Принцип возможных перемещений для механической системы

Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма робот всех активных сил при любом возможном перемещении системы равнялась нулю.

Уравнение возможных работ − математическое выражение необходимого и достаточного условий равновесия любой механической системы.

Общее уравнение динамики

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип возможных перемещений, дающий общий метод решения задач статики, можно применить и к решению задач динамики. На основании принципа Германа—Эйлера—Даламбера для несвободной механической системы в любой момент времени геометрическая сумма равнодействующей задаваемых сил, равнодействующей реакций связей и силы инерции для каждой точки Mn механической системы равна нулю.

Если система получает возможное перемещение, при котором каждая точка имеет возможное перемещение, то сумма работ этих сил на перемещении должна быть равна нулю.

Общее уравнение динамики для системы с идеальными связями

Положим, что все связи в рассматриваемой механической системе двусторонние и идеальные (силы трения, если они имеются, отнесены к числу задаваемых сил). Тогда сумма работ реакций связей на возможных перемещениях системы равна нулю.

При движении механической системы с идеальными связями в любой данный момент времени сумма элементарных робот всех активных (заданных) сил и всех сил инерции на любом возможном перемещении системы равняется нулю.

Общие уравнения динамики позволяют составить дифференциальные уравнения движения любой механической системы. Если механическая система состоит из отдельных твердых тел, то силы инерции точек каждого тела можно привести к силе, приложенной в некоторой точке тела, и паре сил. Сила равна главному вектору сил инерции точек этого тела, а момент пары равен главному моменту этих сил относительно центра приведения. Чтобы воспользоваться принципом возможных перемещений, к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силу и пару, составленные силами инерции точек тела. Затем системе сообщают возможное перемещение и для всей совокупности задаваемых сил и приведенных сил инерции составляют общее уравнение динамики

Формат: pdf

Размер: 600КВ

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы