Процесс обратный адсорбции называется. Пример адсорбции. Основные понятия процесса адсорбции

Адсо́рбция (от лат. ad - на, при и sorbeo - поглощаю), поглощение какого-либо вещества (адсорбата) из газообразной среды или раствора поверхностным слоем жидкости или твердого тела (адсорбентом). Различают два вида адсорбции: физическую и химическую (хемосорбцию). Менее прочная физическая адсорбция не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия , которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. Существенное отличие физической адсорбции - ее обратимость. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто адсорбция обусловлена и физическими и химическими силами, поэтому не существует четкой границы между физической адсорбцией и хемосорбцией.

Явление адсорбции связано с тем, что силы межмолекулярного взаимодействия на границе раздела фаз нескомпенсированы, и, следовательно, пограничный слой обладает избытком энергии – свободной поверхностной энергией . В результате притяжения поверхностью раздела фаз находящихся вблизи нее молекул адсорбата свободная поверхностная энергия уменьшается, т.е. процессы адсорбции энергетически выгодны. Адсорбция всегда является экзотермическим процессом, т. е. протекает с выделением теплоты адсорбции Hs.

Значения энтальпии физической адсорбции достаточно велики (порядка 10 ккал/моль) из-за слабых атомных взаимодействий. Физическая адсорбция легко обратима, поэтому, например, в случае адсорбции газа, достаточно легко может осуществиться замена адсорбированного слоя газа другим газом. Это явление называется обменной адсорбцией.

Процесс адсорбции заканчивается установлением адсорбционного равновесия между адсорбентом и адсорбатом. Условием равновесия является равенство химических потенциалов обеих фаз. С ростом температуры или давления адсорбата в объеме увеличивается частота попаданий молекул адсорбата на поверхность адсорбента; пропорционально ей возрастает скорость адсорбции и увеличивается равновесное количество адсорбированных молекул. Кривые зависимости равновесной адсорбции от температуры или давления адсорбата называются, соответственно, изобарой и изотермой адсорбции.

Адсорбированные молекулы могут перемещаться по поверхности, совершая при этом колебательные движения, то приближаясь к поверхности, то удаляясь от нее. Время, в течение которого молекула находится на поверхности, называется временем адсорбции. С ростом температуры время адсорбции уменьшается: чем выше температура, тем интенсивнее колебательное движение, и больше вероятность того, что в процессе таких колебаний связь молекулы с поверхностью будет разорвана и молекула покинет поверхность. Процесс, при котором адсорбированные молекулы покидают поверхность, называется десорбция . Скоростью адсорбции (десорбции) называется отношение количества молекул, адсорбирующихся (десорбирующихся) за единицу времени, к единице поверхности или массы адсорбента. Если скорости адсорбции и десорбции равны друг другу, устанавливается адсорбционное равновесие. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и др.).

В случае контакта поверхности кристалла и жидкого раствора из жидкости на поверхность твердого тела переходят молекулы, находящиеся в растворе. Между их концентрациями в растворе и на поверхности адсорбента устанавливается равновесие. Вещества, адсорбируемые из раствора, называются поверхностно-активными веществами (ПАВ). Высокая адсорбируемость ПАВов связана с сильным снижением поверхностного натяжения раствора на данной поверхности по сравнению с поверхностным натяжением чистого растворителя на этой же поверхности. Инактивные вещества повышают поверхностное натяжение и ухудшают адсорбцию.

Если теплота адсорбции сравнима с поверхностной энергией адсорбента, то в процессе адсорбции может существенно меняться кристаллическая структура поверхности твердого тела, причем при физической адсорбции перестройке подвергаются в основном поверхности молекулярных кристаллов, а в случае хемосорбции изменения поверхностной структуры наблюдаются даже для металлов и ионных кристаллов. Адсорбированные на поверхности пленки сильно изменяют свойства поверхности, а в ряде случаев затрагивают и более толстые приповерхностные слои.

Адсорбция играет важную роль во многих природных процессах, таких, как обогащение почв и образование вторичных рудных месторождений. Именно благодаря адсорбции осуществляется первая стадия поглощения различных веществ из окружающей среды клетками и тканями биологических систем, функционирование биологических мембран, первые этапы взаимодействия ферментов с субстратом, защитные реакции против токсичных веществ. Многие адсорбенты (активный уголь, каолин , иониты и др.) служат противоядиями, поглощая и удаляя из организма вредные вещества. Адсорбенты обычно имеют большую удельную поверхность - до нескольких сотен м 2 /г. В промышленности адсорбцию осуществляют в специальных аппаратах - адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.

Курсовая работа

по дисциплине: Процессы и аппараты химической технологии

на тему: «Адсорбция »

Введение

Классификация процесса, основные определения

1 Основные понятия процесса адсорбции

2 Основные промышленные адсорбенты и их свойства

3 Изотерма адсорбции

Закономерности процесса адсорбции

1 Теории адсорбции

2 Адсорбция на границе раствор - пар

3 Адсорбция на границе твердое тело - газ

4 Адсорбция на границе твердое тело - раствор

4.1 Молекулярная адсорбция из растворов

4.2 Адсорбция из растворов электролитов

Оборудование, реализующее процесс адсорбции

1 Адсорбция с неподвижным слоем адсорбента

2 Адсорбция силикагелем

3 Гиперсорбция

4 Адсорбция в кипящем (псевдоожиженном) слое

5 Расчет адсорберов периодического действия

6 Расчет адсорберов непрерывного действия

Заключение

Список использованной литературы

Введение

Адсорбцией называют процесс поглощения вещества из смеси газов, паров или растворов поверхностью или объемом пор твердого тела - адсорбента.

Явление адсорбции известно очень давно. Такие природные материалы, как песок и почва, использовали для очистки воды еще на заре человеческого общества. В конце XVIII века К. Шееле и одновременно Фонтана обнаружили способность свежепрокаленного древесного угля поглощать различные газы в объемах, в несколько раз превышающих его собственный объем. Вскоре выяснилось, что величина поглощенного объема зависит от типа угля и природы газа. Т.Е. Ловиц в 1785 году открыл явление адсорбции углем в жидкой среде, подробно исследовал его и предложил использовать уголь для очистки фармацевтических препаратов, спирта, вина, органических соединений. Ловиц показал, что древесный уголь способен быстро очищать испорченную воду и делать ее пригодной для питья. И сейчас основным действующим началом фильтров для воды служат углеродные материалы, конечно более современные, чем природные угли. Адсорбция отравляющих веществ из воздуха была использована Н.Д. Зелинским при создании противогаза во время первой мировой войны.

Адсорбция газов на твердых поверхностях используется в некоторых отраслях пищевой промышленности, а именно масложировой (например, в производстве маргарина) и в бродильной (например, в производстве дрожжей) для очистки технологических газовых потоков с целью предотвращения выбросов вредных веществ в атмосферу. Поглощение паров воды происходит на пористых веществах, которые выполняют роль твердого адсорбента. Подобные процессы наблюдаются в отношении сахара, соли и сухарей. Адсорбционный способ регулирования газового состава хранилищ скоропортящихся продуктов позволяет в несколько раз сократить потери и увеличить сроки хранения. Адсорбция различных пищевых кислот, лимонной в частности, снижает по сравнению с водой поверхностное натяжение большинства прохладительных напитков. Адсорбция веществ на поверхности раздела жидкость - газ способствует устойчивости пен. Подобный процесс имеет место в бродильной промышленности при производстве дрожжей и некоторых других полупродуктов. Усиление смачивания водой различных поверхностей широко используется в промышленности в качестве сопутствующего процесса при мойке оборудования, подготовке сырья, обработке полуфабрикатов и т.д. Адсорбция на границе твердое тело - жидкость широко применяется при очистке жидкостей (например, диффузионного сока при производстве сахара, растительных масел и соков) от примесей.

Развитие теории адсорбционных сил еще не достигло такой стадии, когда по известным физико-химическим свойствам газа и твердого тела можно было бы рассчитать изотерму адсорбции, не проводя экспериментальных исследований. Поэтому попыткам описать экспериментальные изотермы с помощью различных теоретических уравнений, которым соответствуют определенные модели адсорбции, посвящено огромное количество работ. Если теоретическое уравнение изотермы адсорбции хорошо воспроизводит экспериментальные данные, то можно рассчитать неизвестные величины адсорбции при разных условиях (р и Т) и определить различные геометрические параметры твердых тел. Рассмотрим лишь немногие, наиболее распространенные теоретические уравнения изотерм адсорбции.

1. Классификация процесса, основные определения

1.1 Основные понятия процесса адсорбции

Адсорбцией называется самопроизвольно протекающий диффузионный процесс взаимодействия двух фаз - твердого тела - адсорбента и газа, пара или растворенного вещества - адсорбтива, происходящий поглощением газа, пара или растворенного вещества поверхностью твердого тела.

Поглощение газов, паров и растворенных веществ твердыми телами обычно сопровождается процессами проникновения поглощаемого вещества в твердое тело (абсорбцией), капиллярной конденсацией и химическими реакциями (хемосорбцией), что весьма затрудняет изучение собственно адсорбции. Поэтому поглощение газов, паров и растворенных веществ твердыми телами обычно рассматривается как общий процесс сорбции.

Адсорбция всегда сопровождается выделением тепла. В большинстве случаев тепловой эффект адсорбции по своей величине приближается к теплоте конденсации поглощаемого газа или пара.

Адсорбцию подразделяют на два вида: физическую и химическую. Физическая адсорбция в основном обусловлена поверхностными вандервальсовыми силами, которые проявляются на расстояниях, значительно превышающих размеры адсорбируемых молекул, поэтому на поверхности адсорбента обычно удерживаются несколько слоев молекул адсорбата.

При химической адсорбции поглощаемое вещество вступает в химическое взаимодействие с адсорбентом с образованием на его поверхности обычных химических соединений.

Силы притяжения возникают на поверхности адсорбента благодаря тому, что силовое поле поверхностных атомов и молекул не уравновешено силами взаимодействия соседних частиц. По физической природе силы взаимодействия молекул поглощаемого вещества и адсорбента относятся в основном к дисперсионным, возникающим благодаря перемещению электронов в сближающихся молекулах. В ряде случаев адсорбции большое значение имеют электростатические и индукционные силы, а также водородные связи. Поэтому адсорбция является самопроизвольным процессом, течение которого сопровождается уменьшением свободной энергии и энтропии системы.

Процессы адсорбции избирательны и обратимы. Процесс, обратный адсорбции, называют десорбцией, которую используют для выделения поглощенных веществ и регенерации адсорбента.

Наиболее рационально применять адсорбцию для обработки смесей с низкой концентрацией извлекаемых веществ.

Статическая и динамическая активность адсорбентов .

Основной характеристикой адсорбента является его активность, определяемая весовым количеством вещества, поглощенного единицей объема или веса поглотителя.

Различают активность статическую и динамическую.

Статическая активность адсорбента характеризуется максимальным количеством вещества, адсорбированного к моменту достижения равновесия весовой или объемной единицей адсорбента при данной температуре и концентрации адсорбируемого вещества в газо-воздушной смеси.

Динамическая активность является характеристикой адсорбента при протекании паровоздушной смеси через слой адсорбента до момента проскока адсорбируемого газа.

Если газовая смесь проходит через слой адсорбента, то в начальный период процесса адсорбтив полностью извлекается из газовой смеси. По истечении определенного промежутка времени в газовой смеси, уходящей из поглотителя, начинают появляться заметные, все возрастающие количества адсорбтива (проскок), и к концу процесса концентрация уходящего газа становится равной начальной концентрации паровоздушной смеси.

В адсорберах промышленного типа с активированным углем динамическая активность составляет 85-95% от статической, а в случае применения силикагеля динамическая активность оказывается меньше статической на 60-70%.

Селективные свойства адсорбентов .

В процессах адсорбции, так же как и в процессах абсорбции, поглощающие вещества (адсорбенты обладают селективными свойствами по отношению к поглощаемым газам и парам. Иными словами, применение адсорбционных процессов в качестве метода разделения газовых смесей основано на том, что газовая смесь, приведенная в соприкосновение с адсорбентом, освобождается лишь от одного компонента, в то время как другие оказываются непоглощенными.

Если в процессах абсорбции селективные качества процесса определялись растворимостью или нерастворимостью газа в поглощающей жидкости, то в процессах адсорбции критерием селективных качеств является статическая активность адсорбента.

Из смеси газов, приведенных в соприкосновение с адсорбентом, в первую очередь и в значительно большем количестве поглощается газ или пар того вещества, которое имеет более высокую температуру кипения. В большинстве случаев температура кипения поглощаемого газа (например, паров бензола) сильно отличается от температуры кипения инертного газа (например, воздуха) и присутствие инертного газа почти не оказывает влияния на ход процесса. В данном случае поглощение бензола из паровоздушной смеси с парциальной упругостью паров бензола р протекает точно так же, как и поглощение чистых паров бензола, имеющих то же давление.

Разделение адсорбционным методом смеси газов, компоненты которой имеют близко лежащие температуры кипения, предоставляет большие трудности или практически невозможно.

1.2 Основные промышленные адсорбенты и их свойства

Основными промышленными адсорбентами являются пористые тела, обладающие большим объемом микропор. Свойства адсорбентов определяются природой материала, из которого они изготовлены, и пористой внутренней структурой.

В промышленных адсорбентах основное количество поглощенного вещества сорбируется на стенках микропор (r < 10 9 м). Роль переходных пор (10 -9 < r < 10 -7 м) и макропор (r < 10 -7 м) в основном сводится к транспортированию адсорбируемого вещества к микропорам.

Адсорбенты характеризуются своей поглотительной, или адсорбционной способностью, определяемой максимально возможной концентрацией адсорбтива в единице массы или объема адсорбента, его пористой структуры, природы поглощаемого вещества, его концентрации, температуры, а для газов и паров - от их парциального давления. Максимально возможную при данных условиях поглотительную способность адсорбента условно называют равновесной активностью .

По химическому составу все адсорбенты можно разделить на углеродные и неуглеродные. К углеродным адсорбентам относятся активные (активированные угли), углеродные волокнистые материалы, а также некоторые виды твердого топлива. Неуглеродные адсорбенты включают в себя силикагели, активный оксид алюминия, алюмагели, цеолиты и глинистые породы.

Активные угли, состоящие из множества беспорядочно расположенных микрокристаллов графита, обычно используют для поглощения органических веществ в процессах очистки и разделения жидкостей и газов (паров). Эти адсорбенты получают сухой перегонкой ряда углеродсодержащих веществ (древесины, каменного угля, костей животных, косточек плодов и др.). После этого уголь активируют, например прокаливают его при температуре 850-900 о С, что приводит к освобождению пор от смолистых веществ и образованию новых микропор. Активацию проводят также экстрагированием смол из пор органическими растворителями, окислением кислородом воздуха и др. Более однородная структура углей получается при их активации химическими методами: путем их обработки горячими растворами солей (сульфатами, нитратами и др.) или минеральными кислотами (серной, азотной и др.)

Качество активированных углей зависит от свойств исходных углеродсодержащих материалов и от условий активации. Характеристикой степени активации активированного угля является обгар, т. е. сгоревшая часть угля, выраженная в процентах от количества исходного материала.

Активированный уголь применяется при адсорбции либо в виде зерен величиной от 1 до 7 мм, либо в виде порошка. Зерна и порошок получают путем измельчения и классификации. Удельная активная поверхность активных углей выражается величиной от 600 до 1700 м 2 на один грамм. Применяются активированные угли главным образом для поглощения паров органических жидкостей, находящихся в газовых смесях, и для очистки различных растворов от примесей.

Серьезным недостатком этих углей является горючесть, и применять их можно при температурах не выше 200°. Для уменьшения горючести к ним подмешивают силикагель, однако такая добавка приводит к понижению активности адсорбента, поэтому активированные угли с добавкой к ним силикагеля практически применяют сравнительно редко.

Силикагелем называют продукт обезвоживания геля кремневой кислоты, получаемого действием серной или соляной кислот или растворов кислых солей на раствор силиката натрия. Выпавший гель кремневой кислоты после промывки высушивается при температуре 115-130° до влажности 5-7%.

Силикагель отличается однородностью пор как по величине, так и распределению. Применяется силикагель в виде зерен диаметром от 0,2 до 7 мм главным образом для поглощения паров воды, т. е. для сушки газов. Удельная активная поверхность силикагеля выражается величиной порядка 600 м 2 на один грамм.

К достоинствам силикагелей относятся их негорючесть и большая механическая прочность. Недостатком относится резкое снижение поглотительной способности по отношению к парам органических веществ в присутствии влаги.

По сорбционным свойствам к силикагелю близко примыкают алюмагели, получаемые термической обработкой гидроксида алюминия при температурах 600-1000 о С. Поры полученного сорбента имеют диаметр 1-3 нм, удельную поверхность 2·10 5 - 4·10 5 м 2 /кг; насыпная плотность такого сорбента 1600 кг/м 3 . Алюмагели используют для осушки газов, очистки водных растворов и минеральных масел.

Цеолиты представляют собой природные или синтетические минералы, которые являются водными алюмосиликатами, содержащими оксиды щелочных щелочноземельных металлов. Эти адсорбенты отличаются регулярной структурой пор, размеры которых соизмеримы с размерами поглощаемых молекул. Особенность цеолитов состоит в том, что адсорбционные поверхности соединены между собой окнами определенного диаметра, через которые могут проникать только молекулы меньшего размера. На этом основано разделение смесей с разными по размеру молекулами, что послужило причиной называть цеолиты молекулярными ситами.

Для разделения газовых смесей применяют цеолиты в виде шариков или гранул размером от 1 до 5 мм, а для разделения жидких смесей - в виде мелкозернистого порошка.

Особенно широко цеолиты используют для глубокой осушки газов и жидкостей, в процессах очистки и разделения смесей веществ с близкой молекулярной массой, а также в качестве в качестве катализаторов и их носителей.

Для очистки жидкостей от различных примесей в качестве адсорбентов применяют природные глинистые породы. Эти глины для их активации обрабатывают серной или хлороводородной кислотами и получают адсорбент с удельной поверхностью пор порядка (1,0 ÷1,5)·10 5 м 2 /кг.

1.3 Изотерма адсорбции

Количество поглощенного вещества, соответствующее равновесному состоянию, зависит от концентрации поглощаемого компонента в газовой смеси или в растворе или, что то же самое, от парциального давления поглощаемого компонента в смеси и может быть выражено уравнением (1.3.1)

a=f(p) (1.3.1)

где a - количество вещества, поглощаемого весовой или объемной единицей адсорбента при достижении фазового равновесия, в кгс/кгс или в кгс/м 3 ; р - парциальное давление поглощаемого компонента в газовой фазе в мм pm. cm.

Кривая, выражающая эту функциональную зависимость при достижении состояния равновесия, называется изотермой адсорбции. Типичные кривые зависимости между количеством поглощаемого компонента и его давлением приведены на рис. 1.3.1

Рис. 1.3.1 - Кривые абсорбции

2. Закономерности процесса адсорбции

.1 Теории адсорбции

Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции, описывающие отдельные виды адсорбции на поверхности раздела твердое тело - газ или твердое тело - раствор.

Теория мономолекулярной адсорбции Ленгмюра

Теория мономолекулярной адсорбции, которую разработал американский химик И. Ленгмюр <#"541160.files/image002.gif">

Рис. 2.1.1 - Изотерма мономолекулярной адсорбции

В состоянии равновесия скорость адсорбции равна скорости десорбции. Скорость десорбции прямо пропорциональна доле занятых активных центров (х), а скорость адсорбции прямо пропорциональна произведению концентрации адсорбата на долю свободных активных центров (1 - х):

(2.1.2)

(2.1.3)

Отсюда находим х:

Разделив числитель и знаменатель правой части уравнения (2.1.4) на k A , получим:

(2.1.5)

Максимально возможная величина адсорбции Г о достигается при условии, что все активные центры заняты молекулами адсорбата, т.е. х = 1. Отсюда следует, что х = Г / Г о. Подставив это в уравнение (2.1.5), получаем:

Уравнение (2.1.7) есть изотерма мономолекулярной адсорбции , связывающая величину адсорбции Г с концентрацией адсорбата С. Здесь b - некоторая постоянная для данной пары адсорбент-адсорбат величина (отношение констант скоростей десорбции и адсорбции), численно равная концентрации адсорбата, при которой занята половина активных центров. График изотермы адсорбции Ленгмюра приведен на рис. 2.1.1. Константу b можно определить графически, проведя касательную к изотерме адсорбции в точке С = 0.

При описании процесса адсорбции газов в уравнении (2.1.7) концентрация может быть заменена пропорциональной величиной парциального давления газа:

Теория мономолекулярной адсорбции Ленгмюра применима для описания некоторых процессов адсорбции газов и растворенных веществ при небольших давлениях (концентрациях) адсорбата.

Теория полимолекулярной адсорбции Поляни

На практике часто (особенно при адсорбции паров) встречаются т.н. S-образные изотермы адсорбции (рис. 2.1.2), форма которых свидетельствует о возможном, начиная с некоторой величины давления, взаимодействии адсорбированных молекул с адсорбатом.

Рис. 2.1.2 - Изотерма полимолекулярной адсорбции

Для описания таких изотерм адсорбции М. Поляни <#"541160.files/image012.gif"> (2.1.9)

(а )


Рис.2.1.3 - Изотерма адсорбции Фрейндлиха в обычных (а) и

логарифмических координатах (б)

Показатель степени n и коэффициент пропорциональности а в уравнении Фрейндлиха определяются экспериментально. Логарифмируя уравнения (2.1.9 - 2.1.10), получаем:

(2.1.11)

(2.1.12)

Т.о., зависимость логарифма удельной адсорбции от логарифма концентрации (давления) графически выражается прямой линией, отсекающей на оси ординат отрезок, равный lg a, тангенс угла наклона которой к оси абсцисс равен по величине показателю степени при давлении или концентрации (рис. 2.1.3):

2.2 Адсорбция на границе раствор - пар

В жидких растворах поверхностное натяжение σ является функцией от концентрации растворенного вещества. На рис. 2.2.1 представлены три возможных зависимости поверхностного натяжения от концентрации раствора (т.н. изотермы поверхностного натяжения). Вещества, добавление которых к растворителю уменьшает поверхностное натяжение, называют поверхностно-активными (ПАВ), вещества, добавление которых увеличивает или не изменяет поверхностное натяжение - поверхностно-инактивными (ПИАВ).

Рис. 2.2.1 - Изотермы поверхностного Рис. 2.2.2 - Изотерма адсорбции

натяжения растворов ПАВ (1, 2) и ПАВ на границе раствор-пар

ПИАВ (3)

Уменьшение поверхностного натяжения и, следовательно, поверхностной энергии происходит в результате адсорбции ПАВ на поверхности раздела жидкость - пар, т.е. того, что концентрация поверхностно-активного вещества в поверхностном слое раствора оказывается больше, чем в глубине раствора.

Количественной мерой адсорбции на границе раствор-пар является поверхностный избыток Г (гамма), равный числу молей растворенного вещества в поверхностном слое. Количественное соотношение между адсорбцией (поверхностным избытком) растворенного вещества и изменением поверхностного натяжения раствора с ростом концентрации раствора определяет изотерма адсорбции Гиббса <#"541160.files/image020.gif"> (2.2.1)

График изотермы адсорбции ПАВ представлен на рис. 2.2.1 Из уравнения (2.2.1) следует, что направление процесса - концентрирование вещества в поверхностном слое или, наоборот, нахождение его в объеме жидкой фазы - определяется знаком производной dσ/dС. Отрицательная величина данной производной соответствует накоплению вещества в поверхностном слое (Г > 0), положительная - меньшей концентрации вещества в поверхностном слое по сравнению с его концентрацией в объеме раствора.

Величину g = -dσ/dС называют также поверхностной активностью растворенного вещества. Поверхностную активность ПАВ при некоторой концентрации С 1 определяют графически, проводя касательную к изотерме поверхностного натяжения в точке С = С 1 ; при этом поверхностная активность численно равна тангенсу угла наклона касательной к оси концентраций:

(2.2.2)

Нетрудно заметить, что с ростом концентрации поверхностная активность ПАВ уменьшается. Поэтому поверхностную активность вещества обычно определяют при бесконечно малой концентрации раствора; в этом случае её величина, обозначаемая g о, зависит только от природы ПАВ и растворителя. Исследуя поверхностное натяжение водных растворов органических веществ, Траубе и Дюкло установили для гомологических рядов поверхностно-активных веществ следующее эмпирическое правило:

В любом гомологическом ряду при малых концентрациях удлинение углеродной цепи на одну группу СН 2 увеличивает поверхностную активность в 3 - 3.5 раза.

Для водных растворов жирных кислот зависимость поверхностного натяжения от концентрации описывается эмпирическим уравнением Шишковского :

(2.2.3)

Здесь b и K - эмпирические постоянные, причём значение b одинаково для всего гомологического ряда, а величина К увеличивается для каждого последующего члена ряда в 3 - 3,5 раза.

Рис. 2.2.3 - Предельная ориентация молекул ПАВ в поверхностном слое

Молекулы большинства ПАВ обладают дифильным строением, т.е. содержат как полярную группу, так и неполярный углеводородный радикал. Расположение таких молекул в поверхностном слое энергетически наиболее выгодно при условии ориентации молекул полярной группой к полярной фазе (полярной жидкости), а неполярной - к неполярной фазе (газу или неполярной жидкости). При малой концентрации раствора тепловое движение нарушает ориентацию молекул ПАВ; при повышении концентрации происходит насыщение адсорбционного слоя и на поверхности раздела фаз образуется слой "вертикально" ориентированных молекул ПАВ (рис. 2.2.3). Образование такого мономолекулярного слоя соответствует минимальной величине поверхностного натяжения раствора ПАВ и максимальному значению адсорбции Г (рис. 2.2.1-2.2.2); при дальнейшем увеличении концентрации ПАВ в растворе поверхностное натяжение и адсорбция не изменяются.

2.3 Адсорбция на границе твердое тело - газ

При адсорбции газов на твердых телах описание взаимодействия молекул адсорбата и адсорбента представляет собой весьма сложную задачу, поскольку характер их взаимодействия, определяющий характер адсорбции, может быть различным. Поэтому обычно задачу упрощают, рассматривая два крайних случая, когда адсорбция вызывается физическими или химическими силами - соответственно физическую и химическую адсорбцию.

Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т.е. экзотермичностью, причем тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата (10 - 80 кДж/моль). Таковой является, например, адсорбция инертных газов на угле.

Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата. Хемосорбция обычно необратима; химическая адсорбция, в отличие от физической, является локализованной, т.е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40 - 120 кДж/моль, повышение температуры способствует её протеканию. Примером химической адсорбции является адсорбция кислорода на вольфраме или серебре при высоких температурах.

Следует подчеркнуть, что явления физической и химической адсорбции чётко различаются в очень редких случаях. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо и лишь небольшая часть - прочно. Например, кислород на металлах или водород на никеле при низких температурах адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать химическая адсорбция. При повышении температуры увеличение химической адсорбции с некоторой температуры начинает перекрывать падение физической адсорбции, поэтому температурная зависимость адсорбции в этом случае имеет четко выраженный минимум (рис. 2.3.1).

Рис. 2.3.1 - Зависимость объема адсорбированного никелем водорода от

температуры


2.4 Адсорбция на границе твердое тело - раствор

.4.1 Молекулярная адсорбция из растворов

Изотермы адсорбции растворенных веществ из раствора по своему виду аналогичны изотермам адсорбции для газов; для разбавленных растворов эти изотермы хорошо описываются уравнениями Фрейндлиха или Ленгмюра, если в них подставить равновесную концентрацию растворенного вещества в растворе. Однако адсорбция из растворов является значительно более сложным явлением по сравнению с газовой, поскольку одновременно с адсорбцией растворенного вещества часто происходит и адсорбция растворителя.

Рис. 2.4.1 - Ориентация молекул ПАВ на поверхности адсорбента

Зависимость адсорбции от строения молекул адсорбата очень сложна, и вывести какие-либо закономерности довольно трудно. Молекулы многих органических веществ состоят из полярной (гидрофильной) и неполярной (гидрофобной) группировок, т.е. являются поверхностно-активными веществами. Молекулы ПАВ при адсорбции на твердом адсорбенте ориентируются на его поверхности таким образом, чтобы полярная часть молекулы была обращена к полярной фазе, а неполярная - к неполярной. Так, при адсорбции алифатических карбоновых кислот из водных растворов на неполярном адсорбенте - активированном угле - молекулы ориентируются углеводородными радикалами к адсорбенту; при адсорбции из бензола (неполярный растворитель) на полярном адсорбенте - силикагеле - ориентация молекул кислоты будет обратной (рис. 2.4.1).

2.4.2 Адсорбция из растворов электролитов

Адсорбция из водных растворов электролитов происходит, как правило, таким образом, что на твердом адсорбента из раствора адсорбируются преимущественно ионы одного вида. Преимущественная адсорбция из раствора или аниона, или катиона определяется природой адсорбента и ионов. Механизм адсорбции ионов из растворов электролитов может быть различным; выделяют обменную и специфическую адсорбцию ионов. Обменная адсорбция представляет собой процесс обмена ионов между раствором и твердой фазой, при котором твердая фаза поглощает из раствора ионы какого-либо знака (катионы либо анионы) и вместо них выделяет в раствор эквивалентное число других ионов того же знака. Обменная адсорбция всегда специфична, т.е. для данного адсорбента к обмену способны только определенные ионы; обменная адсорбция обычно необратима.

При специфической адсорбции адсорбция на поверхности твердой фазы ионов какого-либо вида не сопровождается выделением в раствор эквивалентного числа других ионов того же знака; твердая фаза при этом приобретает электрический заряд. Это приводит к тому, что вблизи поверхности под действием сил электростатического притяжения группируется эквивалентное число ионов с противоположным зарядом, т.е. образуется двойной электрический слой. Взаимодействие концентрирующихся на поверхности зарядов приводит к понижению поверхностной энергии системы. Для случая специфической адсорбции электролита Песковым и Фаянсом было сформулировано следующее эмпирическое правило (правило Пескова - Фаянс <#"541160.files/image026.gif">

Рис. 3.1.1- Схема установки для адсорбции активированным углем:

/, // -адсорберы; 1, 3 - конденсаторы; 2, 4 - сепараторы; 5 - газодувка;

Подогреватель; 7 - конденсатор; а, б, в, г, д, е - задвижки

На рис. 3.1.1 показана схема адсорбционной установки, предназначенной для извлечения углеводородов из газов. В адсорбере / происходит поглощение, а в адсорбере // за это же время-десорбция, сушка и охлаждение. Из адсорбера / газ поступает в распределительную линию. На схеме показан цикл десорбции в адсорбере // , поэтому задвижки а и б открыты и в адсорбер поступает водяной пар. Отогнанные углеводороды вместе с водяными парами поступают в конденсатор 1, где конденсируется большая часть водяных паров; образующаяся при этом вода отделяется в сепараторе 2, а пары углеводородов с оставшимся небольшим количеством водяного пара конденсируются в конденсаторе 3. Вода отделяется в сепараторе 4; из сепаратора углеводороды направляются в сборник, а неконденсирующиеся пары-на компрессию для перевода их в конденсат.

После окончания десорбции задвижки а и б закрывают, открывают задвижки б, г, д и пускают в ход газодувку 5. Перед этим подается водяной пар в подогреватель б; нагреваясь в нем, газ поступает в адсорбер // через задвижки в и г. Выходя из адсорбера // через задвижку д, газ попадает в конденсатор 7 и далее засасывается газодувкой 5. Через некоторое время, когда из адсорбера // будет вытеснен оставшийся в нем после десорбции водяной пар и сконденсирован в конденсаторе 7, задвижку е закрывают и начинается циркуляция газа: через газодувку, подогреватель 6, адсорбер //, конденсатор 7 и снова газодувку. Поглощаемая газом в адсорбере // влага конденсируется в конденсаторе 7. После окончания сушки прекращают подачу пара в подогреватель 6 и газ направляется мимо него; при этом начинается цикл охлаждения адсорбера //. По его окончании газодувку 5 выключают, а задвижки переключают для перевода адсорбера //на поглощение, а адсорбер / на десорбцию.

Процесс адсорбции проводят также за три цикла. В этом случае после окончания первого цикла-адсорбции уголь нагревается горячим инертным газом и выделяющиеся при этом пары поглощенного вещества отводятся в конденсатор. Этот цикл-десорбция заканчивается продувкой угля водяным паром, после чего уголь охлаждается холодным воздухом. Таким образом, при этом методе отсутствует цикл сушки и полная регенерация угля достигается при охлаждении.

Известен также метод адсорбции, проводимый за два цикла; при этом нагретую паровоздушную смесь пропускают через горячий и влажный активированный уголь и одновременно с поглощением паров происходит также подсушивание угля. Затем через уголь пропускают холодную паровоздушную смесь с тем, чтобы одновременно с поглощением происходило охлаждение адсорбента. После окончания адсорбции производится десорбция водяным паром, после чего через горячий и влажный уголь вновь пропускают нагретую паровоздушную смесь. Экономически наиболее выгодным является именно этот метод, проводимый за два цикла, так как расход энергии меньше, а производительность установки значительно выше.

Рис. 3.1.2 - Угольный адсорбер:

Корпус; 2 - решетка; 3 - парораспределитель; 4 - вход

паровоздушной смеси; 5 - выход непоглощенного газа;

Выход влаги

На рис. 3.1.2 представлен вертикальный угольный адсорбер; активированный уголь располагается в виде слоя на решетке 2, паровоздушная смесь подается под решетку по трубе 4, а не поглощенная часть паровоздушной смеси удаляется через патрубок 5.

На рис. 3.1.3 представлен горизонтальный адсорбер и на рис. 6 кольцевой адсорбер, устройство которых не требует пояснении.

Рис. 3.1.3 - Горизонтальный адсорбер

3.2 Адсорбция силикагелем

Гель двуокиси кремния Si0 2 , или силикагель, применяется в сорбционной технике в виде зерен (напоминающих по размерам и структуре гранулированный уголь) или в виде тончайшей пыли.

Адсорбционные установки, работающие на зернистом силикагеле, аналогичны установкам на активированном угле с применением регенерации адсорбента.

Применение пылеобразного силикагеля позволяет осуществлять процесс адсорбции непрерывным методом с движением адсорбента и адсорбтива противотоком друг к другу (рис. 3.2.2).

Рис. 3.2.1 - Кольцевой адсорбер:

Корпус адсорбера; 2- слой адсорбента

В адсорбер 1, который представляет собой полый стальной цилиндрический аппарат, состоящий из нескольких царг, снизу поступает газовая смесь. Навстречу газовому потоку в адсорбере перемещается сверху вниз охлажденная пыль силикагеля. Для полного поглощения адсорбтива достаточно контакта фаз в течение непродолжительного времени; пыль силикагеля, собирающаяся внизу аппарата, является насыщенной, а газы, уходящие из адсорбера, не содержат поглощаемого компонента. Отработанный силикагель из нижней части аппарата перемещается шнеком и подается в десорбер 2, где происходят одновременно десорбция и регенерация путем нагревания.

Освобожденная от поглощаемого газа газовая смесь выходит из адсорбера 1 в верхней части его и. пройдя последовательно через циклон 7 и пылеуловитель 8, подается газодувкой 9 в атмосферу или в какие-нибудь аппараты для дальнейшей обработки. Циклон соединяется трубопроводом с нижней частью аппарата, и осевшая в нем пыль адсорбента «самотеком» перемещается в десорбер. Для пневматического перемещения пыли силикагеля из десорбера в адсорбер используют газы, освобожденные от поглощаемого компонента, для чего отводящий газопровод соединен также с газодувкой 5.

Рис. 3.2.2 - Схема установки для адсорбции силикагелем:

Адсорбер; 2 - десорбер; 3 - конденсатор; 4 - сборник;

9 - газодувка; 6 - холодильник; 7 - циклон; 8 - пылеуловитель

Активность силикагеля несколько меньше, чем активированного угля; степень поглощения силикагелем составляет в среднем 92% и в лучшем случае достигает 95-97%. В то же время силикагель обладает преимуществами по сравнению с активированным углем: меньше расходуется адсорбента, так как силикагель может работать непрерывно гораздо дольше активированного угля и десорбция из силикагеля может проводиться при более высоких температурах.

Десорбер представляет собой нагреватель, имеющий несколько пустотелых полок, в которых циркулируют дымовые газы.

Пыль силикагеля постепенно перемещается в десорбере сверху вниз, с полки на полку, при помощи гребков. В десорбере из адсорбента полностью удаляются поглощенные им газы и пары. Образовавшиеся в десорбере пары поглощенного вещества направляются в конденсатор 3, и после конденсации собираются в сборник 4. Регенерированная пыль силикагеля через нижний шнек удаляется из десорбера. затем подается пневматически (газодувкой 5) через холодильник 6 в верхнюю часть адсорбера для повторного поглощения. Таким образом, осуществляется непрерывная адсорбция и замкнутая циркуляция пыли силикагеля в системе.

Расход адсорбента определяют по его динамической активности, которая для заданных условий принимается по опытным данным. Скорость десорбции газа, равно как и время, необходимое для осуществления регенерации адсорбента, также определяют по опытным данным.

.3 Гиперсорбция

адсорбция промышленный адсорбент изотерма

В нефтяной промышленности для разделения газов пиролиза нефти находит применение метод непрерывной адсорбции в движущемся слое адсорбента. Этот метод, названный гиперсорбцией , отличается более высокой производительностью установок по сравнению с установками периодического действия, работающими с неподвижным слоем адсорбента, а также более высокой степенью разделения газовых смесей на составляющие их компоненты.

Схема одной из простейших адсорбционных установок непрерывного действия представлена на рис. 3.3.1.

Основным аппаратом установки является колонна 5, разделенная на несколько секций. Внутри этой колонны под действием силы тяжести твердый гранулированный адсорбент движется сверху вниз со скоростью, регулируемой механизмом выгрузки 8.

Газовая смесь, подлежащая разделению, подается в колонну разделения через специальную распределительную тарелку 4 и, проходя по адсорбционной секции колонны 3 противотоком к адсорбенту, отдает ему хорошо адсорбируемые компоненты, которые и поглощаются адсорбентом. Неадсорбированный газ проходит через холодильник 2, где охлаждается кодой, и удаляется из верхней части колонны в виде головной фракции.

Рис. 3.3.1 - Схема установки для непрерывного разделения газовых

смесей методом гиперсорбции:

Бункер; 2 - холодильник; 3 - адсорбционная секция;

Распределительная тарелка; 5 - колонна; 6 - ректификационная

секция; 7 - отпарная секция; 8 - механизм выгрузки; 9 - газлифт;

Реактиватор; 11 - газодувка

Однако регенерация силикагеля и десорбция из него адсорбтива могут значительно отличаться от методов регенерации угля и десорбции из него адсорбированных продуктов. Отличие в методе регенерации вызвано тем, что силикагель не меняет своей структуры и адсорбционных качеств под воздействием высокой температуры. Так, например, широко практикуется регенерация силикагеля путем нагревания его до 300°, в то время как нагревание активированного угля даже до 200° недопустимо.

Адсорбцию силикагелем производят на установках с автоматическим переключением адсорберов, в которых десорбция и регенерация осуществляются одновременно путем продувки через адсорбент горячего воздуха.

Применение пылеобразного силикагеля позволяет осуществлять процесс адсорбции непрерывным методом с движением адсорбента и адсорбтива противотоком друг к другу

Десорбция поглощенного газа осуществляется в отпарной секции 7 колонны глухим паром и отдувкой сорбента острым перегретым паром. Последний выводится вместе с тяжелой фракцией-донным продуктом - и отделяется от него конденсацией.

В ректификационной секции 6 установки десорбированный компонент выводится из колонны в виде бокового и донного продуктов. При повышении температуры десорбированные тяжелые компоненты поднимаются в виде «флегмы» вверх по колонне, вытесняя плохо сорбируемые компоненты. Благодаря такому «флегмированию» может быть получен донный продукт высокой степени чистоты.

Освобожденный от поглощенных газов адсорбент после десорбции подается из нижней части колонны снова в бункер 1 колонны при помощи газлифта 9 газодувкой 11 и из бункера снова в колонну, совершая таким образом непрерывную циркуляцию.

В качестве адсорбента в описанной установке применяется активированный уголь высокой активации.

Для того чтобы активность угля не падала, часть адсорбента, направляемого газлифтом в бункер, отбирается и пропускается через реактиватор 10, где отпаривается при более высокой температуре. Реактиватор обогревается топочными газами. Отдувка сорбента производится острым паром, который отводится вверху реактиватора вместе с продуктами отдувки. Благодаря реактивации активность сорбента при длительной работе установки не снижается.

Работа установки полностью автоматизирована, что способствует получению продуктов высокой чистоты (99%).

Потери адсорбента от износа составляют за один цикл от 0,001 до 0.0005%.

Производительность колонны разделения определяется максимально допустимыми нагрузками по газу на единицу сечения колонны, при которых газовый поток еще не разрыхляет (взвешивает) слой адсорбента. При разделении газовых смесей нагрузка будет наибольшей в адсорбционной секции колонны. Особенно велика нагрузка адсорбционной секции колонны по сравнению с нагрузкой ректификационных секций в тех случаях, когда разделяемая смесь содержит большое количество легких компонентов. Для повышения производительности колонны в ней устанавливают несколько питающих тарелок, имеющих каждая свою адсорбционную секцию, где осуществляется противоточный контакт газа со свежим адсорбентом. Это достигается индивидуальной подачей адсорбента в верхнюю часть каждой секции и регулированием соответствующего отбора в основании каждой секции с помощью специального распределителя. Схема колонны с двумя питающими тарелками представлена на рис. 3.3.2.

труба для подачи свежего адсорбента во вторую адсорбционную

секцию; 3 - распределительное устройство

Колонна имеет две адсорбционные секции I и II, разделенные перегородкой 1. Свежий адсорбент подается в секцию II по внутриколонным трубам 2. Оба потока сорбента из двух секций соединяются в пространстве, где помещается распределительное устройство 3, и направляются в ректификационную секцию колонны. Газ при этом также разделяется на два потока, каждый из которых проходит свою адсорбционную секцию. Повышение производительности при этом приблизительно прямо пропорционально числу питающих тарелок.

Распределительная тарелка имеет назначение равномерно распределять газ по сечению колонны и предотвращать унос сорбента газами. Тарелка представляет собой плоскую плиту с отверстиями, в которые завальцованы в определенном порядке патрубки длиной 0,46-0,61 м. Тарелки монтируются патрубками вниз; через патрубки движется адсорбент.

Механизм выгрузки определяет скорость движения адсорбента по колонне и сохраняет направление этой скорости в плоскости по всему сечению колонны. Он состоит из трех описанных выше распределительных тарелок с патрубками; две тарелки неподвижны, а одна-средняя-движется. При возвратно-поступательном движении патрубки средней тарелки попеременно заполняются сорбентом, ссыпающимся с верхней тарелки, и разгружаются через патрубки нижней тарелки. Скорость циркуляции сорбента определяется частотой колебаний подвижной тарелки. Благодаря большому числу патрубков и равномерному их распределению в тарелках выгрузка сорбента с единицы площади сечения колонны везде одинакова, что определяет его плоскопараллельное движение.

Передача адсорбента из колонны в газлифт осуществляется через гидрозатвор, схема устройства которого показана на рис. 3.3.3. Гидрозатвор представляет собой высокую трубу 1 небольшого диаметра, заполненную сорбентом. В нижней части гидрозатвора установлен механизм выгрузки клапанного типа 2, который связан с указателем уровня, помещенным в верхней части гидрозатвора. Такая связь обеспечивает синхронность выгрузки обоими механизмами и заполненность гидрозатвора сорбентом. Гидрозатвор устраняет возможность перетока в колонну газа, подаваемого газодувкой в газлифт.

Рис. 3.3.3 - Схема устройства гидрозатвора:

Труба: 2 - механизм выгрузки; 5 - тарельчатый механизм;

Отпарная секция

Водяной холодильник 2 и отпарная секция 7 выполнены в виде кожухотрубных теплообменников высотой 0,4 м. Сорбент движется внутри трубок диаметром 25 мм, развальцованных в трубных решетках. Таких трубок в холодильнике 1335, а в отпарной секции-920. Реактиватор по конструкции аналогичен отпарной секции колонны.

Колонна имеет диаметр 1370 мм и общую высоту 26 м. Высота ректификационной секции 1520 мм. Рабочее давление 5,3 атм . Действительная скорость циркуляции адсорбента 8160 кгс/час; температура отпаривания 260°. Производительность установки 2108 нм3/час.

.4 Адсорбция в кипящем (псевдоожиженном) слое

За последнее время в ряде отраслей промышленности находит применение адсорбция в кипящем слое, которая по сравнению с адсорбцией в неподвижном слое имеет ряд преимуществ, а именно:

) при сорбции адсорбентом, находящимся в псевдоожиженном состоянии, вследствие интенсивного движения частиц не происходит послойной отработки адсорбента;

) вследствие интенсивного перемешивания частиц адсорбента температура в кипящем слое выравнивается и предотвращается перегрев;

) адсорбент, находящийся в псевдоожиженном состоянии, оказывает относительно очень малое гидравлическое сопротивление;

) адсорбент представляет собой текучую фазу, легко транспортируемую из аппарата в аппарат.

Вместе с этим адсорбция в кипящем слое имеет и свои недостатки:

) в кипящем слое адсорбента отработавшие частицы адсорбента смешаны с неотработавшими. Поток, выходящий из адсорбера, встретив отработавшие частицы адсорбента, может вызвать десорбцию, что отрицательно скажется на степени разделения газовой смеси;

) вследствие интенсивного перемешивания частиц адсорбента в кипящем слое происходит их истирание; поэтому к адсорбенту предъявляются особые требования по механической прочности;

) при интенсивном движении частиц адсорбента в кипящем слое усиливается эрозия стенок аппарата.

На рис. 3.4.1 дана схема колонного аппарата для адсорбции в кипящем слое, применяемого при разделении углеводородных газов. Колонна снабжена контактными колпачковыми тарелками, схема устройства которых представлена на рис. 3.4.2. Частицы адсорбента, движущегося по колонне сверху вниз, переходят с тарелки на тарелку по переточным стаканам 1. Газ, который поддерживает частицы адсорбента на тарелке в состоянии псевдоожижения, проходит снизу вверх через патрубки 2 с колпачками 3. Для большей турболизации кипящего слоя установлены вертикальные перегородки 4, а для осуществления теплообмена-пучок трубок 5, в которых в зависимости от условий процесса может протекать охлаждающий или нагревающий агент.


Колонна по высоте делится на пять зон. Газ, подлежащий разделению, поступает по трубе под нижнюю тарелку первой-верхней зоны, в которой протекает процесс адсорбции; свежий адсорбент подается в верхнюю часть этой зоны. В этой зоне из газовой смеси поглощаются углеводороды, содержащие два и три атома углерода, и небольшие количества метана. Непоглощенная часть газовой смеси, содержащей метан, водород, азот и двуокись углерода, удаляется из верха колонны по трубе 1. Так как процесс адсорбции в первой зоне колонны протекает с выделением тепла, тарелки этой зоны снабжены охладительными трубами, по которым протекает холодная вода.

Из первой зоны адсорбент по переточному каналу поступает во вторую, где поднимающийся с низа колонны инертный газ десорбирует из адсорбента метан; метан попадает в первую зону и уходит из колонны вместе с непоглощенной частью газа. Из второй зоны адсорбент поступает в третью, а затем в четвертую и пятую зоны. В третьей зоне происходит десорбция поглощенных газов с двумя углеродными атомами (фракция C 2) и в четвертой - с тремя углеродными атомами (фракция С 3). В пятой зоне адсорбент обрабатывается острым паром. Водяной пар выдувает из адсорбента углеводороды с тремя углеродными атомами. Адсорбент из пятой зоны выходит по трубе 4 и пневмотранспортом подается снова в верхнюю часть колонны.

Рис. 3.4.3 - Схема установки для адсорбции и десорбции в кипящем

слое: 1 - циклон; 2 - сепаратор; 3 - адсорбер; 4 - теплообменники;

6 - разгрузочные приспособления; 7 - десорбер; 8 - паровая

рубашка

На рис. 3.4.3 представлена схема установки для адсорбции и десорбции в кипящем слое, состоящей из адсорбера 3 и десорбера 7. В адсорбер 3 через трубу подаются исходная газовая смесь и регенерированный адсорбент из десорбера. В адсорбере создается кипящий слой адсорбента, в котором происходит адсорбция поглощаемой части газового потока. Непоглощенная часть газового потока через сепаратор 2 и циклон 1 удаляется из аппарата.

Из адсорбера адсорбент через разгрузочное приспособление 5 поступает в трубопровод и газом или паром, используемыми для десорбции, увлекается в десорбер 7, в котором десорбция проводится также в кипящем слое. Десорбер снабжен паровой рубашкой 8. Газ после десорбции проходит через теплообменник, где отдает тепло выходящему из адсорбера адсорбенту. Выходящий из десорбера регенерированный адсорбент охлаждается в теплообменнике 4.

На рис. 3.4.4 представлена схема устройства адсорбера с кипящим слоем.

Рис. 3.4.4 - Адсорбер с регулируемой высотой кипящего слоя:

Корпус адсорбера; 2 - регулятор давления; 3 - трубопровод для

подачи регулировочного газа; 4 - вспомогательный бак; 5 - выход

непоглощенной части газа; 6 - крышка адсорбера; 7 - труба для подачи

адсорбента; 8 - загрузочный бункер; 9 - труба; 10 - труба для подачи

исходного газа; 11 - разгрузочная труба

Адсорбер имеет специальное приспособление для регулирования высоты кипящего слоя. Этот аппарат состоит из корпуса-резервуара 1, в верхней части которого расположен открытый сверху вспомогательный бак 4. Свежий адсорбент загружается через бункер 8 по трубе 7 в вспомогательный бак. Снизу в вспомогательный бак подведена труба 3. по которой через регулятор 2 нагнетается газ, необходимый для псевдоожижения адсорбента в баке 4. Бак 4 установлен в трубе 9, прикрепленной к крышке адсорбера; открытый конец трубы находится в кипящем слое адсорбента (в резервуаре 1). Псевдоожиженный слой адсорбента из бака 4 по этой трубе переливается в резервуар. Исходная газовая смесь поступает в адсорбер по трубе 10 и создает кипящий слой в резервуаре 1. Скорость газового потока должна быть равна скорости витания ω вит. Освобожденная от поглощаемой части газовая смесь удаляется из адсорбера по трубе 5, а адсорбент, насыщенный поглощаемым газом, осаждается в нижней конической части резервуара и по трубе 11 удаляется из него.

Высота кипящего слоя в резервуаре колеблется в интервале уровней А-В. Подачу газа в бак 4 рассчитывают таким образом, чтобы при достижении уровня А кипящий слой адсорбента переливался через край бака в резервуар в количестве большем, чем уходит по трубе 11. В результате количество адсорбента в резервуаре увеличивается и уровень кипящего слоя в нем повышается. При этом будет возрастать толщина слоя адсорбента, сопротивление которого должен преодолевать газ, подаваемый через трубу 5. Вследствие этого при постоянстве давления этого газа, поддерживаемом регулятором 2, расход его будет соответственно уменьшаться. По достижении кипящим слоем уровня Б расход газа сократится настолько, что подача адсорбента в резервуар прекратится, а это приведет к понижению уровня кипящего слоя в резервуаре. Разность уровней А и Б зависит от чувствительности регулятора и практически может быть доведена до 100 мм и менее.

Опытные данные показывают, что процесс адсорбции в кипящем слое характеризуется теми же закономерностями, что и адсорбция в неподвижном слое. Так, время защитного действия слоя меняется прямо пропорционально высоте кипящего слоя. Коэффициент защитного действия адсорбента зависит от скорости газового потока, начальной концентрации газовой смеси и физико-химических свойств системы.

При адсорбции в кипящем слое можно принимать скорость газового потока в три-четыре раза большей по сравнению со скоростью при адсорбции в неподвижном слое и значительно интенсифицировать процесс адсорбции.

.5 Расчет адсорберов периодического действия

В аппаратах периодического действия с неподвижным слоем адсорбента высотой L процесс собственно сорбции протекает в две стадии. Первая стадия считается с момента начала пропускания газовой смеси через слой адсорбента до полного насыщения нижних слоев адсорбента. В течение этой стадии на какой-то высоте слоя адсорбента L 0 , называемой работающей высотой, происходит полный переход распределяемого между фазами вещества из газовой фазы в адсорбент и газовая смесь выходит из адсорбера, будучи полностью освобождена от поглощаемого адсорбентом вещества.

При дальнейшей работе адсорбера адсорбент постепенно насыщается поглощаемым веществом и, наконец, наступает момент, когда адсорбент перестает поглощать распределяемый между фазами компонент и начинается проскок этого компонента через слой адсорбента. Время от начала процесса до момента проскока называют временем защитного действия слоя адсорбента.

Количество поглощенного вещества может быть выражено следующим образом:

G f a L (3.5.1)

и G = w y f a C 0 τ " (3.5.2)

где L - высота слоя адсорбента в м ;

f a - площадь поперечного сечения слоя адсорбента в м 2 ;

w y - скорость газового потока в м/сек ;

С 0 - начальное содержание поглощаемого вещества в газовой фазе в кгс/м 3 ;

τ" - продолжительность поглощения при бесконечно большой скорости поглощения в сек .

Сравнивая два последних уравнения, находим:

τ"=α/ w y C 0 * L (3.5.3)

Фактическое время защитного действия τ слоя адсорбента длиной L всегда меньше τ" . Разность:

τ 0 =τ"- τ (3.5.4)

называется потерей времени защитного действия.

Подставляя в последнее уравнение значение τ" из уравнения, находим

τ= α/ w y C 0 * L - τ 0 (3.5.5)

или τ= K 3 L - τ 0 (3.5.6)

где K 3 = α/ w y C 0 - коэффициент защитного действия слоя.

Уравнение можно выразить и так:


где h - величина, характеризующая неиспользованную статическую активность слоя адсорбента.

Соответственно потеря времени защитного действия слоя получится из равенства

τ 0 = K 3 h (3.5.8)

Процесс адсорбции в неподвижном слое адсорбента является неустановившимся, поэтому определение времени защитного действия слоя адсорбента и изменения концентрации газа по высоте слоя представляет собой весьма сложную задачу.

Связь между концентрацией газовой смеси в любой момент времени и высотой слоя адсорбента выражается уравнением:

(3.5.9)

а между равновесной концентрацией в каждый данный момент времени и высотой слоя адсорбента уравнением

(3.5.10)

где С - содержание поглощаемого компонента в газовой фазе в любой момент времени τ на высоте слоя L в кгс/м 3 ;

С 0 - содержание поглощаемого компонента в газовой фазе при входе в адсорбер в кгс/м 3 ;

С сравн. - равновесная концентрация газовой фазы в кгс/м 3 ;

J 0 (2 i xz ) - функция Бесселя первого ряда и нулевого порядка.

x=K v L/w y (3.5.11)

z=K v/ A( τ -L/w y) (3.5.12)

где K v - коэффициент массопередачи в кгс/м 3 час кгс/м 3 ;

L - высота слоя адсорбента в м ;

w y - скорость газовой фазы, отнесенная к общему поперечному сечению слоя адсорбента, в кгс/м 3 ;

А - константа из уравнения изотермы. Допуская линейную зависимость между концентрацией газа и поглощенным количеством вещества, числовое значение А можно найти из уравнения α= АС" равн .;

τ - длительность процесса адсорбции в с ек .

i =√-1 (3.5.13)

Значения C / C 0 и С" равн / С 0 , вычисленные согласно формулам, по значениям x и z , даны в виде кривых на рис. 3.5.1.

Продолжительность адсорбции при заданной толщине слоя адсорбента и начальной концентрации газа определяется в зависимости от того, к какому участку кривой изотермы адсорбции относятся заданные концентрации газовой смеси.

Для первой области изотермы адсорбции зависимость между α и С рав - приближенно может быть признана линейной, т. е. можно допустить, что в этой области изотерма приблизительно отвечает закону Генри:

α= ГС рав (3.5.14)

где Г - безразмерный коэффициент, равный отношению α 0 / α 0 :

α 0 - количество поглощенного вещества, равновесное с концентрацией вещества в газовом потоке.

В этом случае длительность адсорбции определяется из уравнения:

где С" рави. - содержание вещества в газовой фазе, равновесное с количеством вещества, равным половине α , в кгс/м 3 (α ∞ - количество вещества, максимально поглощаемое при данной температуре, в кгс/м 3 ).

В третьей области изотермы адсорбции величина поглощаемого адсорбентом вещества достигает предела и остается постоянной и не зависящей от содержания поглощаемого вещества в газовой фазе. В этом случае длительность адсорбции определяется по уравнению

(3.5.20)

3.6 Расчет адсорберов непрерывного действия

Процесс адсорбции в аппаратах непрерывного действия является установившимся и к нему применимы общие уравнения массопередачи.

Если концентрации поглощаемого вещества находятся в пределах линейного участка кривой изотермы адсорбции, то можно воспользоваться уравнением массопередачи, которое для данного случая выражается так

(3.6.1)

где G - количество поглощаемого адсорбентом вещества в кгс/сек;

Kv - коэффициент массопередачи в кгс/м 3 *сек*кгс/м 3 ;

f c - площадь поперечного сечения движущегося адсорбента в м 3 ;

∆С ср . - средняя разность концентрации.

Эта величина определяется из выражения:

(3.6.2)

где ∆С 1 - большая разность концентрации на одном конце слоя;

∆С 2 - меньшая разность концентрации на другом конце слоя.

Если концентрация поглощаемого вещества находится в пределах криволинейного участка изотермы адсорбции, высота слоя адсорбции может быть найдена по уравнениям, которые для данного случая могут быть выражены так:

L = hm м (3.6.3)

где h = V 2 / K v f c - высота слоя, соответствующая одной единице переноса

V 2 - объем газовой смеси, протекающей через адсорбер, в м 3 /сек );

(3.6.4)

m - число единиц переноса, которое находят графическим путем.

Заключение

Адсорбционные явления чрезвычайно широко распространены в живой и неживой природе. Толщи горных пород и почвы являются огромными колоннами с адсорбентами, по которым перемещаются водные и газовые растворы. Легочная ткань подобна адсорбенту - носителю, на котором удерживается гемоглобин крови, обеспечивающий перенос кислорода в организм. Многие функции биологических мембран живой клетки связаны со свойствами их поверхности, так, например, общая площадь биологических мембран в организме человека достигает десятков тысяч квадратных метров. Даже такие наши чувства, как обоняние и вкус, зависят от адсорбции молекул соответствующих веществ в носовой полости и на языке.

Сегодня адсорбция составляет основу многих промышленных операций и научных исследований. Наиболее важные из них - очистка, выделение и разделение различных веществ, адсорбционная газовая и жидкостная хроматография.

Адсорбция является важной стадией гетерогенного катализа и коррозии. Исследования поверхности тесно связаны с развитием полупроводниковой техники, медицины, строительства и военного дела. Адсорбционные процессы играют ключевую роль при выборе стратегии защиты окружающей среды.

Адсорбционные методы исследования свойств поверхности позволяют количественно охарактеризовать происходящие при адсорбции межмолекулярные взаимодействия адсорбат-адсорбент и адсорбат-адсорбат, определить термодинамические характеристики адсорбционного равновесия (например, теплоту и энтропию адсорбции), а также исследовать геометрические параметры адсорбента (величину удельной поверхности, объем пор и распределение пор по размерам, характерные для данного материала).


АДСОРБЦИЯ (от лат. ad-на, при и sorbeo-поглощаю), изменение (обычно-повышение) в-ва вблизи пов-сти раздела фаз ("поглощение на пов-сти"). В общем случае причина адсорбции - нескомпенсированность межмол. сил вблизи этой пов-сти, т.е. наличие адсорбц. силового поля. Тело, создающее такое поле, наз. , в-во, к-рого могут адсорбироваться,-а д с о р б т и в о м, уже адсорбиров. в-во-адсорбатом. Процесс, обратный адсорбции, наз. .

Природа адсорбц. сил м. б. весьма различной. Если это ван-дер-ваальсовы силы, то адсорбция наз. физической, если валентные (т.е. адсорбция сопровождается образованием поверхностных хим. соединений), - химической, или . Отличит. черты - необратимость, высокие тепловые эффекты (сотни кДж/), активированный характер. Между физ. и хим. адсорбцией существует множество промежут. случаев (напр., адсорбция, обусловленная образованием ). Возможны также разл. типы физ. адсорбции наиб. универсально проявление дисперсионных межмол. сил притяжения, т. к. они приблизительно постоянны для с пов-стью любой хим. природы (т. наз. неспецифич. адсорбция). Физ. адсорбция может быть вызвана электростатич. силами (взаимод. между , диполями или квадруполями); при этом адсорбция определяется хим. природой адсорбтива (т. наз. специфич. адсорбция). Значит. роль при адсорбции играет также геометрия пов-сти раздела: в случае плоской пов-сти говорят об адсорбции на открытой пов-сти, в случае слабо или сильно искривленной пов-сти-об адсорбции в порах .

В теории адсорбции различают статику (система адсорбент-ад-сорбат находится в термодинамич. ) и кинетику ( нет).

Статика адсорбции

Т.к. система равновесна, то хим. потенциалы адсорбата и адсорбтива одинаковы; адсорбата вследствие уменьшения подвижности при адсорбции меньше адсорбтива. Поэтому при инертном всегда отрицательна, т.е. адсорбция экзотермична. Учет изменения может изменить этот вывод. Напр., при в-в, в к-рых набухает, последнего (из-за увеличения подвижности ) может столь сильно возрасти, что адсорбция становится эндотермической. В дальнейшем в статье рассматривается только экзотермич. адсорбция.

Различают интегральную, дифференц., изостерич. и среднюю теплоты адсорбции. Интегральная теплота Q равна убыли (при V= const -внутр. энергии) при изменении адсорбции от a 1 до а 2 (в частном случае м.б. а 1 =0): Q= -(Н 2 - Н 1) Эту величину относят обычно к массе и выражают в Дж/кг.

Существует еще один механизм, приводящий к дополнит. адсорбции адсорбтивов ниже их критич. т-ры на пористых при сравнительно высоких значениях p/p s . Это - . Если в поре образовался вогнутый адсорбата, то в ней начинается при p/p s <1. Согласно ур-нию Кельвина:

где-поверхностное натяжение адсорбата, V-его мольный объем, r-радиус кривизны . приводит к резкому подъему изотермы адсорбции. При этом часто (но не всегда) наблюдается т. наз. адсорбц. гистерезис, т.е. несовпадение адсорбц. и десорбц. ветвей изотермы. Как правило, это связано с тем, что формы при адсорбции и не совпадают.

Используя потенциальную теорию, М.М. Дубинин предложил и разработал теорию объемного заполнения микро-пор (ТОЗМ). Было постулировано, что эта теория применима только к микропористым . Особенность таких , в к-рых линейные размеры пор r1 нм, состоит в том, что весь объем их пор "заполнен" адсорбц. полем. Поэтому при адсорбции они заполняются не послойно, а объемно. Величина в рассматриваемом случае - это не адсорбц. потенциал, а с точностью до знака хим. потенциал адсорбата, отсчитываемый от уровня хим. при той же т-ре. Вся совокупность пор разделяется на три класса: микропоры (r0,6 нм), мезопоры (0,6 нмr20 нм) и макропоры (r20 нм). Адсорбция в микропорах происходит по схеме ТОЗМ, т.е. объемно, в мезопорах-по механизму послойного заполнения, завершаемого . Макропоры при адсорбц. никакой роли не играют.

Введя представление о ф-ции распределения объемов пор по значениям хим. потенциала адсорбата в них, М.М. Дубинин и Л. В. Радушкевич получили ур-ние изотермы адсорбции ТОЗМ, к-рое обычно записывают в след. форме:

где п, Е и а 0 -параметры (а 0 = а при р = p s). Температурная зависимость a 0:

где= -(da 0 /dT); a 0 0 = a 0 при Т= Т 0 . Параметры п и Е практически не зависят от т-ры. В большинстве случаев п = 2. Лишь для случаев, когда начальные теплоты адсорбции очень велики, п > 2. Для пересчета изотерм адсорбции с одного адсорбтива на другой приближенно допускают, что E 1 /E 2 P 1 /P=и что a 01 /a 02 V 1 /V 2 ,где P i -парахор, V i - мольный объем адсорбтива.

Пользуясь представлением, что в реальном имеются поры разных размеров, и вводя распределение значений Е с дисперсией, равной Ф. Стекли предложил обобщение ур-ния (23), названное ур-нием Дубинина-Стёкли:

Кинетика адсорбции

Адсорбция, как и любой реальный процесс, происходит во времени. Поэтому полная теория адсорбции должна содержать раздел о кинетике адсорбции. Элементарный адсорбции осуществляется практически мгновенно (исключение-хемосорбция). Поэтому временные зависимости адсорбции определяются в осн. механизмом , т. е. подвода адсорбтива к месту адсорбции. Если адсорбция на открытой пов-сти не мгновенна, такой процесс происходит во внешнедиффузионной области; при этом законы не специфичны для адсорбции. В случае же пористых , кроме внеш. , важную роль начинает играть внутр. , т.е. перенос адсорбтива в порах при наличии в них градиента . Механизм такого переноса может зависеть от адсорбтива и размеров пор.

Различают молекулярную, кнудсеновскую и поверхностную (фольмеровскую) . Молекулярная осуществляется, если длина своб. пробега в порах меньше размера пор, кнудсеновская-если эта длина превышает размер пор. При поверхностной перемещаются по пов-сти без перехода в объемную фазу. Однако значения коэф. не одинаковы для разных механизмов . Во мн. случаях экспериментально не удается установить, как именно происходит , и поэтому вводят т. наз. эффективный коэф. , описывающий процесс в целом.

Осн. эксперим. материалом о кинетике адсорбции служит т. наз. кинетич. кривая, т.е. ф-ция= а/а равн =f(t) где-относительная адсорбция, равная отношению текущего значения адсорбции а к a равн - её значению при времени t. Для истолкования кинетич. кривой в простейшем случае предполагают, что зерно имеет совершенно однородную по объему пористую структуру (эту модель наз. квазигомогенной). значит. усовершенствование квазигомогенной модели-представление о том, что каждое зерно содержит области с более крупными и более тонкими порами. в таком зерне описывается двумя разл. коэффициентами.

В случае открытой пов-сти, принимая модель Ленгмюра, легко получить кинетич. ур-ние адсорбции. Скорость приближения к представляет собой разность скоростей адсорбции и . Считая, как обычно в кинетике, что скорости процессов пропорциональны реагирующих в-в, имеем:

где k адс и k дес - соотв. адсорбции и . в газовой фазе считается постоянным. При интегрировании этого ур-ния от t = 0 до любого значения t получим:

Отсюда при f имеем:= равн. Поэтому окончательно имеем:

где k = k адс + k дес.

Влияние т-ры на скорость адсорбции выражается ур-нием, аналогичным ур-нию Аррениуса. С увеличением т-ры k адс экспоненциально возрастает. Т.к. в порах связана с преодолением активац. барьеров, температурные зависимости k адс и k дес не одинаковы.

Знание скоростей важно не только для теории адсорбции, но и для расчета пром. адсорбц. процессов. При этом обычно имеют дело не с отдельными зернами , а с их слоями. Кинетика процесса в слое выражается очень сложными зависимостями. В каждой точке слоя в данный момент времени величина адсорбции определяется не только видом ур-ния изотермы адсорбции и закономерностями кинетики процесса, но также аэро- или гидродинамич. условиями обтекания зерен газовым или жидкостным потоком. Кинетика процесса в слое в отличие от кинетики в отдельном зерне наз. динамикой адсорбции, общая схема решения задач к-рой такова: составляется система дифференц. ур-ний в частных производных, учитывающая характеристики слоя, изотерму адсорбции, диффузионные характеристики (коэф. , виды переноса массы по слою и внутри зерен), аэро- и гидродинамич. особенности потока. Задаются начальные и краевые условия. Решение этой системы ур-ний в принципе приводит к значениям величин адсорбции в данный момент времени в данной точке слоя. Как правило, аналитич. решение удается получить только для простейших случаев, поэтому такая задача решается численно с помощью ЭВМ.

При опытном изучении динамики адсорбции через слой пропускают газовый или жидкостный поток с заданными характеристиками и исследуют состав выходящего потока как ф-цию времени. Появление поглощаемого в-ва за слоем наз. проскоком, а время до проскока - временем защитного действия. Зависимость данного компонента за слоем от времени наз. выходной кривой. Эти кривые служат осн. эксперим. материалом, позволяющим судить о закономерностях динамики адсорбции.

Аппаратурное оформление адсорбционных процессов

Существует множество технол. приемов проведения адсорбц. процессов. Широко распространены циклич. (перио-дич.) установки с неподвижным слоем , осн. узел к-рых - один или неск. , выполненных в виде полых колонн, заполняемых гранулированным . Газовый (или жидкостной) поток, содержащий адсорбируемые компоненты, пропускается через слой до проскока. После этого в регенерируют, а газовый поток направляют в др. . включает ряд стадий, из к-рых ос новная-десорбция, т.е. выделение ранее поглощенного в-ва из . проводят нагреванием, сбросом в газовой фазе, вытеснением (напр., острым водяным ) или комбинацией этих методов. Т. к. времена адсорбции и не совпадают, подбирают такое число одновременно работающих и регенерируемых , чтобы в целом процесс шел непрерывно.

По техн. и экономич. соображениям не доводят до конца. Поэтому рабочая емкость

Любые гетерогенные процессы, например, разложение или образование химического соединения, растворение твердых тел, газов или жидкостей, испарение, возгонка и т.п., а также многие другие процессы проходят в присутствии поверхностей раздела фаз (твердое тело - газ, твердое тело - жидкость, газ – жидкость). Состояние вещества у поверхности раздела соприкасающихся фаз отличается от его состояния внутри этих фаз вследствие различия молекулярных взаимодействий в разных фазах. Это различие вызывает особые поверхностные явления на границе раздела фаз.

Представим себе поверхность твердого тела на границе с газом. Внутри твердого тела частицы (атомы, ионы или молекулы), образующие его решетку, правильно чередуются в соответствии с кристаллической структурой, причем их взаимодействия уравновешены. Состояние же частицы, находящейся на поверхности, иное - взаимодействия таких частиц не уравновешены, и поэтому поверхность твердого тела притягивает молекулы вещества из соседней газовой фазы. В результате концентрация этого вещества на поверхности становится больше, чем в объеме газа, газ адсорбируется поверхностью твердого тела.

Таким образом, адсорбция представляет собой концентрирование вещества на поверхности раздела фаз. Вещество, на поверхности которого происходит адсорбция ‒ адсорбент , а поглощаемое из объемной фазы вещество - адсорбат .

Адсорбент поглощает из объемной фазы тем больше вещества, чем больше развита его поверхность. Поверхность, приходящаяся на 1 г адсорбента, называют удельной поверхностью. Величина удельной поверхности у различных адсорбентов может быть весьма различной. Непористые тела имеют удельную поверхность от нескольких м 2 /г до сотен м 2 /г. Большое увеличение поверхности связано обычно с наличием в твердом теле узких пор. Примерами таких высокодисперсных пористых тел с удельной поверхностью до нескольких тысяч м 2 /г являются активированный уголь и силикагель.

Количественно адсорбция может быть выражена с помощью нескольких величин:

  1. величиною а , представляющей собой количество адсорбата, находящегося в объеме адсорбционного слоя, отвечающего единице массы адсорбента (моль/г).
  2. величиною Г, представляющей собой избыток числа молей адсорбата в объеме поверхностного слоя площадью 1 см 2 по сравнению с числом его молей в том же объеме, если бы у межфазной границы не происходило изменение концентрации адсорбата (Г>0 - адсорбция, Г<0 – десорбция).

Различают физическую и химическую адсорбцию. В первом случае адсорбционные силы имеют ту же природу, что и межмолекулярные силы. Физическая адсорбция всегда обратима. При химической адсорбции адсорбционные силы имеют химическую природу. Хемосорбция обычно необратима. При химической адсорбции молекулы адсорбата, связанные с адсорбентом прочными химическими связями, не могут перемещаться по поверхности адсорбента. Это случай локализованной адсорбции. В отличие от этого при физической адсорбции могут иметь место как нелокализованная адсорбция, когда молекулы адсорбата способны передвигаться по поверхности адсорбента, так и локализованная. Локализованная физическая адсорбция объясняется тем, что поверхность адсорбента состоит из различных атомов, ионов или молекул, по-разному взаимодействующих с молекулами адсорбата. Т.е., для перемещения по поверхности молекулам адсорбата необходимо преодолевать различные потенциальные барьеры, что не всегда возможно.

Физическая адсорбция протекает самопроизвольно с выделением энергии. Адсорбат стремится занять всю поверхность адсорбента, но этому препятствует процесс, противоположный адсорбции - десорбция, вызванный стремлением к равномерному распределению вещества. Для каждой концентрации адсорбата в окружающей среде существует состояние адсорбционного равновесия , аналогичное равновесию между испарением и конденсацией. Адсорбционное равновесие - это динимическое равновесие которое наступает тогда, когда скорость процесса адсорбции равна скорости обратного процесса десорбции. Понятно, что чем выше концентрация адсорбата, тем больше адсорбция. Также ясно, что чем выше температура, тем меньше физическая адсорбция. Для каждой температуры существует свое адсорбционное равновесие.

Адсорбцию принято характеризовать зависимостью количества адсорбированного вещества а от концентрации (или равновесного давления). Графики а =f (c ) или а =f (р) при Т=const называют изотермами адсорбции . Вид обычной изотермы показан на рис.9.1.

Рисунок 9.1 ‒ Типичный вид изотермы адсорбции

Как можно видеть, изотерма имеет три характерных участка. Начальный круто поднимающийся вверх почти прямолинейный участок кривой показывает, что при малых концентрациях адсорбция пропорциональна концентрации. Это область, в которой выполняется закон Генри:а=К\cdot{с}, где К – константа Генри, не зависящая от концентрации с. В области I поверхность адсорбента в значительной степени свободна.

Почти горизонтальный участок III соответствует большим концентрациям и отвечает поверхности адсорбента, полностью насыщенной адсорбатом. В. этих условиях, если на поверхности может образоваться лишь мономолекулярный слой адсорбата, количество его практически перестает зависеть от концентрации. Средний участок II кривой соответствует промежуточным степеням заполнения поверхности.

Важной задачей теории адсорбции является вывод уравнения изотермы адсорбции. В настоящее время эта задача еще далека от разрешения. Для описания изотермы адсорбции предложен ряд эмпирических формул. Из них наиболее широко используется уравнение Фрейндлиха :

  • a=x/m=\beta{\cdot{c^{1/n}}}(9.1)

где X - количество адсорбированного вещества, моль; m - масса адсорбента; с - равновесная концентрация, b и 1/n – константы.

Константы b и 1/n уравнения Фрейндлиха легко найти графически по изотерме, построенной в логарифмических координатах:

  • \ln{a}=\ln{\beta}+1/n\ln{C}(9.2)

Это уравнение прямой. Тангенс угла наклона этой прямой равен 1/n, а отрезок, отсекаемый прямой на оси ординат, равен lnb. Константа b обычно колеблется в широких пределах. Физический смысл ее становится ясным, если принять с=1, тогда b представляет собой величину адсорбции при равновесной концентрации адсорбата 1 моль/л. Показатель 1/n принимается постоянным, лежащим в пределах 0,2 -1,0 для адсорбции из газовой среды и 0,1 - 0,5 для адсорбции из растворов. Поэтому уравнение Фрейндлиха пригодно лишь для концентраций, меньших 0,5 моль/л.2.

Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра

Фундаментальным вкладом в учение об адсорбции явилась теория Ленгмюра . Эта теория позволяет учесть наиболее сильные отклонения от закона Генри, связанные с ограниченностью поверхности адсорбента. Это обстоятельство приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации адсорбируемого вещества. Это положение является основным в теории Ленгмюра и уточняется следующими допущениями:

  1. адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбата. На поверхности адсорбента образуется поэтому мономолекулярный слой адсорбата;
  2. адсорбционные центры энергетически эквивалентны;
  3. адсорбированные молекулы не взаимодействуют друг с другом.

Для вывода изотермы адсорбции Ленгмюра учтем, что при установлении в системе адсорбционного равновесия скорость адсорбции (V\downarrow )должна равняться скорости десорбции(V\uparrow ). Для того, чтобы молекула адсорбировалась, она должна удариться о поверхность и попасть на незанятое место. Учитывая, что число ударов пропорционально концентрации С, а вероятность попасть на незанятое место пропорционально их числу, имеем

  • V\downarrow=k_1c(1-\Theta),(9.3)

где\Theta- доля занятых мест,k_1- константа скорости адсорбции. Скорость десорбции прямо пропорциональна числу адсорбированных молекул:

  • V\uparrow=k_2\Theta, (9.4)

гдеk_2- константа скорости десорбции.

При равновесииV\uparrow=V\downarrowи

  • k_1c(1-\Theta)=k_2\Theta
  • \Theta=\frac{Kc}{1+Kc} (9.5)

где K=k_1/k_2- константа адсорбционного равновесия.

Обозначим символомa_\inftyмаксимальную адсорбцию или емкость адсорбционного монослоя. Тогда

  • \Theta=a/a_\infty(9.6)

Следовательно,

  • a=a_\infty \frac{K\cdot{c}}{1+K\cdot{c}}.(9.7)

Это уравнение носит название изотермы адсорбции Ленгмюра. Для газов и паров концентрацию можно заменить пропорциональным ей значением давления и изотерма адсорбции примет вид

  • a=a_\infty{\frac{K_p{\cdot{P}}}{1+K_p{\cdot{P}}}} (9.8)

Константы адсорбционного равновесия К иK_pхарактеризуют энергию взаимодействия адсорбата с адсорбентом. Чем сильнее это взаимодействие, тем больше значение константы адсорбционного равновесия.

Важны экстраполяционные следствия уравнения изотермы Ленгмюра. ПриC\rightarrow{0}имеемa=a_\infty{\cdot}K\cdot{c}и\Theta=K\cdot{c}.

Эти выражения соответствуют закону Генри: величина адсорбции линейно растет с увеличением концентрации. Таким образом уравнение Ленгмюра является более общим соотношением, включающим и уравнение Генри.

При больших концентрациях, когда K_c\gg1

  • a=a_\infty и \Theta=1

Эти соотношения отвечают насыщению, когда вся поверхность адсорбента покрывается мономолекулярным слоем адсорбата. Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения Ленгмюра, записанного в линейной форме:

  • \frac{c}{a}=\frac{1}{a_\infty{K}}+\frac{c}{a_\infty}.(9.9)

Методика нахождения коэффициентов уравнения Ленгмюра показана на рис. 9.2.

Рисунок 9.2 ‒ К нахождению констант уравнения Ленгмюра

Полимолекулярная адсорбция. Уравнение БЭТ

Опыт показывает, что наряду с изотермами адсорбции, которые описываются уравнением Ленгмюра и о которых мы говорили, часто встречаются изотермы, не имеющие участка, параллельного оси давлений и отвечающего насыщению поверхности адсорбента молекулами адсорбата. Такая изотерма - показана на рис 9.3. Это связано с явлением, при котором на активных центрах поверхности адсорбента образуются несколько слоев молекул или ионов адсорбата - полимолекулярная адсорбция .

Наиболее удачная теория (из многочисленных), описывающая подобные процессы была создана в 1935-1940 гг. Брунауэром, Эмметом, Теллером применительно к адсорбции паров. Их теория получила название теории БЭТ. Ее основные положения:

  1. Адсорбционные слои полимолекулярны, причем их толщина на разных участках поверхности различна.
  2. Адсорбционные силы тождественны силам, вызывающим конденсацию.

Рисунок 9.3 ‒ Изотерма полимолекулярной адсорбции

Последнее положение может быть обосновано следующим образом: лишь первый слой молекул адсорбата находится в непосредственной близости к поверхности твердого тела. Второй, и особенно последующие слои, прилегают к молекулам, подобным им, и их образование напоминает обычную конденсацию пара на поверхности жидкости.

На основании этих представлений Брунауэр, Эммет и Теллер вывели следующее уравнение изотермы адсорбции паров:

  • a=\frac{a_\infty{\cdot{K_П\cdot{p/p_s}}}}{(1-p/p_s)}(9.10)

гдеK_П- константа равновесия полимолекулярной адсорбции, Р - давление пара,P_s - давление насыщенного пара при данной температуре,a_\infty- емкость монослоя.

При низких давлениях, когдаp/p_s\ll 1, учитывая, чтоK_p=K_П\cdot{1/p_s}, получаем уравнение Ленгмюра:

  • \frac{a_\infty{K_p}p_sp/p_s}{1+K_pp_sp/p_s}=a_\infty{\frac{K_pp}{1+K_pp}}.(9.11)

Уравнение изотермы полимолекулярной адсорбции БЭТ легко привести к линейной форме:

  • \frac{p/p_s}{a(1-p/p_s)}=\frac{1}{a_\infty{K_П}}+\frac{K_П-1}{a_\infty{K_П}}p/p_s.(9.12)

По наклону этой прямой и отсекаемому ею отрезку на оси ординат можно найти значения константa_\inftyиK_П.

Теория БЭТ, так же как и теория Ленгмюра, указывает путь для определения удельной поверхности адсорбента (любого твердого вещества). Для этого находят емкость монослояa_\infty для паров простых веществ (N_2 , Ar, Kr) при низких температурах. Затем, зная площадьS_0 , занимаемую одной молекулой простого вещества, вычисляют удельную поверхность адсорбента:

  • S_{уд}=a_\infty{\cdot{N_a}\cdot{S_0}}(9.13)

гдеN_a - число Авогадро. Это метод определения удельной поверхности по БЭТ.

Энергетические параметры адсорбции на однородной поверхности

Между энергией Гиббса, энтальпией и энтропией адсорбции существует известное соотношение:

  • \Delta{G}=\Delta{H}-T\Delta{S}.

Адсорбция - самопроизвольный процесс, а всякому самопроизвольному процессу при P,T=const отвечает условие\Delta{G}<0 . Энтропия также уменьшается (\Delta{S}<0), т.к. при адсорбции ограничивается свобода движения молекул: в объемной фазе они движутся в трех направлениях, а на поверхности - в двух. Из приведенного уравнения следует, что энтальпия адсорбции должна иметь тот же знак, т.е.\Delta{H}<0 . Таким образом, адсорбция - экзотермический процесс.

Если адсорбция подчиняется уравнениям Генри и Ленгмюра, т.е. константа равновесия адсорбции в этих уравнениях не зависят от степени заполнения поверхности, то стандартная энергия Гиббса адсорбции может быть рассчитана по уравнению, справедливому для химических реакций:

  • \Delta{G^0}=-RT\ln{K}.

Энтальпию адсорбции определяют из экспериментальной зависимости константы равновесия адсорбции от температуры в соответствии с уравнением изобары Вант-Гоффа

  • \frac{d\ln{K}}{dT}=\frac{\Delta{H^0}}{RT^2}.

Принимая во внимание слабую зависимость изменения энтальпии от температуры, находим

  • \ln{K}=-\frac{\Delta{H^0}}{RT}+const.

Тангенс угла наклона прямой lnK - 1/T равен -\Delta{H^0}/R, откуда легко рассчитать\Delta{H^0}.

Энтропию адсорбции, подчиняющейся закону Генри или уравнению Ленгмюра, легко рассчитать, если известны\Delta{H^0} и\Delta{G^0} по уравнению

  • \Delta{S}=\frac{\Delta{H^0}-\Delta{G^0}}{T}=\frac{\Delta{H^0}+RT\ln{K}}{T}.

Данные соотношения для расчета энергетических параметров адсорбции получены, исходя из предположения, что поверхность адсорбента однородна (эквипотенциальна) и на ней образуется мономолекулярный слой адсорбата.

Если адсорбция происходит на неоднородной поверхности, то наиболее реакционноспособные адсорбционные центры будут заняты уже при малых равновесных концентрациях. Таким образом, энергетические параметры адсорбции зависят от степени заполнения поверхности адсорбатом. Например, дифференциальная теплота адсорбции будет уменьшаться по мере заполнения поверхности.

Взаимодействие частиц в адсорбционном слое и классификация изотерм адсорбции

Одним из опорных пунктов теории Ленгмюра является константа отсутствия взаимодействия частиц адсорбата в адсорбционном слое, Однако ленгмюровская адсорбция является лишь частным случаем в многообразном мире адсорбционных процессов. На рис. 9.4 показаны различные формы изотерм адсорбции из разбавленных растворов.

Рисунок 9.4 ‒ Формы изотерм адсорбции

Исходя из формы начального участка были выделены четыре характерных класса изотерм (S, L, H, C). Деление изотерм на отдельные типы внутри каждого класса связано с последующим изменением их формы при наиболее высоких концентрациях. Класс L (класс Ленгмюра) является наиболее общим. Изотермы типа L2 достигают насыщения, дальнейшая адсорбция выше этого уровня дает изотерму типа L3. Если достигается второе плато, то имеем дело с изотермой L4. Для изотерм типа L5 характерно наличие максимума. Максимум отражает изменение состояния вещества в растворе - например, ассоциацию молекул при определенной концентрации. Сходный, хотя и не столь полный, набор типов изотерм получен и для других классов.

Начальный участок изотерм S - класса выгнут относительно оси концентраций, однако далее часто следует точка перегиба, что и придает изотерме характерную S -обратную форму.

Изотермы класса Н (высокое сродство – higf) наблюдается при чрезвычайно сильной адсорбции при очень низких концентрациях; они пересекаются с осью ординат. Изотермы класса С (constant) имеют начальный линейный участок, что указывает на постоянное распределение растворенного вещества между раствором и адсорбентом (постоянная скорость адсорбции).

Теоретический анализ различных типов изотерм адсорбции позволяет получить много полезной информации о механизме адсорбции. При этом следует принимать во внимание величину энергии активации процесса удаления молекул адсорбата с поверхности адсорбента. Если взаимодействие между адсорбированными молекулами пренебрежимо мало, энергия активации не зависит от степени заполнения поверхности f a это приведет к изотерме типа L или Н.

Если сила взаимодействия между адсорбированными молекулами больше силы взаимодействия между растворенным веществом и адсорбентом, энергия активации возрастает и адсорбция описывается изотермой типа S. В этом случае молекулы растворенного вещества стремятся расположиться на поверхности в виде цепей.

Изотермы типа Н наблюдаются в тех случаях, когда имеет место хемосорбция.

Изотерма типа С характерна для адсорбции на микропористых адсорбентах и соответствует таким условиям, при которых число адсорбционных центров остается постоянным в широкой области концентраций. По мере заполнения одних центров появляются новые, и доступная для адсорбции поверхность увеличивается пропорционально количеству адсорбированного вещества.

) — повышение концентрации компонента в поверхностном слое вещества (на границе раздела фаз) по сравнению с ее значением в каждой объемной фазе.

Описание

Следует отличать адсорбцию от абсорбции, при которой вещество диффундирует в объем жидкости или и образует раствор или . Термин сорбция объединяет оба понятия. Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое - адсорбатом. В зависимости от характера взаимодействия между молекулой адсорбата и адсорбентом адсорбцию принято подразделять на (слабые взаимодействия) и (сильные взаимодействия). Четкой границы между физической адсорбцией и хемосорбцией не существует; в качестве граничного значения принята энергия связи между адсорбатом и адсорбентом, равная 0,5 эВ на атом или молекулу.

Процесс, обратный адсорбции, называется . Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы).

На практике адсорбция широко используется для концентрирования веществ, очистки газов и жидкостей от примесей. Адсорбционные методы анализа применяются для определения твердых веществ, оценки размера А нанесенных частиц (в том числе наноразмерных) на поверхности носителя и т. п.

Авторы

  • Саранин Александр Александрович
  • Смирнов Андрей Валентинович

Источники

  1. Адамсон А. Физическая химия поверхностей. - М.: Мир. 1979. - 568 с.
  2. Оура К., Лифшиц В. Г., Саранин А. А. и др. Введение в физику поверхности / Под ред. В. И. Сергиенко. - М.: Наука, 2006. - 490 с.
  3. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. - Новосибирск: Наука. 1999. - 470 с.
  4. Химическая энциклопедия. Т. 1. - М.: Советская энциклопедия, 1990. - 623 с.
  5. Полторак О.М. Термодинамика в физической химии. - М.: Высшая школа, 1991. - 319 с.