Метод молекулярных орбиталей для чайников. Основные положения метода молекулярных орбиталей. Основные положения ммо, мо

3.4. Метод молекулярных орбиталей

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО). Метод МО ЛКАО основан на следующих правилах.

1. При сближении атомов до расстояний химических связей из атомных орбиталей (АО) образуются молекулярные.

2. Число полученных молекулярных орбиталей равно числу исходных атомных.

3. Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей , а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей .

4. При перекрывании атомных орбиталей возможно образование и -связи (перекрывание по оси химической связи), и -связи (перекрывание по обе стороны от оси химической связи).

5. Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей . Ее энергия равна энергии исходной АО.

6. На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7. Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8. Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Применим метод МО ЛКАО и разберем строение молекулы водорода. Изобразим на двух параллельных диаграммах энергетические уровни атомных орбиталей исходных атомов водорода (рис. 3.5).

Видно, что имеется выигрыш в энергии по сравнению с несвязанными атомами. Свою энергию понизили оба электрона, что соответствует единице валентности в методе валентных связей (связь образуется парой электронов).
Метод МО ЛКАО позволяет наглядно объяснить образование ионов и , что вызывает трудности в методе валентных связей. На -связывающую молекулярную орбиталь катиона переходит один электрон атома H с выигрышем энергии (рис. 3.7).

В анионе на двух молекулярных орбиталях необходимо разместить уже три электрона (рис. 3.8).

Если два электрона, опустившись на связывающую орбиталь, дают выигрыш в энергии, то третьему электрону приходится повысить свою энергию. Однако энергия, выигранная двумя электронами, больше, чем проигранная одним. Такая частица может существовать.
Известно, что щелочные металлы в газообразном состоянии существуют в виде двухатомных молекул. Попробуем убедиться в возможности существования двухатомной молекулы Li 2 , используя метод МО ЛКАО. Исходный атом лития содержит электроны на двух энергетических уровнях – первом и втором (1s и 2s ) (рис. 3.9).

Перекрывание одинаковых 1s -орбиталей атомов лития даст две молекулярные орбитали (связывающую и разрыхляющую), которые согласно принципу минимума энергии будут полностью заселены четырьмя электронами. Выигрыш в энергии, получаемый в результате перехода двух электронов на связывающую молекулярную орбиталь, не способен компенсировать ее потери при переходе двух других электронов на разрыхляющую молекулярную орбиталь. Вот почему вклад в образование химической связи между атомами лития вносят лишь электроны внешнего (валентного) электронного слоя.
Перекрывание валентных 2s -орбиталей атомов лития приведет также к образованию одной
-связывающей и одной разрыхляющей молекулярных орбиталей. Два внешних электрона займут связывающую орбиталь, обеспечивая общий выигрыш в энергии (кратность связи равна 1).
Используя метод МО ЛКАО, рассмотрим возможность образования молекулы He 2 (рис. 3.10).

В этом случае два электрона займут связывающую молекулярную орбиталь, а два других – разрыхляющую. Выигрыша в энергии такое заселение двух орбиталей электронами не принесет. Следовательно, молекулы He 2 не существует.
Методом МО ЛКАО легко продемонстрировать парамагнитные свойства молекулы кислорода. С тем чтобы не загромождать рисунок, не будем рассматривать перекрывание 1s -орбиталей атомов кислорода первого (внутреннего) электронного слоя. Учтем, что p -орбитали второго (внешнего) электронного слоя могут перекрываться двумя способами. Одна из них перекроется с аналогичной с образованием -связи (рис. 3.11).

Две других p -АО перекроются по обе стороны от оси x с образованием двух -связей (рис. 3.12).

Энергии сконструированных молекулярных орбиталей могут быть определены по данным спектров поглощения веществ в ультрафиолетовой области. Так, среди молекулярных орбиталей молекулы кислорода, образовавшихся в результате перекрывания p -АО, две -связывающие вырожденные (с одинаковой энергией) орбитали обладают меньшей энергией, чем -связывающая, впрочем, как и *-разрыхляющие орбитали обладают меньшей энергией в сравнении с *-разрыхляющей орбиталью (рис. 3.13).

В молекуле O 2 два электрона с параллельными спинами оказались на двух вырожденных (с одинаковой энергией) *-разрыхляющих молекулярных орбиталях. Именно наличием неспаренных электронов и обусловлены парамагнитные свойства молекулы кислорода, которые станут заметными, если охладить кислород до жидкого состояния.
Среди двухатомных молекул одной из наиболее прочных является молекула CO. Метод МО ЛКАО легко позволяет объяснить этот факт (рис. 3.14, см. с. 18 ).

Результатом перекрывания p -орбиталей атомов O и C является образование двух вырожденных
-связывающих и одной -связывающей орбитали. Эти молекулярные орбитали займут шесть электронов. Следовательно, кратность связи равна трем.
Метод МО ЛКАО можно использовать не только для двухатомных молекул, но и для многоатомных. Разберем в качестве примера в рамках данного метода строение молекулы аммиака (рис. 3.15).

Поскольку три атома водорода имеют только три 1s -орбитали, то суммарное число образованных молекулярных орбиталей будет равно шести (три связывающих и три разрыхляющих). Два электрона атома азота окажутся на несвязывающей молекулярной орбитали (неподеленная электронная пара).

3.5. Геометрические формы молекул

Когда говорят о формах молекул, прежде всего имеют в виду взаимное расположение в пространстве ядер атомов. О форме молекулы имеет смысл говорить, когда молекула состоит из трех и более атомов (два ядра всегда находятся на одной прямой). Форма молекул определяется на основе теории отталкивания валентных (внешних) электронных пар. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально (принцип минимума энергии). При этом необходимо иметь в виду следующие утверждения теории отталкивания.

1. Наибольшее отталкивание претерпевают неподеленные электронные пары.
2. Несколько меньше отталкивание между неподеленной парой и парой, участвующей в образовании связи.
3. Наименьшее отталкивание между электронными парами, участвующими в образовании связи. Но и этого бывает недостаточно, чтобы развести ядра атомов, участвующих в образовании химических связей, на максимальный угол.

В качестве примера рассмотрим формы водородных соединений элементов второго периода: BeH 2 , BH 3 , CH 4 , C 2 H 4 , C 2 H 2 , NH 3 , H 2 O.
Начнем с определения формы молекулы BeH 2 . Изобразим ее электронную формулу:

из которой ясно, что в молекуле отсутствуют неподеленные электронные пары. Следовательно, для электронных пар, связывающих атомы, есть возможность оттолкнуться на максимальное расстояние, при котором все три атома находятся на одной прямой, т.е. угол HBeH составляет 180°.
Молекула BH 3 состоит из четырех атомов. Согласно ее электронной формуле в ней отсутствуют неподеленные пары электронов:

Молекула приобретет такую форму, при которой расстояние между всеми связями максимально, а угол между ними равен 120°. Все четыре атома окажутся в одной плоскости – молекула плоская:

Электронная формула молекулы метана выглядит следующим образом:

Все атомы данной молекулы не могут оказаться в одной плоскости. В таком случае угол между связями равнялся бы 90°. Есть более оптимальное (с энергетической точки зрения) размещение атомов – тетраэдрическое. Угол между связями в этом случае равен 109°28".
Электронная формула этена имеет вид:

Естественно, все углы между химическими связями принимают максимальное значение – 120°.
Очевидно, что в молекуле ацетилена все атомы должны находиться на одной прямой:

H:C:::C:H.

Отличие молекулы аммиака NH 3 от всех предшествующих состоит в наличии в ней неподеленной пары электронов у атома азота:

Как уже указывалось, от неподеленной электронной пары более сильно отталкиваются электронные пары, участвующие в образовании связи. Неподеленная пара располагается симметрично относительно атомов водорода в молекуле аммиака:

Угол HNH меньше, чем угол HCH в молекуле метана (вследствие более сильного электронного отталкивания).
В молекуле воды неподеленных пар уже две:

Этим обусловлена уголковая форма молекулы:

Как следствие более сильного отталкивания неподеленных электронных пар, угол HOH еще меньше, чем угол HNH в молекуле аммиака.
Приведенные примеры достаточно наглядно демонстрируют возможности теории отталкивания валентных электронных пар. Она позволяет сравнительно легко предсказывать формы многих как неорганических, так и органических молекул.

3.6. Упражнения

1 . Какие виды связей можно отнести к химическим?
2. Какие два основных подхода к рассмотрению химической связи вам известны? В чем состоит их отличие?
3. Дайте определение валентности и степени окисления.
4. В чем состоят отличия простой ковалентной, донорно-акцепторной, дативной, металлической, ионной связей?
5. Как классифицируют межмолекулярные связи?
6. Что такое электроотрицательность? Из каких данных электроотрицательность рассчитывается? О чем электроотрицательности атомов, образующих химическую связь, позволяют судить? Как изменяется электроотрицательность атомов элементов при продвижении в периодической таблице Д.И.Менделеева сверху вниз и слева направо?
7. Какими правилами необходимо руководствоваться при рассмотрении строения молекул методом МО ЛКАО?
8. Используя метод валентных связей, объясните строение водородных соединений элементов
2-го периода.
9. Энергия диссоциации в ряду молекул Cl 2 , Br 2 , I 2 уменьшается (239 кДж/моль, 192 кДж/моль, 149 кДж/моль соответственно), однако энергия диссоциации молекулы F 2 (151 кДж/моль) значительно меньше, чем энергия диссоциации молекулы Cl 2 , и выпадает из общей закономерности. Объясните приведенные факты.
10. Почему при обычных условиях CO 2 – газ, а SiO 2 – твердое вещество, H 2 O – жидкость,
а H 2 S – газ? Попробуйте объяснить агрегатное состояние веществ.
11. Используя метод МО ЛКАО, объясните возникновение и особенности химической связи в молекулах B 2 , C 2 , N 2 , F 2 , LiH, CH 4 .
12. Используя теорию отталкивания валентных электронных пар, определите формы молекул кислородных соединений элементов 2-го периода.


При использовании метода молекулярных орбиталей считается, в отличие от метода валентных связей, что каждый электрон находится в поле всех ядер. При этом связь не обязательно образована парой электронов. Например, ион Н 2 + состоит из двух протонов и одного электрона. Между двумя протонами действуют силы отталкивания (рис. 30), между каждым из протонов и электроном - силы притяжения. Химическая частица образуется лишь в том случае, если взаимное отталкивание протонов компенсируется их притяжением к электрону. Это возможно, если электрон расположен между ядрами - в области связывания (рис. 31). В противном случае силы отталкивания не компенсируются силами притяжения - говорят, что электрон находится в области антисвязывания, или разрыхления.

Двухцентровые молекулярные орбитали

В методе молекулярных орбиталей для описания распределения электронной плотности в молекуле используется представление о молекулярной орбитали (подобно атомной орбитали для атома). Молекулярные орбитали - волновые функции электрона в молекуле или другой многоатомной химической частице. Каждая молекулярная орбиталь (МО), как и атомная орбиталь (АО), может быть занята одним или двумя электронами. Состояние электрона в области связывания описывает связывающая молекулярная орбиталь, в области разрыхления - разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит по тем же правилам, что и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали образуются при определенных комбинациях атомных орбиталей. Их число, энергию и форму можно вывести исходя из числа, энергии и формы орбителей атомов, составляющих молекулу.

В общем случае, волновые функции, отвечающие молекулярным орбиталям в двухатомной молекуле, представляют как сумму и разность волновых функций атомных орбитале, умноженных на некоторые постоянные коэффициенты, учитывающие долю атомных орбиталей каждого атома в образовании молекулярных орбиталей (они зависят от электроотрицательности атомов):

φ(АВ) = с 1 ψ(А) ± с 2 ψ(В)

Этот метод вычисления одноэлектронной волновой функции называют "молекулярные орбитали в приближении линейной комбинации атомных орбиталей" (МО ЛКАО).

Так, при образовании иона Н 2 + или молекулы водорода Н 2 из двух s -орбиталей атомов водорода формируются две молекулярные орбитали. Одна из них связывающая (ее обозначают σ св), другая - разрыхляющая (σ*).

Энергии связывающих орбиталей ниже, чем энергии атомных орбиталей, использованных для их образования. Электроны, заселяющие связывающие молекулярные орбитали, находятся преимущественно в пространстве между связываемыми атомами, т.е. в так называемой области связывания. Энергии разрыхляющих орбиталей выше, чем энергии исходных атомных орбиталей. Заселение разрыхляющих молекулярных орбиталей электронами способствует ослаблению связи: уменьшению ее энергии и увеличению расстояния между атомами в молекуле. Электроны молекулы водорода, ставшие общими для обоих связываемых атомов, занимают связывающую орбиталь.


Комбинация р -орбиталей приводит к двум типам молекулярных орбиталей. Из двух р -орбиталей взаимодействующих атомов, направленных вдоль линии связи, образуются связывающая σ св - и разрыхляющая σ*-орбитали. Комбинации р -орбиталей, перпендикулярных линий связи, дают две связывающих π- и две разрыхляющих π*-орбитали. Используя при заселении электронами молекулярных орбиталей те же правила, что при заполнении атомных орбиталей в изолированных атомах, можно определить электронное строение двухатомных молекул, например O 2 и N 2 (рис. 35).

Из распределения электронов по молекулярным орбиталям можно рассчитать порядок связи (ω). Из числа электронов, расположенных на связывающих орбиталях, вычитают число электронов, находящихся на разрыхляющих орбиталях, и результат делят на 2n (в расчете на n связей):

ω = / 2 n

Из энергетической диаграммы видно, что для молекулы Н 2 ω = 1.

Метод молекулярных орбиталей дает те же значения порядка химической связи, что и метод валентных связей, для молекул О 2 (двойная связь) и N 2 (тройная связь). В то же время он допускает нецелочисленные значения порядка связи. Это наблюдается, например, при образование двухцентровой связи одним электроном (в ионе Н 2 +). В этом случае ω = 0,5. Величина порядка связи прямо влияет на ее прочность. Чем выше порядок связи, тем больше энергия связи и меньше ее длина:

Закономерности в изменениях порядка, энергии и длины связи можно проследить на примерах молекулы и молекулярных ионов кислорода.


Комбинация орбиталей двух разных атомов с образованием молекулы возможно только при близости их энергий, при этом атомные орбитали атома большей электроотрицательности на энергетической диаграмме всегда располагаются ниже.

Например, при образовании молекулы фтороводорода невозможна комбинация 1s -АО атома водорода и 1s -АО или 2s -АО атома фтора, так как они сильно различаются по энергии. Ближе всего по энергии 1s -АО атома водорода и 2p -АО атома фтора. Комбинация этих орбиталей вызывает появление двух молекулярных орбиталей: связывающая σ св и разрыхляющая σ*.

Оставшиеся 2р -орбитали атома фтора не могут комбинироваться с 1s -АО атома водорода, так как они имеют разную симметрию относительно межъядерной оси. Они образуют несвязывающие π 0 -МО, имеющие такую же энергию, что и исходные 2р -орбитали атома фтора.

Не участвующие в ЛКАО s -орбитали атома фтора образуют несвязывающие σ 0 -МО. Заселение электронами несвязывающих орбиталей не способствуют и не препятствуют образованию связи в молекуле. При расчете порядка связи их вклад не учитывается.

Многоцентровые молекулярные орбитали

В многоцентровых молекулах молекулярные орбитали являются многоцентровыми, так они представляют собой линейную комбинацию орбиталей всех атомов, участвующих в образовании связей. В общем случае молекулярные орбитали не локализованы, то есть электронная плотность, отвечающая каждой орбитали, более или менее равномерно распределена по всему объему молекулы. Однако с помощью математических преобразований можно получить локализованные молекулярные орбитали определенной формы, соответствующие отдельным двух- или трехцентровым связям или неподеленным электронам.

Простейшим примером трехцентровой связи служит молекулярный ион Н 3 + . Из трех s -орбиталей атомов водорода образуются три молекулярные орбитали: связывающая, несвязывающая и разрыхляющая. Пара электронов заселяет связывающую орбиталь. Образующаяся связь является двухэлектронной трехцентровой; порядок связи равен 0,5.


Химические частицы, содержащие неспаренные электроны, обладают парамагнитными свойствами (в отличие от диамагнитных свойств химических частиц, все электроны в которых спарены). Парамагнетиками являются все вещества, состоящие из химических частицы с нечетным числом электроном, например NO. Метод молекулярных орбиталей позволяет выявить парамагнетики среди веществ, состоящих из химических частиц с четным числом электронов, например О 2 , в молекуле которого два неспаренных электрона находятся на двух разрыхляющих π*-орбиталях.

Химические частицы с неспаренными электронами на внешних орбиталях называют свободными радикалами. Они обладают парамагнетизмом и высокой реакционной способностью. Неорганические радикалы с локализованными неспаренными электронами, например . Н, . NН 2 , обычно являются короткоживущими. Они образуются при фотолизе, радиолизе, пиролизе, электролизе. Для их стабилизации используют низкие температуры. Короткоживущие радикалы - промежуточные частицы во многих реакциях.

Метод молекулярных орбиталей основан на предположении, что электроны в молекуле расположены на молекулярных орбиталях, аналогично атомным орбиталям в изолированном атоме . Каждой молекулярной орбитали соответствует определенный набор молекуляр-ных квантовых чисел. Для молекулярных орбиталей сохраняет справед-ливость принцип Паули, т.е. каждой молекулярной орбитали может находиться не более двух электронов с антипараллельными спинами.

В общем случае, в многоатомной молекуле электронное облако принадлежит одновременно всем атомам, т.е. участвует в образовании многоцентровой химической связи. Таким образом, все электроны в молекуле принадлежат одновременно всей молекуле, а не являются собственностью двух связанных атомов . Следовательно, молекула рассматривается как единое целое, а не как некая совокупность индивидуальных атомов .

В молекуле, как и в любой системе из ядер и электронов, состояние электрона на молекулярных орбиталях должно описываться соответствую-щей волновой функцией. В наиболее распространенном варианте метода молекулярных орбиталей волновые функции электронов находят, представляя молекулярную орбиталь как линейную комбинацию атомных орбиталей (сам вариант получил сокращенное наименование «МОЛКАО»).

В методе МОЛКАО полагают, что волновая функция y , отвечаю-щая молекулярной орбитали, может быть представлена в виде суммы:

y = с 1 y 1 + с 2 y 2 + ¼ + с n y n

где y i – волновые функции, характеризующие орбитали взаимо-действующих атомов;

с i – числовые коэффициенты, введение которых необходимо потому, что вклад различных атомных орбиталей в суммарную мо- лекулярную орбиталь может быть различным.

Поскольку квадрат волновой функции отражает вероятность нахождения электрона в какой-либо точке пространства между взаимодействующими атомами, представляет интерес выяснить, какой вид должна иметь молекулярная волновая функция. Проще всего решить этот вопрос в случае комбинации волновых функций 1s-орбиталей двух одинаковых атомов:

y = с 1 y 1 + с 2 y 2

Поскольку для одинаковых атомов с 1 = с 2 = с, следует рассмотреть сумму

y = с 1 (y 1 + y 2)

Постоянная с влияет только на величину амплитуды функции, следовательно, для нахождения формы орбитали достаточно выяснить, что будет представлять собой сумма y 1 и y 2 .

Расположив ядра двух взаимодействующих атомов на расстоянии, равном длине связи, и изобразив волновые функции 1s-орбиталей, произведем их сложение. При этом оказывается, что в зависимости от знаков волновых функций, их сложение дает различные результаты. В случае сложения функций с одинаковыми знаками (рис. 4.15, а) значения y в межъядерном пространстве больше, чем значения y 1 и y 2 . В противоположном случае (рис. 4.15, б) суммарная молекулярная орбиталь характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с волновыми функциями исход-ных атомов.

y 2
y 1



Рис. 4.15. Схема сложения атомных орбиталей при образовании

связывающей (а) и разрыхляющей (б) МО

Поскольку квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т.е. плотность электронного облака, это означает, что в первом варианте сложения волновых функций плотность электронного облака в межъядерном пространстве увеличивается, а во втором – уменьшается.

Таким образом, сложение волновых функций с одинаковыми знаками приводит к возникновению сил притяжения положительно заряженных ядер к отрицательно заряженной межъядерной области и образованию химической связи. Такая молекулярная орбиталь называется связывающей , а электроны, находящиеся на ней - связывающими электронами .

В случае сложения волновых функций разных знаков притяжение каждого ядра в направлении межъядерной области ослабевает, и преобладают силы отталкивания - химическая связь не укрепляется, а образовавшаяся молекулярная орбиталь называется разрыхляющей (электроны, на ней расположенные – разрыхляющими электронами ).

Аналогично атомным s-, p-, d-, f- орбиталям, МО обозначают s- , p- , d- , j- орбитали . Возникающие при взаимодействии двух 1s-орбиталей молекулярные орбитали обозначают: s -связывающая и s (со звездочкой) - разрыхляющая . При взаимодействии двух атомных орбиталей всегда образуются две молекулярные - связывающая и разрыхляющая.

Переход электрона с атомной 1s- орбитали на s - орбиталь, приводящий к образованию химической связи, сопровождается выделением энергии. Переход электрона с 1s-орбитали на s -орбиталь требует затраты энергии. Следовательно, энергия s -связывающей орбитали ниже, а s -разрых-ляющей – выше, чем энергия исходных атомных 1s-орбиталей, что принято изображать в виде соответствующих диаграмм (рис. 4.16).

АО МО АО

Рис. 4.16. Энергетическая диаграмма образования МО молекулы водорода

Наряду с энергетическими диаграммами образования молекулярных орбиталей, интересен внешний вид молекулярных облаков, полученных путем перекрывания или отталкивания орбиталей взаимодействующих атомов.

Здесь следует учесть, что взаимодействовать могут не любые орбитали, а лишь удовлетворяющие определенным требованиям.

1. Энергии исходных атомных орбиталей не должны сильно отличаться друг от друга – они должны быть соизмеримы по величине.

2. Атомные орбитали должны обладать одинаковыми свойствами симметрии относительно оси молекулы.

Последнее требование приводит к тому, что могут комбинировать между собой, например, s – s (рис. 4.17, а), s – p x (рис. 4.17, б), р х – р х, но не могут s – p y , s – p z (рис. 4.17, в), т.к. в первых трех случаях обе орбитали при повороте вокруг межъядерной оси не меняют (рис. 3.17 а,б), а в последних случаях – изменяют знак (рис. 4.17, в). Это приводит, в последних случаях к взаимному вычитанию образующихся областей перекрывания, и оно не происходит.

3. Электронные облака взаимодействующих атомов должны максимально перекрываться. Это означает, например, что невозможно комбинирование p x – p y , p x – p z или p y – p z орбиталей, не имеющих областей перекрывания.


(а) (б) (в)

Рис. 4.17. Влияние симметрии атомных орбиталей на возможность

образования молекулярных орбиталей: МО образуются (а, б),

не образуются (в)

В случае взаимодействия двух s-орбиталей образующиеся s - и s -орбитали выглядят следующим образом (рис. 3.18)

1s
s 1
1s

+

Рис. 4.18. Схема комбинирования двух 1s-орбиталей

Взаимодействие двух p x -орбиталей также дает s-связь, т.к. возникающая связь направлена вдоль прямой, соединяющей центры атомов. Возникающие молекулярные орбитали обозначают соответст-венно s и s , схема их образования представлена на рис. 4.19.



Рис. 4.19. Схема комбинирования двух p x -орбиталей

При комбинации р у – р у или р z – p z -орбиталей (рис. 4.20) s-орбитали образоваться не могут, т.к. области возможного перекрывания орбиталей не расположены на прямой, соединяющей центры атомов. В этих случаях образуются вырожденные p у - и p z -, а также p - и p - орбитали (термин «вырожденные» обозначают в данном случае «одинаковые по форме и энергии»).

Рис. 4.20. Схема комбинирования двух p z -орбиталей

При расчетах молекулярных орбиталей многоатомных систем могут, кроме того, появиться энергетические уровни, лежащие посередине между связывающими и разрыхляющими молекулярными орбиталями . Такие МО называют несвязывающими .

Как и в атомах, электроны в молекулах стремятся занять молекулярные орбитали, отвечающие минимальной энергии. Так, в молекуле водорода оба электрона перейдут с 1s-орбитали на связывающую s 1 s -орбиталь (рис. 4.14), что можно изобразить формульной записью:

Как и атомные, молекулярные орбитали могут вмещать не более двух электронов.

Метод МО ЛКАО не оперирует понятием валентности, но вводит термин «порядок», или «кратность связи».

Порядок связи (Р) равен частному от деления разности числа связывающих и разрыхляющих электронов на число взаимодействующих атомов, т.е. в случае двухатомных молекул половине этой разности . Порядок связи может принимать целочисленные и дробные значения, в том числе и нуль (если порядок связи равен нулю, система неустойчива, и химическая связь не возникает).

Следовательно, с позиции метода МО, химическую связь в молекуле H 2 , образованную двумя связывающими электронами, следует рассматри-вать как одинарную связь, что соответствует и методу валентных связей.

Понятно, с точки зрения метода МО, и существование устойчивого молекулярного иона H . В этом случае единственный электрон переходит с атомной 1s-орбитали на молекулярную s 1 S -орбиталь, что сопровождает-ся выделением энергии и образованием химической связи с кратностью 0,5.

В случаях молекулярных ионов H и He (содержащих три электрона) третий электрон помещается уже на разрыхляющую s -орбиталь (например, He (s 1 S) 2 (s ) 1), и порядок связи в таких ионах согласно определению 0,5. Такие ионы существуют, но связь в них слабее, чем в молекуле водорода.

Поскольку в гипотетической молекуле Не 2 должно быть 4 электрона, они могут расположиться только по 2 на s 1 S - связывающей и s - разрыхляющей орбиталях, т.е. порядок связи равен нулю, и двухатомных молекул гелия, как и других благородных газов, не существует. Аналогично не могут образовываться молекулы Be 2 , Ca 2 , Mg 2 , Ba 2 и т.д.

Таким образом, с точки зрения метода молекулярных орбиталей из двух взаимодействующих атомных орбиталей образуются две молекуляр-ные: связывающая и разрыхляющая. Для АО с главными квантовыми числами 1 и 2 возможно образование МО, представленных в табл. 4.4.

ХИМИЧЕСКАЯ СВЯЗЬ

МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ.

Метод молекулярных орбиталей (МО) является наиболее универсальным широко применяемым методом описания природы химической связи. Этот метоп базируется на последних достижениях в области квантовой механики и требует привлечения сложного математического аппарата. В настоящем разделе рассматриваются основные качественные выводы о природе и свойствах химической связи.

3.1. Основные задачи.

Метод МО позволяет описывать важнейшие свойства молекулярных систем:

1. Принципиальную возможность образования молекулярных систем.

2. Насыщаемость химической связи и состав молекул.

3. Энергетическую устойчивость молекул и (соответствующих молекулярных ионов) прочность химической связи.

4. Распределение электронной плотности и полярность химических связей.

5. Донорно-акцепторные свойства молекулярных систем.

3.2. Основные положения метода.

Основные положения метода молекулярных орбиталей заключается в следующем:

1. Все электроны принадлежат молекуле в целом и перемещаются в поле ее ядер и электронов.

2. В пространстве между ядрами создается повышенная электронная плотность вследствие квантово-механического эффекта обменного взаимодействия всех обобществленных (делокализованных) электронов. Отметим, что в действительности основной вклад вносят делокализованные валентные электроны атомов.

3. Образование химической связи рассматривается, как переход электронов с атомных орбиталей на молекулярные обитали, охватывающие все ядра, с выигрышем энергии. Если переход на молекулярные орбитали связан с зажатой энергии, то молекула не образуется.

4. Решение задачи сводится к нахождению возможных МО, распределению на них электронов в соответствии с квантово-механическими принципами (принцип минимума, энергии, запрет Паули, правило Гунда) и заключению по свойствам образующейся (или нет) молекулярной системы.

Молекулярные орбитали получаются при комбинировании атомных орбиталей (АО) отсюда название методом МО ЛКАО (МО-линейная комбинация атомных орбиталей).

  1. Правила описания молекул

Правила нахождения МО из АО и вывод о возможности образования молекул заключаются в следующем:

1. Взаимодействуют между собой только АО наиболее близкие по энергии (обычно с разницей не более 12 эВ) 1 .

Необходимый рассматриваемый набор взаимодействующих АО (базисный набор атомных орбиталей) для s- и p-элементов 2 периода включает валентные 2s- и 2p- АО. Именно такой базис АО позволяет заключить о выигрыше энергии при переходе электронов на МО.

Для s- и p-элементов 3 периода во многих случаях оказывается достаточным ограничиться 3s- и 3p- базисом АО, вследствие относительно большой разницы в энергиях 3p- и 3d- состояния.

2. Число молекулярных орбиталей равно числу атомных орбиталей, из которых они образованы. Причём необходимо, в пространстве между ядрами АО перекрывались и имели одинаковую симметрию относительно оси связи (ось x совпадает с осью связи). Молекулярные орбитали, имеющие более низкую энергию (энергетически более выгодное состояние), чем комбинируемые АО, называются связывающими, а более высокую энергию (энергетически менее выгодное состояние) - разрыхляющими. Если энергия МО равна энергии комбинируемой АО, то такая МО называется несвязывающей.

Например, атомы 2 периода азот и фтор имеют 4 базисных АО: одну 2s- три 2p- АО. Тогда двухатомная молекула, образованная двумя одинаковыми атомами элементов 2 периода (N 2 , F 2) имеет восемь МО. Из них 4 орбитали  - типа по симметрии относительно оси связи ( S ,  P - связывающие и разрыхляющие s * , p * и 4 орбитали  - типа по симметрии относительно оси связи ( y и  Z - связывающие и разрыхляющие и ).

3. Образование МО и распределение электронов представляется с помощью энергетических диаграмм. Горизонтальные линии по краям диаграмм соответствуют энергии каждой из АО отдельного атома, середине - энергиям соответствующих МО. Энергии базисных АО ns и np - элементов 1,2,3 периодов представлены в таблице 1.

Энергетическая диаграмма для молекулы кислорода О 2 представлена на рисунке 1.

При построении энергетических диаграмм следует учитывать взаимное влияние близких по энергиям МО. Если разница энергий комбинируемых АО данного атома мала (менее 12 эВ) и они имеют сходную симметрию относительно оси связи, например 2s- и 2p - АО от лития до азота, то наблюдается дополнительное, т.е. конфигурационное взаимодействие МО. Такое взаимодействие приводит к тому, что на энергетической диаграмме связывающие

 P - МО располагаются выше, чем связывающие - и - МО, например, для двухатомных молекул от Li 2 до N 2 .

4. В соответствии с методом МО молекулярная система может образоваться, если число электронов на связывающих МО превышает число электронов на разрыхляющих МО. Т.е. осуществляется выигрыш в энергии по сравнению с изолированным состоянием частиц. Порядок связи (ПС) в двухатомной частице, определяемый как полуразность числа связывающих и разрыхляющих электронов, должен быть больше нуля. Так, ПС = 2 для молекулы кислорода O 2 .

Наличие в молекулах электронов на несвязывающих МО не изменяет ПС, но приводит к некоторому ослаблению энергии связи за счет усиления межэлектронного отталкивания. Указывает на повышенную реакционную способность молекулы, на тенденцию перехода несвязывающих электронов на связывающие МО.

1. В результате линейной комбинации две атомные орбитали (АО) формируют две молекулярные орбитали (МО) – связывающую, энергия которой ниже, чем энергия АО, и разрыхляющую, энергия которой выше энергии АО

2. Электроны в молекуле располагаются на молекулярных орбиталях в соответствии с принципом Паули и правилом Хунда.

3. Отрицательный вклад в энергию химической связи электрона, находящегося на разрыхляющей орбитали больше, чем положительный вклад в эту энергию электрона на связывающей МО.

4. Кратность связи в молекуле равна деленной на два разности числа электронов, находящихся на связывающих и разрыхляющих МО.

5. С повышением кратности связи в однотипных молекулах увеличивается ее энергия связи и уменьшается ее длина.

Если при образовании молекулы из атомов электрон займет связывающую МО, то полная энергия системы понизится, т.е. образуется химическая связь. При переходе электрона на разрыхляющую МО энергия системы повысится, система станет менее устойчивой (рис. 9.1).

Рис. 9.1. Энергетическая диаграмма образования молекулярных орбиталей из двух атомных орбиталей

Молекулярные орбитали, образованные из s-атомных орбиталей, обозначаются s s . Если МО образованы р z -атомными орбиталями – они обозначаются s z . Молекулярные орбитали, образованные р x - и р y -атомными орбиталями, обозначаются p x и p y соответственно.

При заполнении молекулярных орбиталей электронами следует руководствоваться следующими принципами:

    1. Каждой МО отвечает определенная энергия. Молекулярные орбитали заполняются в порядке увеличения энергии.

    2. На одной молекулярной орбитали может находиться не более двух электронов с противоположными спинами.

    3. Заполнение молекулярных квантовых ячеек происходит в соответствии с правилом Хунда.

Экспериментальное исследование (изучение молекулярных спектров) показало, что энергия молекулярных орбиталей возрастает в следующей последовательности :

s 1s < s *1s < s 2s

Звездочкой (* ) в этом ряду отмечены разрыхляющие молекулярные орбитали.

У атомов В, С и N энергии 2s- и 2p-электронов близки и переход 2s-электрона на молекулярную орбиталь s 2p z требует затраты энергии. Следовательно, для молекул В 2 , С 2 , N 2 энергия орбитали s 2p z становится выше энергии орбиталей p 2р х и p 2р у :

s 1s < s *1s < s 2s < s *2s < p 2р х = p 2р у < s  2p z < p *2р х = p *2р у < s *2p z.

При образовании молекулы электроны располагаются на орбиталях с более низкой энергией. При построении МО обычно ограничиваются использованием валентных АО (орбиталей внешнего слоя), так как именно они вносят основной вклад в образование химической связи.

Электронное строение гомоядерных двухатомных молекул и ионов

Процесс образования частицы H 2 +

Н + Н + H 2 + .

Таким образом, на связывающей молекулярной s -орбитали располагается один электрон.

Кратность связи равна полуразности числа электронов на связывающих и разрыхляющих орбиталях. Значит, кратность связи в частице H 2 + равна (1 – 0):2 = 0,5. Метод ВС, в отличие от метода МО, не объясняет возможность образования связи одним электроном.

Молекула водорода имеет следующую электронную конфигурацию:

H 2 [(s 1s) 2 ].

В молекуле H 2 имеется два связывающих электрона, значит, связь в молекуле одинарная.

Молекулярный ион H 2 - имеет электронную конфигурацию:

H 2 - [(s 1s) 2 (s *1s) 1 ].

Кратность связи в H 2 - составляет (2 – 1):2 = 0,5.

Рассмотрим теперь гомоядерные молекулы и ионы второго периода.

Электронная конфигурация молекулы Li 2 следующая:

2Li (K2s) Li 2 .

Молекула Li 2 содержит два связывающих электрона, что соответствует одинарной связи.

Процесс образования молекулы Ве 2 можно представить следующим образом:

2 Ве (K2s 2) Ве 2 .

Число связывающих и разрыхляющих электронов в молекуле Ве 2 одинаково, а поскольку один разрыхляющий электрон уничтожает действие одного связывающего, то молекула Ве 2 в основном состоянии не обнаружена.

В молекуле азота на орбиталях располагаются 10 валентных электронов. Электронное строение молекулы N 2:

N 2 .

Поскольку в молекуле N 2 восемь связывающих и два разрыхляющих электрона, то в данной молекуле имеется тройная связь. Молекула азота обладает диамагнитными свойствами, поскольку не содержит неспаренных электронов.

На орбиталях молекулы O 2 распределены 12 валентных электронов, следовательно, эта молекула имеет конфигурацию:

O 2 .

Рис. 9.2. Схема образования молекулярных орбиталей в молекуле О 2 (показаны только 2р-электроны атомов кислорода)

В молекуле O 2 , в соответствии с правилом Хунда, два электрона с параллельными спинами размещаются по одному на двух орбиталях с одинаковой энергией (рис. 9.2). Молекула кислорода по методу ВС не имеет неспаренных электронов и должна обладать диамагнитными свойствами, что не согласуется с экспериментальными данными. Метод молекулярных орбиталей подтверждает парамагнитные свойства кислорода, которые обусловлены наличием в молекуле кислорода двух неспаренных электронов. Кратность связи в молекуле кислорода равна (8–4):2 = 2.

Рассмотрим электронное строение ионов O 2 + и O 2 - . В ионе O 2 + на его орбиталях размещаются 11 электронов, следовательно, конфигурация иона следующая:

O 2 +

O 2 + .

Кратность связи в ионе О 2 + равна (8–3):2 = 2,5. В ионе O 2 - на его орбиталях распределены 13 электронов. Этот ион имеет следующее строение:

O 2 -

O 2 - .

Кратность связи в ионе О 2 - равна (8 – 5):2 = 1,5. Ионы О 2 - и О 2 + являются парамагнитными, так как содержат неспаренные электроны.

Электронная конфигурация молекулы F 2 имеет вид:

F 2 .

Кратность связи в молекуле F 2 равна 1, так как имеется избыток двух связывающих электронов. Поскольку в молекуле нет неспаренных электронов, она диамагнитна.

В ряду N 2 , O 2 , F 2 энергии и длины связей в молекулах составляют:

Увеличение избытка связывающих электронов приводит к росту энергии связи (прочности связи). При переходе от N 2 к F 2 длина связи возрастает, что обусловлено ослаблением связи.

В ряду О 2 - , О 2 , О 2 + кратность связи увеличивается, энергия связи также повышается, длина связи уменьшается.

Электронное строение гетероядерных молекул и ионов

Изоэлектронными

частицами называют частицы, содержащие одинаковое число электронов. Например, к изоэлектронным частицам относятся N 2 , CO, BF, NO + , CN- .

Согласно методу МО электронное строение молекулы СО аналогично строению молекулы N 2:

На орбиталях молекулы СО располагаются 10 электронов (4 валентных электрона атома углерода и 6 валентных электронов атома кислорода). В молекуле СО, как и в молекуле N 2 , связь тройная. Сходство в электронном строении молекул N 2 и СО обуславливает близость физических свойств этих веществ.

В молекуле NO на орбиталях распределены 11 электронов (5 электронов атома азота и 6 электронов атома кислорода), следовательно, электронная конфигурация молекулы такова:

NO или

Кратность связи в молекуле NO равна (8–3):2 = 2,5.

Конфигурация молекулярных орбиталей в ионе NO - :

NO -

Кратность связи в этой молекуле равна (8–4):2 = 2.

Ион NO + имеет следующее электронное строение:

NO + .

Избыток связывающих электронов в этой частице равен 6, следовательно, кратность связи в ионе NO + равна трём.

В ряду NO - , NO, NO + избыток связывающих электронов увеличивается, что приводит к возрастанию прочности связи и уменьшению её длины.

Задачи для самостоятельного решения

9.1. Используя метод МО, установите порядок уменьшения энергии химической связи в частицах:
NF + ; NF - ; NF.


9.3. На основе метода МО установите, какие из перечисленных частиц не существуют:
He 2 ; He 2 + ; Be 2 ; Be 2 + .


9.4. Распределить электроны на молекулярных орбиталях для молекулы B 2 . Определить кратность связи.


9.5. Распределить электроны на молекулярных орбиталях для молекулы N 2 . Определить кратность связи. N 2 ;
N 2 - .
Кратность связи в N 2 составляет (8–2):2=3;
Кратность связи в N 2 - составляет (8–3):2=2,5.
Уменьшение энергии связи при переходе от нейтральной молекулы N 2 к иону N 2 -
связано с уменьшением кратности связи.


9.9. Распределить электроны на молекулярных орбиталях для иона CN

- . Определить кратность связи в этом ионе.

9.10. Используя метод МО определить как изменяется длина связи и энергия связи в ряду CN + , CN, CN - .


© Факультет естественных наук РХТУ им. Д.И. Менделеева. 2013 г.