Сложные белки биохимия таблица. Простые и сложные белки

Вопрос 2 Белки, понятие, биологическая роль. Физико – химические свойства белков: гидрофильность, растворимость, изоэлектрическая точка. Осаждение белков: высаливание, денатурация, их сходство и различия. Применение в медицине.

Белки - составная часть всех живых организмов. Биологическая роль белков, незаменимость в питании.

Белки - высокомолекулярные азотосодержащие вещества, построенные из остатков аминокислот, соединенных между собой пептидными связями. Белки - носители жизни, они наделены множеством уникальных функций, присущих только им: пластической, регуляторной, каталитической, рецепторной, защитной и др. Эти функции не могут быть заменены ни углеводами, ни жирами. Их незаменимость в питании определяется ещё и биологической ценностью

2.4. Физико-химические свойства белков: молекулярная масса, изоэлектрическая точка, растворимость, осаждаемость.

Аминокислотный состав и пространственная организация каждого белка в отдельности различны. Они обладают амфотерными, буферными, коллоидными и осмотическими свойствами.

Молекулярная масса белков колеблется от 6000(нижний предел) до 1000000 и выше в зависимости от количества полипептидных цепей в составе единой молекулярной структуры белка.

Изоэлектрическая точка большинства белков животных тканей лежит в пределах от 5,5 до 7,0. В изоэлектрической точке суммарный заряд белков равен нулю и белки не перемещаются в электрическом поле, наименее устойчивы в растворе и легко выпадают в осадок.

Растворимость различных белков колеблется в широких пределах, что зависит от структуры белка (полярные аминокислоты придают большую растворимость). Альбумины растворимы в воде и слабых растворах солей, протамины - в 60-80-% спирте, а коллаген и кератины нерастворимы в большинстве растворителей.

Стабильность растворам белков придают заряд белковой молекулы и гидратная оболочка. Между зарядом белка и гидратацией существует тесная связь: чем больше полярных аминокислот в белке, тем больше связывается воды. Некоторые белки гидратируются сильнее, а растворяются хуже. Например, коллаген связывает воды больше, чем многие хорошо растворимые глобулярные белки, но не растворим в воде.

Понятие о высаливании, высаливающие факторы, механизм, обратимость, применение в медицине.

Процесс осаждения белков нейтральными солями (высокие концентрации солей щелочных и щелочноземельных металлов) называется высаливанием. Механизм состоит в том, что добавляемые анионы и катионы солевого раствора снимают гидратную оболочку белков и заряд, являющие факторами устойчивости.

Характерной особенностью белков, полученных высаливанием, является сохранение ими нативных биологических свойств после удаления соли. Высаливание белков является обратимой реакцией, так как осадок белка может вновь раствориться после уменьшения концентрации солей путем диализа или разведением водой.

В медицинской практике для высаливания чаще всего применяют сульфат аммония или натрия (высокие концентрации). Альбумины осаждаются при 100% насыщении (NH 4) 2 SO 4 . Глобулины – в полунасыщенном растворе (NH 4) 2 SO 4 .

Высаливание широко используется для разделения и очистки белков в научно-исследовательской работе и медицинской практике.

Понятие о денатурации, факторы, вызывающие денатурацию, механизм, обратимость, применение

реакций осаждения белка для его обнаружения в биологических жидкостях.

Разрушение структуры белка и потеря им своих нативных свойств (биологических, физико-химических) называется денатурацией. Осажденный денатурированный белок, в отличие от белка, осажденного путём высаливания, утрачивает свои нативные свойства. Денатурирующие факторы делятся на:

1) физические (температура, радиация, ультрафиолетовое излучение)

2) механические (вибрация и т.д.)

3) химические (концентрированные кислоты, щелочи, соли тяжелых металлов и т.д.)

При непродолжительном действии и быстром удалении денатурирующих агентов возможна ренатурация белка с полным восстановлением исходной трехмерной структуры и нативных свойств его молекулы.

Денатурация используется для определения белка в моче при заболеваниях почек (пиелонефрите), мочевого пузыря (цистите), предстательной железы (простатите), а также при отравлении солями тяжелых металлов.

Вопрос 3Строение белков. Первичная структура белков, характеристика пептидной связи. Специфичность первичной структуры белков. Вторичная, третичная структуры белков, связи, их стабилизирующие. Четвертичная структура белков. Особенности строения и функционирования олигомерных белков на примере гемсодержащих белков – гемоглобина и миоглобина

Белки имеют 4 уровня структурной организации.

Первичная структура - это последовательное соединение аминокислотных остатков в полипептидную цепь. Она стабилизируется пептидными связями между аминокислотами, обеспечивая прочность ковалентного состава полипептидной цепи. Каждый индивидуальный белок уникален своей первичной структурой. Она определяет последующие уровни организации белковой молекулы.

Замена или утрата аминокислот в полипептидной цепи приводит к изменению структуры, физико-химических свойств и биологических функций белка. Например, при мутации гена, кодирующего полипептидную β-цепь гемоглобина (Нb) глутаминовая кислота в положении 6 замещается на валин, в результате чего мутантный Hb становится плохо растворим, теряет способность переносить кислород. При этом эритроциты приобретают форму серпа, отсюда название болезни - серповидно-клеточная анемия. В настоящее время расшифрована первичная структура многих белков: гемоглобина, миоглобина, инсулина, иммуноглобулинов, цитохромов, лизоцима, трипсина, химотрипсина и других.

Вторичная структура - это способ свертывания, скручивания, упаковки полипептидной цепи в спиральную или другую конформацию. Она возникает самопроизвольно, автоматически, что зависит от набора аминокислот и их последовательности. Различают 2 типа вторичной структуры: 1-α-спираль и 2 - слоисто-складчатая (β-структура).

α-спираль имеет винтовую симметрию:

а) ход спирали стабилизируется водородными связями между пептидными группами каждого 1-го и 4-го остатка аминокислот.

б) регулярность витков спирали.

в) равнозначность всех аминокислотных остатков независимо от строения их боковых радикалов.

г) боковые радикалы не участвуют в образовании α-спирали.

Высота одного витка (шаг спирали) равна 0,54 нм, в него входят 3,6 аминокислотных остатка, период регулярности равен 5 виткам (18 аминокислотных остатка). Длина одного периода - 2,7 нм.

Очень много в α-спирали цистеина. Благодаря своей SH-группе он может образовать дисульфидные связи между витками спирали.

Другой тип вторичной структуры называется β-структурой. Этот вид обнаружен в белках волос, мышц, ногтей и других фибриллярных белках. Состав таких полипептидных цепей имеет складчатую структуру. Её стабилизируют водородные связи между пептидными группировками отдельных участков цепи, чаще двух или нескольких полипептидных цепей, расположенных параллельно. В β-складчатых слоях отсутствуют S-S-связи (в этих участках нет цистеина). Боковые радикалы выступают наружу по обе стороны складчатого слоя.

β-структура образуется только при наличии в составе цепей определенных аминокислот, в частности, аланина и глицина. В молекулах многих нативных белков одновременно присутствует α-спиральные участки и β-складчатые слои.

Третичная структура - это трехмерная пространственная организация полипептидной спирали, или способ укладки полипептидной цепи в объеме.

Стабилизируют эту структуру 4 типа внутримолекулярных связей:

1 - ковалентные дисульфидные связи между остатками цистеина;

2 - нековалентные водородные связи (между С=О и – ОН, –NH2, –SH-группами);

3 - электростатическое взаимодействие заряженных групп в боковых радикалах аминокислот (NН 3+ и СОО -);

4- гидрофобные ван-дер-ваальсовые взаимодействия между неполярными боковыми радикалами аминокислот.

По форме третичной структуры белки делят на глобулярные (ферменты, транспортные белки, антитела, гормоны) и фибриллярные (структурные) (кератин волос, ногтей; коллаген соединительной ткани, эластин связок; миозин и актин мышечной ткани).

Третичная структура определяет нативные свойства белка.

Четвертичная структура. Белки, обладающие этой структурой, называют олигомерными ("олиго" - несколько). Это означает, что они построены из нескольких субъединиц.

Четвертичная структура - это способ укладки в пространстве нескольких полипептидных цепей, обладающих первичной, вторичной и третичной структурами, которые могут быть как одинаковыми, так и разными.

Примеры белков, обладающих четвертичной структурой: гемоглобин - 4 субъединицы; пируватдегидрогеназа - 72 субъединицы. Субъединицы связаны между собой ионными, водородными, дисульфидными связями

Вопрос 4 Простые и сложные белки. Строение, характеристика отдельных групп, биологическая роль

Белки классифицируются на простые и сложные.

Простые белки построены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты. К простым белкам относят гистоны, протамины, альбумины, глобулины.

Альбумины и глобулины относятся к белкам, широко распространенным в органах и тканях животных.

Альбумины - это белки небольшой молекулярной массы (70 тыс.), они имеют избыточный "-" заряд и кислые свойства из-за большого содержания глутаминовой кислоты. Высаливаются при 100% насыщении (NH 4) 2 SO 4 . Характерная их особенность - высокая адсорбционная способность, благодаря чему они могут выполнять транспортную роль. Альбумины поддерживают осмотическое давление, обуславливают рН крови, выполняют резервную функцию.

Глобулины - белки с большей молекулярной массой (в пределах 160-180 тыс.). Они слабокислые или нейтральные. Это неоднородная фракция, среди которой особо выделяют α 1 , α 2 , β, γ-глобулины. Глобулины выполняют защитную функцию, участвуют в свертывании крови, осуществляют транспорт холестерола, ряда витаминов, гормонов, ферментов, ионов меди и железа.

Гистоны - это белки основного характера, с молекулярной массой 12000-24000. Основные их функции заключаются в стабилизации пространственной структуры ДНК, а, следовательно, хроматина и хромосом. Регуляторная функция этих белков заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Протамины значительно отличаются аминокислотным составом и структурой, обладают резко выраженными основными свойствами из-за большого (80%) содержания аргинина. Их молекулярная масса не превышает 5000. Они, как и гистоны, поликатионные белки и связываются с ДНК в хроматине спермиев.

Сложные белки содержат два компонента: белковую и небелковую части, называемые простетической группой. В зависимости от характера этой группы различают: хромопротеины, нуклеопротеины, металлопротеины, фосфопротеины, гликопротеины, липопротеины.

2.2 Хромопротеины. Гемопротеины, химическое строение гемоглобина, миоглобина. Аномальные гемоглобины.

Хромопротеины. Их подклассом являются гемопротеины, к которым относятся гемоглобин (Нb), миоглобин, цитохромы, каталаза.

Нb А1 имеет четвертичную структуру. Его молекулярная масса равна 66 000-68 000. Глобин - это белковая часть, состоящая из 4-х субъединиц, а каждая из субъединиц обозначается α, β. Всего 2 α-цепи, содержащие по 141 аминокислотному остатку и 2 β- по 146 аминокислот. Вторичные их структуры представлены в виде спиральных сегментов различной длины. Третичные структуры α- и β-цепей очень сходны. Внутри каждой субъединицы имеется гидрофобный "карман", в котором удерживается гем, благодаря ван-дер-ваальсовым связкам между неполярными участками гема и гидрофобными радикалами аминокислот (этих связей около 60). Гем - это тетрапиррольное соединение с атомом Fе +2 , соединенного с азотами пирролов, 5-я связь с имидазольным кольцом гистидина глобина. Шестая координационная связь Fе +2 свободна и используется для связывания кислорода и других лигандов.

Белковая часть молекулы Нb влияет на свойства гема. Молекула Нb взаимодействует с различными лигандами. Очень высоко сродство Нb к оксиду углерода (II) - СО примерно в 300 раз больше, чем к О 2 , что говорит о высокой токсичности угарного газа. Эта форма носит название карбоксигемоглобина, Fe +2 не меняет валентности. При действии окислителей (например, нитрата натрия) образуется метгемоглобин, в котором Fe в степени окисления +3. Появление метгемоглобина в больших количествах вызывает кислородное голодание тканей. Наилучшим методом распознавания отдельных производных гемоглобина является исследование их спектров поглощения.

Возможно образование еще одного производного Нb - карбгемоглобина, когда Нb связывается с СО 2 , однако СО 2 присоединяется не к гему, а к NH 2 - группам глобина (НbNH 2 +СО 2 → НbNHCOO - +Н +). Образование карбгемоглобина используется для выведения СО 2 из тканей к легким. Этим путем выводится 10-15% СО 2 .

Гемоглобины могут различаться по белковой части, в связи с этим существуют физиологические и аномальные типы Нb.

Физиологические Нb образуются на разных этапах нормального развития организма, а аномальные - вследствие нарушений последовательности аминокислот в глобине.

Физиологические типы гемоглобинов отличаются друг от друга набором полипептидных цепей. Различают гемоглобины взрослых Нb А1 (96%), Нb А2 (2-3%), состоящий из 4 субъединиц: двух α-цепей и двух δ-цепей. Известен, кроме того, фетальный гемоглобин (гемоглобин новорожденных), обозначаемый HbF и состоящий из двух α-цепей и двух γ-цепей (1-2%). Нb А2 и Нb F обладают большим сродством к кислороду, чем Нb А1.

Общая группа заболеваний, связанная с Нb, носит название гемоглобинозов. Различают среди них гемоглобинопатии, например серповидноклеточная анемия, когда происходит замена при синтезе β-цепи в 6-ом положение глутаминовой кислоты на валин в β-цепях молекулы гемоглобина S. Эритроциты приобретает форму серпа, понижается сродство к О 2 . Болезнь протекает остро, и дети, гомозиготные по мутатному гену, часто умирают в детском возрасте.

Талассемия - это заболевание, при котором полностью нарушается синтез либо цепи α или β (отсюда и название α-талассемия или β-талассемия). При β-талассемии в крови наряду с HbA1 появляется до 15% НЬА2 и резко повышается содержание HbF – до 15–60%. Болезнь характеризуется гиперплазией и разрушением костного мозга, поражением печени, селезенки, деформацией черепа и сопровождается тяжелой гемолитической анемией. Эритроциты при талассемии приобретают мишеневидную форму.

Миоглобин имеет третичную структуру и представляет собой одну цепь Нb (153 аминокислоты). В отличие от Нb он в 5 раз быстрее связывает О 2 . Кривая насыщения имеет вид гиперболы. В этом кроется большой биологический смысл, поскольку миоглобин находится в глубине мышечной ткани (где низкое парциальное давление О 2). Связывая О 2 , миоглобин создает кислородный резерв, который расходуется по мере необходимости, восполняя временную нехватку О 2 .

Гликозилированный гемоглобин. Гликозилированные белки.

Одним из основных механизмов повреждения тканей, в частности, при сахарном диабете является гликозилирование белков, приводящее к изменению их конформации и функций. Некоторые белки в норме содержат углеводные компоненты, причем образование таких гликопротеинов протекает ферментативно. Однако в организме человека может происходить и неферментативоне взаимодействие глюкозы со свободными аминогруппами белков- неферментативное гликозилирование белков. Неферментативное гликозилирование четко связано с гипергликемией. Это бывает при нарушении углеводного обмена, когда количество глюкозы в крови значительно больше нормы и, прежде всего, при сахарном диабете. Глюкоза крови при сахарном диабете в отсутствие инсулина не может проникнуть в ткани организма и связывается (ее альдегидная форма) с различными белками. Белки в этих комплексах меняют свои физико-химические свойства, при этом уменьшаются или теряются функции, выполняемые этими белками. Известны гликозилированный гемоглобин, гликозилированный альбумин, гликозилированный коллаген, гликозилированные липопротеины.

Гликозилирование гемоглобина идет в 2 этапа:

1. Глюкоза неферментативно соединяется своей карбонильной группой с N-концевым остатком бета-цепей валина. Эта стадия обратима.

2. Гликозилированный гемоглобин подвергается переустройству с образованием кетоамина. Эта стадия необратимая.

Известно, что эритроциты больных сахарным диабетом содержат процент минорного компонента Нb, так называемый гликозилированный Нb (Нb А1с).

К патогенезу осложнения диабета можно отнести тот факт, что у больных увеличивается количество Нb А1с (до 12-15%) по сравнению с допустимой концентрацией 4-6%. Так, при недостаточно компенсированном диабете общее соединение Нb А1с превышает 12%. Гликозилированный гемоглобин отражает процент гемоглобина крови, необратимо соединённый с молекулами глюкозы. Повышение уровня глюкозы крови при сахарном диабете значительно ускоряет данную реакцию, что приводит к повышению уровня гликозилированного гемоглобина в крови. Время жизни эритроцитов, которые содержат гемоглобин, составляет в среднем 120-125 суток. Именно поэтому уровень гликозилированного гемоглобина отражает средний уровень гликемии на протяжении примерно трёх месяцев. Чем выше уровень гликозилированного гемоглобина, тем выше была гликемия за последние три месяца и, соответственно, больше риск развития осложнений сахарного диабета.

Поражение сердечно-сосудистой системы является клиническим проявлением сахарного диабета. Микроангиопатия является причиной инвалидности и смерти больных. В возникновении микроангиопатий определенную роль играет гликозилирование белков, что приводит к возникновению нефро- и ретинопатии (катаракта, нарушение функции почек)

Коллаген составляет основу базальных мембран капилляров. Повышенное содержание гликозилированного коллагена ведет к уменьшению его эластичности, растворимости, к преждевременному старению, развитию контрактур. В почках такие изменения приводят к запустению клубочков и хронической почечной недостаточности.

Гликозилированные липопротеины, накапливаясь в сосудистой стенке, приводят к развитию гиперхолестеринемии и липидной инфильтрации. Они служат основой атером, происходит нарушение сосудистого тонуса, что приводит к атеросклерозу.

Гликопротеины. Химическое строение, биологическая роль.

Гликопротеины – сложные белки, содержащие, помимо простого белка или пептида, группу гетероолигосахаридов (содержание углеводов варьирует от 1 до 85%). В настоящее время их принято называть гликоконъюгатами. В состав гликоконъюгата входит углеводный компонент (гликановая фракция), ковалентно связанный с неуглеводной частью (агликановая фракция), представленной белком, пептидом, аминокислотой или липидом.

Гликопротеины классифицируются на истинные и протеогликаны. Моносахариды, связанные с конкретным белком, могут быть разными: это может быть глюкоза, фруктоза, манноза, глюкозамин, галактозамин, фруктозамин, сиаловая кислота и др. Те или иные моносахариды, связанные с белком, изменяют биохимические и иммунологические свойства белка, его пространственную конфигурацию и др. Важным частным случаем является связывание белков с сиаловой кислотой, приводящее к формированию сиалогликопротеинов.

Протеогликаны- высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (гетерополисахаридов) (90-95%), напр. гиалуроновая кислота, хондроитинсульфаты. Они образуют основное вещество межклеточного матрикса соединительной ткани, выполняя «смазочную» функцию, что объясняется их способностью связывать большое количество воды, в результате чего межклеточное вещество приобретает желеобразный характер.

Гликопротеины выполняют разнообразные функции:

1) структурные молекулы

Клеточная стенка

Коллаген, эластин

Фибрины

Костный матрикс

2) "смазочные" и защитные агенты

Слизистые секреты

3) транспортные молекулы для:

Витаминов

Липидов

Минералов и микроэлементов

4) иммунологические молекулы

Иммуноглобулины

Антигены гистосовместимости

Комплемент

Интерферон

5) гормоны

Хорионический гонадотропин

Тиреотропин

6) ферменты

Протеазы

Нуклеазы

Гликозидазы

Гидролазы

Факторы свертывания

7) места клеточных контактов/ распознавания

Клетка - клетка

Вирус - клетка

Бактерия - клетка

Гормональные рецепторы

2.5 Фосфопротеины. Химическое строение, биологическая роль.

Фосфопротеины- сложные белки, содержащие в качестве небелковой части остатки фосфорной кислоты. Фосфорная кислота в фосфопротеинах связана с гидроксильной группой серина и треонина, входящих в состав белка, эфирной связью. К ним относятся казеины - белки молока, вителлин яичного желтка, пр. Биологическая роль фосфопротеинов заключается в том, что они служат питательным материалом для эмбрионов и растущих организмов, являясь источником аминокислот и фосфорной кислоты. Фосфопротеины выполняют также энергетическую функцию, участвуя в образовании макроэргических молекул (АТФ, ГТФ), и пластическую функцию (входят в состав нуклеотидов, цАМФ). Особо следует отметить, что некоторые ключевые ферменты, регулирующие процессы внутриклеточного обмена веществ, существуют как в фосфорилированной, так и в дефосфорилированной форме. Этим подчеркивается значение акта фосфорилирования–дефосфорилирования, регулирующего процессы химической модификации макромолекул, участвующих в интегральных процессах метаболизма.

ВОЕННО-МЕДИЦИНСКАЯ АКАДЕМИЯ

Экз №__

Кафедра клинической биохимии и лабораторной диагностики

«УТВЕРЖДАЮ»

ИО начальника кафедры

клинической биохимии и

лабораторной диагностики

полковник медицинской службы

В.ПАСТУШЕНКОВ

«___» _____________ 2008 г.

доцент кафедры клинической биохимии и лабораторной диагностики

доктор медицинских наук В.АНТОНОВ

_____________________________________________________________________

должность, ученая степень, ученое звание, воинское звание, инициал имени, фамилия автора (авторов)

ЛЕКЦИЯ № 4

по дисциплине: «Биохимия»

___________________________________________________________

(наименование учебной дисциплины)

на тему: «Биохимия простых и сложных белков. Структура и функция нуклеиновых кислот. Молекулярная биология гена. Генная инженерия »

________________________________________________

(наименование темы занятий по тематическому плану изучения дисциплины)

с курсантами и студентами 2 курса факультетов подготовки врачей

(военно-медицинских специалистов иностранных армий)

Обсуждена и одобрена на заседании кафедры

«____» ____________ 200___ г.

Протокол №______

Уточнено (дополнено):

«____» ____________ 200___ г.

_____________________________________

(воинское звание, подпись, инициал имени, фамилия)

Лекция на тему : «Биохимия простых и сложных белков. Структура и функция нуклеиновых кислот. Молекулярная биология гена. Генная инженерия»

Учебные групп : курсанты и слушатели II курса ФПВ

Цель лекции : Рассмотреть вопросы строения, функции, классификации простых и сложных белков, структуру и функцию нуклеиновых кислот. Молекулярные аспекты биологии гена. Дать представление о генной инженерии

Время лекции : 2 часа

План лекции.

Введение.

Классификация сложных белков, общая характеристика структуры и функции.

Нуклеиновые кислоты

Генная инженерия

Заключение

Введение

Простые белки построены только из аминокислот. Сложные белки построены из двух компонентов - простой белок и небелковое вещество, называемое простетической группой. Простетические группы прочно связаны с белковой частью молекулы.

Классификация сложных белков

Классификация сложных белков зависит от строения простетической группы.

Гликопротеины (содержат углеводы).

Липопротеины (содержат липиды).

Фосфопротеины (содержат фосфорную кислоту).

Хромопротеины (содержат окрашенную простетическую группу).

Металлопротеины (содержат ионы различных металлов).

Нуклеопротеины (содержат нуклеиновые кислоты).

Гликопротеины. Простетические группы этих белков представлены углеводами и их производными.

Гликопротеины содержат от 1 до 30 % углеводов, которые прочно связаны с белковой частью молекулы. Они представлены различными моносахаридами, их ацетил-амино-производными, дезоксисахаридами, нейраминовыми и сиаловыми кислотами. Они могут быть также представлены линейными или разветвленными олигосахаридами.

Функции гликопротеинов:

большинство белков на внешней поверхности животных клеток (рецепторы);

большая часть синтезируемых клеточных белков (интерфероны);

большая часть белков плазмы крови (кроме альбуминов):

иммуноглобулины;

групповые вещества крови;

фибриноген, протромбин;

гаптоглобин, трансферин;

церулоплазмин;

мембранные ферменты;

гормоны (гонадотропин, кортикотропин).

Связь между углеводными компонентами и белковой частью в гликопротеинах ковалентно-гликозидная, через ОН группы серина, треонина, или NH группу лизина, аспарагина, глутамина.

Липопротеины - сложные белки. Их простетическая группа представлена разнообразными липидами. Существует несколько классов липидов. Каждый из них выполняет специфическую биологическую функцию:

Структурную (например в составе цитоскелета);

Транспортную (например транспортные и плазменные липопротеины).

Фосфопротеины - сложные белки. Их простетическая группа представлена фосфорной кислотой. Остатки фосфата соединяются с белковой частью молекулы сложноэфирными связями через гидрокси-группы аминокислот серина и треонина.

К фосфопротеинам относятся казеины - белки молока, вителлины - яичного желтка, овальбумин - белок куриного яйца. Большое количество их содержится в ЦНС. Многие важные ферменты клетки активны только в фосфорилированной форме. Фосфопротеины являются источником энергетического и пластического материала.

Металлопротеины кроме белка содержат ионы одного или нескольких металлов. Ионы металлов соединены координационными связями с функциональными группами белка.

Пример металлопротеинов:

ферритин, трансферрин - Fe;

алкогольдегидрогеназа - Zn;

цитохромоксидаза - Cu;

протеиназы - Mg, К;

АТФ-аза - Na, К, Са, Мg.

Как правило, металлопротеины - ферменты. Ионы металлов выполняют следующие функции:

являются активным центром фермента;

служат мостиком между активным центром фермента и субстратом, сближают их;

служат акцепторами электронов на определенной стадии ферментативной реакции.

Нуклеопротеины - это сложные белки, небелковым компонентом которых являются нуклеиновые кислоты - ДНК (дезоксирибонуклеиновая кислота) или РНК (рибонуклеиновая кислота).

Нуклеиновые кислоты

Молекулы нуклеиновых кислот заряжены отрицательно, поэтому они образуют с положительно заряженными белковыми компонентами ионные связи.

Нуклеиновые кислоты - линейные (реже - циклические) гетерополимеры, их мономерами являются мононуклеотиды. Мононуклеотид состоит из трех частей:

азотистого основания (у всех нуклеиновых кислот);

пентозы (рибозы у РНК или дезоксирибозы у ДНК) - вместе они составляют нуклеозид;

остатка фосфорной кислоты. Номенклатура различных мононуклеотидов представлена в таблице.

Номенклатура нуклеотидов.

Мономеры, из которых потом строятся нуклеиновые кислоты, состоят из азотистого основания, остатка сахара (дезоксирибоза или рибоза) и фосфата. Сахара вместе с азотистым основанием называются нуклеозидами (аденозин, гуанозин, тимидин, цитидин). Если к ним присоединены 1-, 2-, или 3-фосфорных остатка, то вся эта структура называется Соответственно, нуклеотизид монофосфатом, дифосфатом или трифосфатом или нуклеотидом (аденин, гуанин, тимин, цитозин).


Модель АТФ в плоскости и пространстве.

ТМФ встречается только в ДНК, а УМФ - только в РНК. Если в составе мононуклеотида имеется дезоксирибоза, то в начало его названия добавляется приставка "дезокси".


В составе нуклеиновых кислот мононуклеотиды связаны 3, 5-фосфодиэфирными связями между рибозами (дезоксирибозами) соседних мононуклеотидов через остаток фосфорной кислоты. Поэтому, если молекула нуклеиновой кислоты не является циклической, концы ее различны.

Один из них обозначается как 3-конец, а другой - 5-конец. Начальным считается 5-конец.

Первичная структура ДНК

Как любой полимер, молекула ДНК обладает пер­вичной структурой, образованной уникальной после­довательностью чередования 4 видов мономеров: азо­тистых оснований, 2 из которых являются пуринами, а 2 - пиримидинами, соединенными гомополимерной сахарофосфатной цепью. Фосфоэфирные связи после­довательно соединяют З"-атом углерода остатка дезоксирибозы каждого предыдущего нуклеотида с 5"-ато­мом углерода последующего, создавая непрерывный ковалентно-связанный остов молекулы. Последова­тельность азотистых оснований и является собственно генетической матрицей, на которой при помощи триплетного кода записана вся наследственная информация организма. Весьма условно можно провести аналогию между такого типа кодировкой и буквами алфавита, в определенной очередности образующих слова и фра­зы. Хотя в генетическом словаре всего четыре буквы, но их оказывается достаточно для шифрования после­довательности 20 различных аминокислот, из которых состоят все будущие белковые молекулы - конечные продукты функционирующих генов. Таким же обра­зом закодированы регуляторные участки генома -промоторы и энхансеры, старт- и стоп-кодоны и др.

Стабильность первичной структуры молекулы ДНК позволяет клеткам из поколения в поколение со­хранять уникальную для каждого организма наслед­ственную информацию (генотип). Изменения в после­довательности чередующихся азотистых оснований (мутации) могут приводить к возникновению ошибок в наследственной информации, различные возможные последствия которых описаны ниже.

Строго говоря, первичная структура ДНК, обладая значительным консерватизмом, все же не является по­стоянной. Открытие мобильных диспергированных генов, транспозонов показало, что отдельные участки молекулы способны перемещаться вдоль цепи в про­цессе нормального функционирования и дифференци-ровки клеток, меняя при этом первичную структуру молекулы. Особенно такие перестройки характерны для клеток лимфоидной ткани: с ними связана терми­нальная дифференцировка наивных лимфоцитов, при­водящая к появлению клонов узко специализирован­ных иммунокомпетентных клеток. Неслучайность таких участков и дискретность генетической информа­ции позволяют в ходе подобных перемещений сохра­нить целостность генома.

С другой стороны, некоторые вирусы (ретро-, аде­новирусы и др.) способны встраивать в ДНК-клетки хозяина дополнительные элементы, а также перетас­кивать участки генов или целые гены из одного локу-са молекулы ДНК в другие. Действие ионизирующей радиации, химических канцерогенов и мутагенов, ошибки в процессе репликации ДНК также приводят к изменениям в первичной структуре молекулы. Такие изменения носят, как правило, случайный характер и потому изменяют целостность генома и представля­ют собой соматические мутации. Последствия таких изменений не однозначны.

Если мутация возникла в «бессмысленном» участ­ке ДНК, она, как правило, носит безразличный харак­тер. Такой же характер имеют мутации, возникающие в конститутивно репрессированных генах. Понятие конститутивной репрессии тканеспецифично и связа­но с особенностями клеточной дифференцировки, в связи с чем ген, репрессированный в клетках опреде­ленного типа, может оказаться функционально значи­мым в клетках другого гистогенеза. К примеру, терми­нальная (унаследованная, т. е. присутствующая во всех клетках данного организма) мутация генов BRCA 1/2 обусловливает чрезвычайно высокий риск раннего развития рака молочной железы или яичника, но никак не проявляется в клетках прочих тканей.

Если мутация затронула функционирующий ген, то ее последствия не могут носить безразличного ха­рактера, однако они и в этом случае не однозначны: при изменении последовательности оснований в регуляторных участках гена может наблюдаться как ослаб­ление его экспрессии вплоть до полного отключения (нокаут гена), так и аномальная активация (гипер- или, оверэкспрессия) вплоть до приобретения постоянной нерегулируемой активности. Наконец, мутация в «смысловой» части гена, кодирующей определенный белковый продукт (миссенс-мутация), может вызвать появление измененного белка. В свою очередь, измененный белковый продукт по функциональным свойствам может полностью соответствовать белку «дикого» типа: либо иметь сниженную специфическую ак-| тивность; либо, напротив, гиперактивность; либо, наконец, приобретать иной, не свойственный белку «дикого» типа, вид активности. Таким образом, в зависимости от совокупности многих факторов соматические мутации могут приво-I дить как к снижению жизнеспособности клетки, оста-I новке ее деления и гибели, так и, напротив, к ее усиленному росту и делению вплоть до опухолевой транс формации.

Вторичная структура ДНК

Вторичная структура ДНК представлена двойной спиралью, модель которой была открыта более полувека назад будущими Нобелевскими лауреатами (премия присуждена именно за это открытие) Джеймсом Уотсоном и Френсисом Криком. Согласно этой модели молекула нативной ДНК представляет собой две зеркально отраженные (в отношении комплементарных друг другу пуриновых и пиримидиновых азотистых оснований) антипараллельные (5"-конец одной цепи соседствует с 3"-концом другой) цепи, соединенные друг с другом силами комплементарного взаимодействия. Важнейшее свойство ДНК - избирательность в образовании связей (комплементарность). Размеры оснований и двойной спирали подобраны в природе таким образом, что тимин (Т) образует водородные связи только с аденином (А), а цитозин (С) - только с гуанином (G) .


Водородные связи не являются ковалентными, а потому могут быть относительно легко разрушены, что приводит к расхождению обеих нитей - денатурации в молекулы.ДНК. Этот процесс (локальная денатурация) абсолютно необходим для выполнения молекулой ДНК матричных функций, а также репликации самой молекулы.

В составе 2-нитевой (2-цепочечной) молекулы обе нити ДНК являются правозакрученными спиралями с общей осью: азотистые основания обращены внутрь молекулы, образуя гидрофобную зону, а обе сахаро-фосфатные цепи расположены периферически (плектонемическая спираль). Хорошо известны несколько канонических форм двойной спирали, различающихся геометрическими размерами. Классическая В-форма, модель которой предложена Уотсоном и Криком в 1953 г., имеет следующие характеристики: один ви­ток правозакрученной молекулы содержит 10 пар нук-леотидов, длина его проекции на ось составляет 34 А (ангстрем), диаметр (по атомам фосфора) - 18 А; мо­лекула имеет большую и малую боковые бороздки с поперечником 17 и 11 А соответственно.


Три представления двунитевой молекулы ДНК:

а и б - классические изображения двуспиральной ДНК;

в - ДНК как двухцепочечная структура с неопре­деленными физическими параметрами, но с цепями, комплементарными друг другу;

А, С, G, Т - мономерные звенья полимерной мо­лекулы ДНК;

C-G, Т-А - комплементарные пары оснований, связывающие две цепи

Та­кая форма молекулы существует в препаратах, уровень влажности которых близок к физиологическому. При частичном обезвоживании ДНК переходит в А-форму, в которой один виток содержит уже 11 пар ос­нований, проекция витка на ось составляет 28 А, диа­метр уменьшается на 1 А, а ширина обеих бороздок сравнивается. С-форма, образующаяся в присутствии солей лития, напротив, является более рыхлой, чем В-форма: виток содержит 9 нуклеотидньгх пар. Абсолют­но уникальна открытая относительно недавно левоза- крученная Z-форма ДНК, содержащая 12 нуклеотидов на 1 виток. В пределах канонических форм воз­можно существование определенных промежуточных вариантов, переходы между которыми осуществляют­ся не кооперативно, в отличие от кооперативных пере­ходов от одной канонической формы к другой.

Конформационные переходы на отдельных участках гигантской молекулы ДНК важны для выс­ших уровней организации и функционирования хро­матина и будут обсуждаться в соответствующем раз-деле. Здесь же следует отметить, что наличие двой­ной спирали в любой из канонических форм возмож­но не только при участии 2 нитей, но и на отдельном участке 1-нитевой молекулы, однако при условии, что этот участок будет нести палиндромную после­довательность, т. е. симметрично отраженную после­довательность комплементарных оснований, напри­мер «...ATCAG...CTGAT...». В таком участке 2-нитевой молекулы ДНК может образовываться «шпилька» или «крест», представляющие собой сим­метричный дуплексный отросток, ось которого пер­пендикулярна основной оси молекулы. Обратимое образование «шпилек», «креста» и конформационные пе­реходы молекулы, играет определенную роль в регу­лировании активности отдельных генов.

Структуры ДНК высших порядков организации

В предыдущих разделах кратко описана структура собственно молекулы ДНК вне ее связи с другими компонентами хроматина. Все последующие уровни организации этого биополимера охватывают структу­ру супрамолекулярного комплекса ДНК.

В составе хроматина молекула ДНК находится во взаимодействии с большим количеством белков (мас­совое соотношение ДНК:белок в ядрах разных клеток различается, но в среднем близок к соотношению 1:1 - 1:2), которые делят на 2 неодинаковые группы гистоны и негистоновые белки хроматина. Гистоны (белки основного характера, растворимые в кислотах) составляют большую часть (до 80 %) суммарных ядер­ных белков, негистоновые белки (кислые, нейтраль­ные и некоторые слабо основные) составляют количе­ственно меньшую часть ядерных белков, но объединя­ют в своей группе значительно большее разнообразие структурных, ферментативных и регуляторных белко­вых компонентов хроматина.

Структура нуклеогистонового комплекса хорошо изучена и определяется 2 уровнями его организации: нуклеосомным и нуклеомерным. Нуклеосомы представляют собой нуклеопротеидные частицы диа­метром 10 нм, состоящие из центральной (коровой) белковой частицы с соленоидоподобной укладкой дву-нитевой молекулы ДНК на ее поверхности. Коровая частица является октамером 4 гистонов (у человека - гистоны Н2а, Н2Ь, НЗ и Н4), по 2 молекулы каждого на 1 частицу. Длина участка ДНК, непосредственно кон­тактирующая с коровой частицей, составляет 140 пар нуклеотидов (п.н.), что соответствует молекулярной массе (ММ) ок. 100 кДа. ДНК, контактирующая с ко-ровыми частицами, стерически защищена от действия эндонуклеаз. Молекула ДНК образует на поверхности коровой частицы 2 витка, после чего, не обрываясь, переходит на следующую коровую частицу. Длина свободного участка ДНК между соседними коровыми частицами (линкер) оценивается в 30-60 п.н. (10-20 нм). Морфологически нуклеосомный уровень орга­низации хроматина выглядит, как «бусинки на нитке».

Схема организации хроматина и N-i гистона НЗ человека (а), возможные сайты посттрансляционных модификаций гистонов НЗ и Н4 (б).

На поверхности нуклеосомы N-конец гистона Н и концы других гистонов, представлены в виде коне тивного домена; на схеме гистона НЗ отмечены мес: иболее распространенных посттрансляционных мо; каций: ацетилирование (флажок), фосфорилирован (кружок) и метилирование (шестиугольник), вполне можны и некоторые модификации в глобулярном до: Обращает на себя внимание пространственная per ность мест модификаций, звездочка указывает на тс Lys-9 может быть как ацетилирован, так и метилирован.

С линкером ассоциирован гистон HI, защающий свободный вненуклеосомный участок ДН действия эндонуклеаз и имеющий значение для фо рования следующего уровня организации хромати нуклеомеров, которые являются олигоме нуклеосом, образующими супербидную (от англ. i beads - большие шары) спираль. Нуклеомерная организация свойственна транскрипционно неактивному хроматину и обеспечивает его высокий уровень пактизации и защиты от нуклеазного расщепления.

Присутствие нуклеосом в промоторных участках генов препятствует образованию инициаторного ком­плекса транскрипции, в состав которого входят РНК-полимераза и факторы транскрипции, и для инициа­ции транскрипции необходимо локальное разрушение нуклеосомной структуры хроматина в окрестностях промотора и регуляторных элементов. При этом кон­ститутивно транскрибируемые гены вовсе не имеют нуклеосомной структуры в промоторной области.

Не вполне ясен механизм, посредством которого поддерживается непрерывное существование участка в виде свободной от нуклеосом последовательности ДНК: либо факторы транскрипции успевают провза-имодействовать с промоторным участком еще до сбор­ки нуклеосом, либо эти факторы связываются с соот­ветствующими участками ДНК, содержащими нуклео­сомы, и дестабилизируют последние. В пользу такого предположения свидетельствует способность коровых гистонов к многочисленным обратимым модификаци­ям: фосфорилированию, ацетилированию, метилиро­ванию - которые вызывают конформационные изме­нения молекул и соответственно изменение белок-бел­ковых взаимодействий. В частности, химическая модификация консервативных доменов гистонов НЗ и Н4 вызывает дестабилизацию корового октамера, ко­торый диссоциирует с освобождением 2 димеров Н2а/Н2Ь; димеры же НЗ/Н4 сохраняют связь с ДНК, но структурно не препятствуют прохождению репли-кативного или транскрипционного комплексов.

Таким образом, обратимая сборка-разборка нук­леосом является регуляторным элементом функцио­нальной активации генов, а хранение транскрипцион-но неактивного хроматина в форме супербидной спи­рали хромомеров предотвращает риск нуклеазного переваривания генетического материала.

; Значительно менее изучены взаимоотношения ДНК с негистоновыми белками хроматина. В первую очередь, это связано с огромным количеством негисто­новых белков, часть которых обладает видовой и тка­невой специфичностью. По данным двухмерного элек­трофореза, число негистоновых белков ядра превыша­ет 450, включая модифицированные формы, однако это количество учитывает только мажорные фракции, доступные визуализации при существующих методах неспецифического окрашивания электрофореграмм. учетом минорных белковых компонентов клеточно го ядра реальное количество негистоновых белков хроматина может измеряться тысячами.

До сих пор отсутствует единая классификация не­гистоновых белков, для их классификации используют прочность их связи с хроматином (экстрагируемость), физико-химические (растворимость, изоэлектричес-кая точка, молекулярная масса, подвижность при элек­трофорезе и др.), функциональные свойства, фермен­тативную активность.

Часто негистоновые белки классифицируют на ос­новании способа их выделения из препаратов тоталь­ного хроматина в растворах различной ионной силы и с содержанием разных диссоциирующих агентов. Так, до 10 % негистоновых белков может быть извле­чено из хроматина экстракцией 0,35 М NaCl (глобули-новая фракция хроматина); до 90 % негистоновых бел­ков удаляются обработкой ядер 2,0 М NaCl с 5 М мо­чевины или 37 %-ным раствором гуанидин-хлорида. Большая часть остаточных после такой экстракции белков может быть отделена додецилсульфатом натрия (SDS), 2-меркаптоэтанолом и щелочью. Однако и пос­ле такой обработки с ДНК остается связанной неболь­шое количество белка, который не удаляется даже при депротеинизации ДНК фенолом или хлороформом. Следовательно, взаимоотношения ДНК с разны­ми негистоновыми белками неравнозначны, и гово­рить о нативной структуре супрамолекулярного ком­плекса хроматина можно только с позиции сохранения интактности тех или иных взаимодействий в конкрет­ных препаратах изолированного хроматина.

Из всего многообра­зия негистоновых белков хроматина следует выделить компоненты ядерного матрикса (скелетной фибрил­лярно-гранулярной структуры ядра) и- небольшую группу обычно сопутствующих им белков (компонен­ты подмембранного фиброзного слоя ядра - ламины, белки ядерных пор и некоторые другие). Именно эти компоненты клеточного ядра образуют простран­ственную матрицу, на которой происходит регулируе­мое функционирование молекулы ДНК.

Ген - материальный носитель наследственной информации, совокупность которых родители передают потомкам. В настоящее время, в молекулярной биологии установлено, что гены - это участки ДНК , несущие какую-либо целостную информацию - о строении одной молекулы белка или одной молекулы РНК . Эти и другие функциональные молекулы определяют рост и функционирование организма .

В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК , таких как промоторы , которые принимают непосредственное участие в регулировании проявлением гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания , кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы , англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов ), как в случае с энхансерами и супрессорами (иногда классифицируемые как trans-регуляторные элементы , англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки , так как их строение (20 аминокислот ) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов . Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии .

1. Особенности структуры простых и сложных белков

По составу белки делят на простые , состоящие только из аминокислотных остатков (протеины), и сложные (протеиды). Сложные могут включать ионы металла (металлопротеиды) или пигмент (хромопротеиды), образовывать прочные комплексы с липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеиды), а также ковалентно связывать остаток фосфорной кислоты (фосфопротеиды), углевода (гликопротеины) или нуклеиновой кислоты (геномы некоторых вирусов).

1.1 Простые белки (протеины)

По ряду характерных свойств протеины разделяют на несколько групп.

Альбумины . Они растворимы в воде, свёртываются при нагревании, нейтральны, сравнительно трудно осаждаются растворами солей. Примерами их могут служить: альбумин белка куриного яйца, альбумин кровяной сыворотки, альбумин мускульной ткани, молочный альбумин.

Глобулины. Они нерастворимы в воде, но растворяются в очень слабых растворах солей. Примерами глобулинов могут служить: фибриноген, глобулин кровяной сыворотки, глобулин мускульной ткани, глобулин белка куриного яйца.

Гистоны. Белки основного характера. Находятся в виде нуклеопротеидов в лейкоцитах и красных кровяных шариках.

Протамины. Не содержат серы, обладают сравнительно сильными основными свойствами, дают кристаллические соли; содержатся (в виде нуклеопротеинов) в сперматозоидах рыб.

Проламины. Находятся в зернах различных хлебных злаков. Замечательной их особенностью является растворимость в 80% -ном спирте. Представителем этих бел- ов может служить глиадин, составляющий главную часть клейковины.

Склеропротеины. Нерастворимые белки, которые составляют наружный покров тела животного и находятся в скелете и в соединительной ткани. К ним относятся кератин, коллагены, эластин, фиброин.

Кератин является главной составной частью волос, рогов, копыт, ногтей, перьев и верхнего слоя кожи. По химическому составу кератин богат серой

Коллагены. Чрезвычайно распространены в живых организмах. Из коллагенов состоит соединительная ткань; они находятся в хрящах. Кости позвоночных животных состоят из неорганических веществ (фосфорнокислого и углекислого кальция), жира и коллагенов.

Эластин входит в состав жил и других эластичных веществ соединительной ткани.

1.2 Сложные белки (протеиды)

Протеиды являются сложными белками, состоящими из белковой и небелковой частей. Название протеида определяется названием его простетической группы). Так, нуклеиновые кислоты являются небелковой частью нуклеопротеидов, фосфорная к-та входит в состав фосфопротеидов, углеводы – гликопротеидов, а липиды – липопротеидов. Протеиды также можно подразделить на несколько групп.

Нуклеопротеиды. Имеют важное значение, т.к. их небелковая часть представлена ДНК и РНК. Простетическая группа представлена в основном гистонами и протаминами. Такие комплексы ДНК с гистонами обнаружены в сперматозоидах, а с гистонами – в соматических клетках, где молекула ДНК “намотана” вокруг молекул гистонов. Нуклепротеидами по своей природе являются вне клетки вирусы – это комплексы вирусной нуклеиновой к-ты и белковой оболочки – капсида.

Хромопротеиды. Являются сложными белками, простетическая группа которых представлена окрашенными соединениями. К хромопротеидам относятся гемоглобин, миоглобин (бело мышц), ряд ферментов (каталаза, пероксидаза, цитохромы), а также хлорофилл.

Гемоглобин (Hb) состоит из белка глобина и небелковой части гема, включающего атом Fe(II), соединенный с протопорфирином. Молекула гемоглобина состоит из 4-х субъединиц: двух a и двух b и соответственно содержит четыре полипептидные цепочки двух сортов. Каждая a-цепочка содержит 141, а b-цепочка – 146 аминокислотных остатков.

Атом железа может образовать шесть координационных связей. Четыре связи направлены к атомам азота пиррольных колец, оставшееся две связи – перпендикулярно к плоскости порфиринового кольца по обе его стороны. Гемы расположены вблизи поверхности белковой глобулы в специальных карманах, образованных складками полипептидных цепочек глобина. Гемоглобин при нормальном функционировании может находиться в одной из трех форм: феррогемоглобин (обычно называемый дезоксигемоглобином или просто гемоглобином), оксигемоглобин и ферригемоглобин (метгемоглобин). В ферригемоглобине железо находится в закисной форме Fe(II), одна из двух связей, перпендикулярных к плоскости порфиринового кольца, направлена к атому азота гистидинового остатка, называемого проксимальным (соседним), по другую сторону порфиринового кольца и на большем расстоянии от него находится другой гистидиновый остаток – дистальный гистидин, не связанный непосредственно с атомом железа. Взаимодействие молекулярного кислорода со свободным гемом приводит к необратимому окислению атома железа гема . Поэтому в дезоксигемоглобине глобин предохраняет железо от окисления.


При взаимодействии молекулярного кислорода с гемоглобином существует небольшая, но конечная вероятность окисления последнего: молекула O 2 не присоединяется, но окислит железо: Fe 2+ + O 2 Þ Fe 3+ + O 2 – . Поэтому при дыхании в эритроцитах непрерывно образуется метгемоглобин. Для его восстановления в эритроците существует специальная ферментативная система, восстанавливающая метгемоглобин и превращающая его в нормальный дезоксигемоглобин. При нарушении этой системы возникает тяжелое заболевание – метгемоглобинемия, при которой гемоглобин перестает быть переносчиком кислорода.

Присоединение кислорода меняет кислотно-основные свойства гемоглобина. Оксигемоглоин является более сильной кислотой, чем дезоксигемоглобин. Поэтому в тканях, где значительная часть гемоглобина теряет кислород и становится более сильным основанием, гемоглобин связывает образующуюся в ходе метаболических внутриклеточных процессов углекислоту. В альвеолах легких дезоксигемоглобин снова превращается в оксигемоглобин, становится более сильной кислотой и способствует отщеплению CO 2 . Углекислота, освобождаемая тканями, недостаточно хорошо растворима для эффективного переноса. С помощью фермента карбоангидразы, ускоряющего прямую и обратную реакцию:

CO 2 + H 2 O Û HCO 3 – + H + ,

Двуокись углерода превращается в хорошо растворимый бикарбонат-анион. В капиллярах тканей отщепление кислорода повышает содержание дезоксигемоглобина, связывающего протоны и смещающего равновесие реакции вправо. Легко растворимый ион бикарбоната переносится кровью. В альвеолах легких гемоглобин оксигенируется, протоны освобождаются и равновесие смещается влево. Образуется плохо растворимая двуокись углерода CO 2 , которая удаляется из водной фазы и выдыхается. Таким образом, гемоглобин работает как буфер с переменным значением pH. Функция гемоглобина как переносчика углекислоты не менее важна, чем его функция переноса кислорода.

Миоглобин. Хромопротеид, содержащийся в мышцах. Он состоит только из одной цепи, аналогичной субъединице гемоглобина. Миоглобин является дыхательным пигментом мышечной ткани. Он значительно легче гемоглобина связывается с кислородом, но труднее отдает его. Миоглобин создает запасы кислорода в мышцах, где его количество может достичь 14% всего кислорода организма. Это имеет важное значение, особенно для работы мышц сердца. Высокое содержание миоглобина обнаружено у морских млекопитающих (тюленя, моржа), что позволяет им длительное время находиться под водой.

Гликопротеиды. Представляют собой сложные белки простетическая группа которых образована производными углеводов (аминосахарами, гексуроновыми кислотами). Гликопротеиды входят в состав клеточных мембран. Так, легочные стенки бактерий построены из пептидогликанов, являющихся производными линейных полисахаридов, несущих ковалентно связанные с ними пептидные фрагменты. Эти фрагменты осуществляют сшивание полисахаридных цепей с образованием механически прочной сетчатой структуры. Например, клеточная стенка E . coli построена из полисахаридных цепей, образованных остатками N-ацетилглюкозамина, связанными b-(1®4)связями, причем каждый второй остаток несет присоединенный к нему по атому С3 фрагмент, образованный связанными амидными связями остатками молочной кислоты, L-аланина, D-глутамата (через g-карбоксил), мезодиаминонимелината и D-аланина:


Каждая С-концевая группа этого пептида, принадлежащая остатку D-аланина, образует амидную связь с аминогруппой остатка диаминонимиелиновой кислоты, принадлежащей соседней полисахаридной цепи.

Кроме вышеприведенной функции гликопротеиды участвуют в транспорте различных веществ, в процессах свертывания крови, иммунитета, являются составными частями слизи и секретов желудочно-кишечного тракта. У арктических рыб гликопротеиды играют роль антифризов – веществ, препятствующих образованию кристаллов льда внутри их организма.

Фосфопротеиды. Имеют в качестве небелкового компонента фосфорную к-ту. Представителями данных белков являются казеиноген молока, вителлин (белок желтков яиц), ихтулин (белок икры рыб). Такая локализация фосфопротеидов свидетельствует о важном их значении для развивающегося организма. У взрослых форм эти белки присутствуют в костной и нервной тканях.

Липопротеиды. Сложные белки, простетическая группа которых образована липидами. По строению это небольшого размера (150-200 нм) сферические частицы, наружная оболочка которых образована белками (что позволяет им передвигаться по крови), а внутренняя часть – липидами и их производными. Основная функция липопротеидов – транспорт по крови липидов. В зависимости от количества белка и липидов, липопротеиды подразделяются на хиломикроны, липопротеиды низкой плотности (ЛПНП) и высокой плотности (ЛПВП), которые иногда обозначаются как a- и b-липопротеиды.

Хиломикроны являются наиболее крупными из липопротеидов и содержат до 98-99% липидов и только 1-2% белка. Они образуются в слизистой оболочки кишечника и обеспечивают транспорт липидов из кишечника в лимфу, а затем в кровь.

В ЛПНП количество белка составляет 9-20% , а среди липидов преобладают холестерин и триацилглицерины (до 40%). Белковая часть ЛПВП колеблется в пределах 35-50%, а белковая представлена фосфолипидами и холестерином. Таким образом, холестерин транспортируется по крови в составе липопротеидов, особенно ЛПНП.

2. Химические основы домашнего приготовления пищи

Белки . При температуре 70 0 С происходит коагуляция (свертывание) белков. Они теряют способность удерживать воду (набухать), т.е. из гидрофильных становятся гидрофобными, при этом уменьшается масса мяса, рыбы и птицы. Частично разрушается третичная и вторичная структура белковых молекул, часть белков превращается в полипептидные цепочки, что способствует лучшему их расщеплению протеазами желудочно-кишечного тракта.

Белки, находящиеся в продуктах в виде раствора, при варке свертываются хлопьями и образуют пену на поверхности бульона. Коллаген и эластин соединительной ткани превращаются в глютин (желатин). Общие потери белка при тепловой обработке составляют от 2 до 7%.

Превышение температуры и времени обработки способствует уплотнению мышечных волокон и ухудшению консистенции изделий, особенно приготовленных из печени, сердца и морепродуктов. При сильном нагреве на поверхности продукта происходит деструкция крахмала, и идут реакции между сахарами и аминокислотами с образованием меланоидов, которые придают корочке темный цвет, специфический аромат и вкус.

Мясопродукты при варке и жаренье в результате уплотнения белков, плавления жира и перехода в окружающую среду влаги и растворимых веществ теряют до 30-40% массы. Наименьшие потери свойственны панированным изделиям из котлетной массы, так как выпрессованная белками влага удерживается наполнителем (хлебом), а слой панировки препятствует ее испарению с обжариваемой поверхности.

Жиры . При нагреве жир из продуктов вытапливается. Пищевая ценность его снижается из-за распада жирных кислот. Так, потери линолевой и арахидоновой кислот составляют 20-40%. При варке до 40% жира переходит в бульон, часть его эмульгирует и окисляется. Под действием содержащихся в бульоне кислот и солей эмульгированный жир легко разлагается на глицерин и жирные кислоты, которые делают бульон мутным, придают ему неприятный вкус и запах. В связи с этим варить бульон следует при умеренном кипении, а скапливающийся на поверхности жир надо периодически удалять.

Глубокие изменения жира происходят при жаренье. Если температура сковороды превышает 180 0 С, то жир распадается с образованием дыма, при этом резко ухудшаются вкусовые качества продуктов. Жарить продукты следует при температуре на 5-10 0 С ниже температуры дымообразования.

При жаренье основным способом жир теряется за счет его разбрызгивания. Это связано с бурным испарением воды при нагревании жира более 100 0 С. Потери жира при разбрызгивании называются угаром, и они значительные у жиров, в состав которых входит много воды (маргарин), а также при жаренье увлажненных продуктов (сырой картофель, мясо и др.). Общие потери жира меньше у панировочных изделий.

Самые значительные химические изменения жиров наблюдаются при жаренье во фритюре. В результате гидролиза, окисления и полимеризации накапливаются вредные соединения, придающие жиру неприятный запах и прогорклый вкус. Токсические продукты термического окисления жиров (альдегиды и кетоны) адсорбируются на поверхности обжариваемых изделий. Кроме того, жир загрязняется частицами попадающего в него продукта.

Для предупреждения нежелательных изменений жира используют фритюрницы, в нижней части которых имеется так называемая холодная зона, где температура жира значительно ниже, и попадающие туда частицы продукта не сгорают. Для предохранения фритюра от порчи используют ряд технологических приемов: фритюр периодически процеживают, руки и инвентарь смазывают растительным маслом, предназначенные для жаренья во фритюре изделия не панируют в сухарях.

Углеводы . При нагревании крахмала с небольшим количеством воды происходит его клейстеризация, которая начинается при температуре 55-60 0 С и ускоряется с повышением температуры до 100 0 С. При тепловой обработке картофеля клейстеризация крахмала происходит за счет влаги, содержащейся в самом картофеле.

При выпечке изделий из теста крахмал клейстеризуется за счет влаги, выделяемой свернувшимися белками клейковины. Аналогичный процесс происходит при варке предварительно набухших в воде бобовых. Крахмал, содержащийся в сухих продуктах (крупах, макаронных изделиях), клейстеризуется при варке за счет поглощения влаги окружающей среды, при этом масса продуктов увеличивается.

Сырой крахмал не усваивается в организме человека, поэтому все крахмалосодержащие продукты употребляют в пищу после тепловой обработке. При нагревании крахмала свыше 110 0 С без воды крахмал расщепляется до декстринов, которые растворимы в воде. Декстринизация происходит на поверхности выпекаемых изделий при образовании корочки, при пассеровании муки, поджаривании крупы, запекании макаронных изделий.

Тепловая обработка способствует переходу протопектина, скрепляющего растительные клетки между собой, в пектин. При этом продукты приобретают нежную консистенцию и лучше усваиваются. На скорость превращения протопектина в пектин влияют следующие факторы:

· свойства продуктов: у одних протопектин менее устойчив (картофель, фрукты), у других более устойчив (бобовые, свекла, крупы);

· температура варки: чем она выше, тем быстрее идет превращение протопектина в пектин;

· реакция среды: кислая среда замедляет этот процесс, поэтому при варке супов картофель нельзя закладывать после квашеной капусты или других кислых продуктов, а при замачивании бобовых нельзя допускать их закисания.

Клетчатка – основной структурный компонент стенок растительных клеток – при тепловой обработке она набухает и становится пористее.

Витамины . Жирорастворимые витамины (А, D, E, K) при тепловой обработке сохраняются хорошо. Так, пассерование моркови не снижает ее витаминной ценности, наоборот, растворенный в жирах каротин легче превращается в витамин А. Такая устойчивость каротина позволяет длительное время хранить пассерованные овощи в жирах, хотя при длительном хранении витамины частично разрушаются за счет воздействия на них кислорода воздуха.

Водорастворимые витамины группы В устойчивы при нагревании в кислой среде, а в щелочной и нейтральной среде разрушаются на 20-30%, частично они переходят в отвар. Самые большие потери тиамина и пиридоксина имеют место при комбинированном нагреве (тушении и др.). Высокая сохранность с кратковременной тепловой обработкой и незначительным количеством вытекающего сока. Наиболее устойчив к нагреванию витамин РР.

Сильнее всего при тепловой обработке разрушается витамин С за счет окисления его кислородом воздуха, этому способствуют следующие факторы:

· варка продуктов при открытой крышке;

· закладка продуктов в холодную воду;

· увеличение сроков тепловой обработки и длительное хранение пищи в горячем состоянии на мармите;

· увеличение поверхности контакта продукта с кислородом (измельчение, протирание).

Кислая среда способствует сохранению витамина С. При варке он частично переходит в отвар. При жаренье картофеля во фритюре витамин С разрушается меньше, чем при жаренье основным способом.

Минеральные вещества . Максимальные потери (25-60%) минеральных веществ (калия, натрия, фосфора, железа, меди, цинка и др.) происходят при варке в большом количестве воды за счет перехода их в отвар. Вот почему отвары из экологически чистых овощей используют для приготовления первых блюд и соусов.

Обобщенные величины потерь пищевых веществ при тепловой кулинарной обработке продуктов, %

Продукты

Углеводы

Минеральные вещества

Витамины

Энергети-ческая ценность

B-каротин

Растительные

Животные

В среднем

Красящие вещества . Хлорофилл зеленых овощей при варке под действием кислот разрушается с образованием буроокрашенных веществ. Антоцианы сливы, вишни, черной смородины, а также каротин моркови и томатов устойчивы к тепловой обработке. Пигменты свеклы приобретают бурый цвет, поэтому для сохранения ее яркого цвета создают, кислую среду и повышенную концентрацию отвара. Мясо меняет окраску с ярко-розовой на серую вследствие изменения гемоглобина.

Максимальные потери пищевых веществ наблюдается при варке основным способом по сравнению с другими видами тепловой обработки продуктов. Усложнение технологии (измельчение, протирание сырых и отварных продуктов, тушение) также способствует потери питательных веществ.

Наиболее рациональными с точки зрения сохранения ценных пищевых веществ тепловыми обработками являются: для растительных продуктов - варка без слива отвара и варка в кожуре; для животных - тушение, запекание, использование мяса в виде котлет, особенно паровых.

Список использованных источников и литературы

1. Гуськова, Е.В. Биохимия в товароведении [Текст]: учеб. метод. комплекс / Е.В. Гуськова; Челяб. ин-т (фил) ГОУ ВПО «РГТЭУ».- Челябинск: [б.и.], 2008. – 52 с.

2. Марри, Р., Греннер, Д., Мейес, П., Родуэлл, В. Биохимия человека. В 2-х томах. Том 1. Перевод с англ.: - М.: Мир, 1993. – 384 с.

3. Митякина, Ю.А. Биохимия [Текст]: учеб. пособие / Ю.А. Митякина – М.: РИОР, 2005. – 113 с.

4. Нечаев, А.П. Пищевая химия [Текст] / А.П. Нечаев, С.Е. Траубенберг и др. – СПб.: ГИОРД, 2003. – 640 с.

Простыми называются белки, которые при гидролизе распадаются только на аминокислоты. Название является достаточно условным, так как большая часть так называемых простых белков в клетках связаны с другими молекулами небелкового строения. Тем не менее традиционно выделяют следующие группы простых белков :

1. Гистоны – низкомолекулярные основные белки, участвуют в упаковке ДНК клетки, являются весьма консервативными белками, мутации в них гибельны. Выделяют пять фракций гистонов: фракция Н1 – богатые лизином, фракции Н2а и Н2б – умеренно богатые лизином, фракции Н3 и Н4 – богатые аргинином. Аминокислотная последовательность гистонов мало изменилась в процессе эволюции, гистоны млекопитающих, растений и дрожжей очень сходны друг с другом. Например, Н4 человека и пшеницы отличаются лишь несколькими аминокислотами, к тому же размер молекулы белка и ее полярность довольно постоянны. Из этого можно заключить, что гистоны были оптимизированы еще в эпоху общего предшественника животных, растений и грибов (более 700 млн лет назад). Хотя с тех пор в гистоновых генах происходили бесчисленные точечные мутации, все они, очевидно, приводили к вымиранию мутантных организмов.

2. Протамины – группа простейших низкомолекулярных белков, обладают выраженными основными свойствами за счет содержания 60–85% аргинина, хорошо растворимы в воде, являются аналогами гистонов, но более плотно упаковывают ДНК в сперматозоидах позвоночных, чтобы избежать разрывов при делении клеток.

3. Проламины – белки злаков, содержат 20–25% глутаминовой кислоты и 10–15% пролина, растворимы в 60–80% спирте, в то время как остальные белки в этих условиях выпадают в осадок. В проламинах почти полностью отсутствует лизин, что существенно снижает пищевую ценность растительных белков.

4. Глютеины – также белки растительного происхождения, составляют основную массу клейковины злаков.

5. Альбумины – белки крови, составляют больше половины белков крови, относятся к глобулярным белкам, растворимы в воде и слабых растворах солей, выпадают в осадок в насыщенном растворе (NH 4) 2 SO 4 , изоэлектрическая точка – 4,7, имеют высокий отрицательный заряд при рН крови. Альбумин крови человека состоит из одной полипептидной цепи, включающей 584 аминокислотных остатков с повышенным содержанием аспарагиновой и глутаминовой кислот. В молекуле имеются три повторяющихся гомологичных домена, каждый из которых содержит шесть дисульфидных мостиков. Можно предположить, что в ходе эволюции ген, детерминирующий этот белок, дважды дуплицировался. Альбумин обусловливает основное осмотическое давление крови (его называют онкотическим) и обладает способностью связывать липофильные вещества, вследствие чего он может транспортировать жирные кислоты, билирубин, лекарственные вещества, некоторые стероидные гормоны, витамины, ионы кальция и магния. Альбумины существуют и в растительных клетках, там они характеризуются повышенным содержанием метионина и триптофана.

6. Глобулины – глобулярные белки плазмы крови, растворяются только в слабом растворе NaCl, в ненасыщенном растворе (NH 4) 2 SO 4 выпадают в осадок, в результате чего их можно отделить от альбуминов. Соотношение альбуминов и глобулинов – важная биохимическая характеристика крови, сохраняется на постоянном уровне. Глобулины при электрофорезе делят на несколько фракций:

α 1 – антитрипсин, антихимотрипсин, протромбин, транскортин, переносящий кортикостероиды, переносчик прогестерона, тироксин-переносящий глобулин;

α 2 – антитромбин, холинэстераза, плазминоген, макроглобулин, связывающий протеиназы и переносящий ионы цинка, ретинол-переносящий белок, витамин D-переносящий белок;

β – содержит трансферрин, переносящий железо, церулоплазмин, переносящий медь, фибриноген, глобулин, переносящий половые гормоны, транскобаламин, переносящий витамин В 12 , С-реактивный протеин, активирующий систему комплемента;

γ – фракция иммуноглобулинов.

Существуют также глобулины растений, они характеризуются повышенным содержанием аргинина, аспарагина и глутамина и состоят из двух фракций.

7. Склеропротеиды – белки, нерастворимые или ограниченно растворимые в воде, водных растворах нейтральных солей, этаноле и смесях этанола с водой. Это фибриллярные белки (кератины, коллаген, фиброин и др.), они отличаются высокой устойчивостью к химическим реактивам, действию протеолитических ферментов и выполняют в организме структурную функцию.

8. Токсические белки – токсины яда змей, скорпионов, пчел. Они характеризуются очень низкой молекулярной массой.

Сложные белки – это белки, при гидролизе распадающиеся на амино-кислоты и небелковое вещество. Если небелковое вещество прочно связано с белковым компонентом, то его называют простетической группой.

Сложные белки делятся на типы в зависимости от небелкового компонента.

Хромопротеиды – содержат в качестве простетической группы окрашенное вещество. Делят на три группы:

а) гемопротеиды (железопорфирины) – гемоглобин, миоглобин, цитохромы, каталаза, пероксидаза,

б) магнийпорфирины – хлорофилл,

в) флавопротеиды – ФАД и ФМН, входящие в состав оксидоредуктаз.

Металлопротеиды – содержат помимо белка ионы какого-либо одного или нескольких металлов. К ним относятся белки, содержащие негеминовое железо, а также белки, координационно связанные с атомами металлов в составе сложных белков-ферментов:

а) ферритин – высокомолекулярный водорастворимый сложный белок, содержащий около 20% железа, сосредоточен в селезенке, печени, костном мозге, выполняет роль депо железа в организме. Железо в ферритине находится в окисленной форме (FeO·OH) 8 ·(FeO·PO 3 H 2), причем атомы железа координационно связываются с атомами азота пептидных групп;

б) трансферрин – входит в состав фракции β-глобулинов, содержит 0,13% железа, является переносчиком железа в организме. Атом железа соединяется с белком координационными связями по гидроксильным группам тирозина.

Фосфопротеиды – белки, содержащие фосфорную кислоту, присоединенную сложноэфирной связью к гидроксильным радикалам серина и треонина. Содержание фосфорной кислоты достигает в фосфопротеидах 1%. Выполняют питательную функцию, запасая фосфор для построения костной и нервной ткани. Представителями фосфопротеидов являются:

а) вителлин – белок яичного желтка;

б) ихтулин – фосфопротеид икры рыб.

в) казеиноген – фосфопротеид молока, существует в виде растворимой соли с Са 2+ , при створаживании молока Са 2+ отсоединяется и казеин выпадает в осадок;

Липопротеиды – белки, содержащие в качестве простетической группы нейтральные жиры, свободные жирные кислоты, фосфолипиды, холестериды. Липопротеиды входят в состав цитоплазматической мембраны и внутриклеточных мембран ядра, митохондрий, эндоплазматического ретикулума, а также присутствуют в свободном состоянии (в основном, в плазме крови). Липопротеиды стабилизируются нековалентными связями различной природы.

Липопротеиды плазмы крови имеют характерное строение: внутри находится жировая капля (ядро), содержащая неполярные липиды (триацилглицериды, этерифицированный холестерин); жировая капля окружена оболочкой, в состав которой входят фосфолипиды и свободный холестерин, полярные группы которых обращены к воде, а гидрофобные погружены в ядро; белковая часть представлена белками, называемыми апопротеинами. Апопротеины играют решающую роль в функционировании липопротеинов: они служат молекулами узнавания для мембранных рецепторов и необходимыми партнерами для ферментов и белков, которые участвуют в метаболизме и обмене липидов. Липопротеиды плазмы крови делят на несколько групп:

Хиломикроны (ХМ), осуществляют транспорт липидов из клеток кишечника в печень и ткани;

Пре-β-липопротеиды (липопротеиды очень низкой плотности – ЛПОНП), осуществляют транспорт липидов, синтезируемых в печени;

- β-липопротеиды (липопротеиды низкой плотности – ЛПНП), осуществляют транспорт холестерина в ткани;

- α-липопротеиды (липопротеиды высокой плотности – ЛПВП), осуществляют транспорт холестерина из тканей в печень, удаляют избыток холестерина из клеток, являются донором апопротеинов для остальных липопротеинов.

Чем больше липидное ядро, то есть чем большую часть составляют неполярные липиды, тем меньше плотность липопротеинового комплекса. Хиломикроны не могут проникать внутрь сосудистой стенки из-за своих больших размеров, а ЛПВП, ЛПНП и частично ЛПОНП могут. Однако ЛПВП из-за своего малого размера легче удаляются из стенки через лимфатическую систему, кроме того они имеют более высокий процент белка и фосфолипидов и метаболизируются быстрее, чем богатые холестерином и триацилглицеридами ЛПНП и ЛПОНП.

Гликопротеиды – содержат углеводы и их производные, прочно связанные с белковой частью молекулы. Углеводные компоненты, помимо информативной (иммунологической) функции, значительно повышают стабильность молекул к различного рода химическим, физическим воздействиям и предохраняют их от действия протеиназ. Гликозилированными чаще всего являются белки наружной стороны цитоплазматической мембраны и секретируемые из клетки белки. Связь между углеводным компонентом и белковой частью в разных гликопротеидах осуществляется посредством связи через одну из трех аминокислот: аспарагин, серин или треонин.

К гликопротеинам относятся все белки плазмы крови, кроме альбуминов, гликопротеиды цитоплазматической мембраны, некоторые ферменты, некоторые гормоны, гликопротеины слизистых оболочек, антифризы крови антарктических рыб.

Примером гликопротеинов являются иммуноглобулины – семейство Y-образных гликопротеинов, у которых обе вершины могут связывать антиген. Иммуноглобулины в организме находятся в виде мембранных белков на поверхности лимфоцитов и в свободном виде в плазме крови (антитела). Молекула IgG представляет собой крупный тетрамер из двух идентичных тяжелых цепей (Н-цепей) и двух идентичных легких цепей (L-цепей). В обеих Н-цепях имеется ковалентно связанный олигосахарид. Тяжелые цепи IgG состоят из четырех глобулярных доменов V, С 1 , С 2 , С 3 , легкие цепи – из двух глобулярных доменов V и С. Буква С обозначает константные области, V – вариабельные. Обе тяжелые цепи, а также тяжелая цепь с легкой, связаны дисульфидными мостиками. Домены внутри также стабилизированы дисульфидными мостиками. Домены имеют длину около 110 аминокислотных остатков и обладают взаимной гомологией. Такая структура, очевидно, возникла благодаря дупликации гена. В центральной области молекулы иммуноглобулина расположен шарнирный участок, который придает антителам внутримолекулярную подвижность. Иммуноглобулины расщепляются ферментом папаином на два F ab и один F c -фрагмент. Оба F ab -фрагмента состоят из одной L-цепи и N-концевой части Н-цепи и сохраняют способность связывать антиген. F c -фрагмент состоит из С-концевой половины обеих Н-цепей. Эта часть IgG выполняет функции связывания с клеточной поверхностью, взаимодействия с системой комплемента и участвует в переносе иммуноглобулинов клетками.

Гликофорин – гликопротеин мембраны эритроцитов, содержит около 50% углеводов в форме длинной полисахаридной цепи, ковалентно присоединенной к одному из концов полипептидной цепи. Углеводная цепь выступает наружу с внешней стороны мембраны, она содержит антигенные детерминанты, определяющие группу крови, кроме того, на ней имеются участки, связывающие некоторые патогенные вирусы. Полипептидная цепь погружена внутрь мембраны, расположенный в середине молекулы гликофорина гидрофобный пептидный участок проходит через липидный бислой, полярный конец с отрицательно заряженными остатками глутамата и аспартата погружен в цитоплазму.

Протеогликаны – отличаются от гликопротеидов соотношением углеводной и белковой части. В гликопротеидах крупная молекула белка в некоторых местах гликозилирована углеводными остатками, протеогликаны состоят из длинных углеводных цепей (95%), связанных с небольшим количеством белка (5%). Протеогликаны представляют собой основную субстанцию межклеточного матрикса соединительной ткани, их также называют гликозаминогликанами, мукополисахаридами. Углеводная часть представлена линейными неразветвленными полимерами, построенными из повторяющихся дисахаридных единиц, в их состав обязательно входят остатки мономера глюкозамина или галактозамина и D- или L-идуроновая кислота.

В состав протеогликанов входит 0,04% кремния, то есть на 130-280 повторяющихся звеньев животных протеогликанов приходится один атом этого элемента, у представителей растительного царства содержание кремния в пектинах примерно в пять раз выше. Предполагают, что ортокремниевая кислота Si(OH) 4 реагирует с гидроксильными группами углеводов, в резуль-тате чего образуются эфирные связи, которые могут играть роль мостиков между цепями:

Отдельные представители протеогликанов:

1. Гиалуроновая кислота – очень широко распространенный протеогликан. Он присутствует в соединительной ткани животных, стекловидном теле глаза, в синовиальной жидкости суставов. Кроме того, она синтезируется различными бактериями. Основные функции гиалуроновой кислоты – связывание воды в межклеточном пространстве, удерживание клеток в желеподобном матриксе, смазочные свойства и способность смягчать удары, участие в регуляции проницаемости тканей. Доля белка – 1–2%. Дисахаридное звено состоит из остатка глюкуроновой кислоты и остатка N-ацетилглюкозамина, связанных β(1→3) гликозидной связью, между собой дисахаридные звенья соединены β(1→4) гликозидной связью. Благодаря присутствию β(1→3)-связей молекула гиалуроновой кислоты, насчитывающая несколько тысяч моносахаридных остатков, принимает конформацию спирали. На один виток спирали приходится три дисахаридных блока. Локализованные на внешней стороне спирали гидрофильные карбоксильные группы остатков глюкуроновой кислоты могут связывать ионы Са 2+ . За счет сильной гидратации этих групп гиалуроновая кислота и другие протеогликаны при образовании гелей связывают 10 000-кратный объем воды.

остаток глюкуроной кислоты + остаток N-ацетилглюкозамина

2. Хондроитинсульфаты – отличаются от гиалуроновой кислоты тем, что вместо N-ацетилглюкозамина в ней содержится N-ацетилгалактозамин-4(или 6)-сульфат. Хондроитин-4-сульфат локализован преимущественно в хрящах, костях, роговице глаза и хряще эмбриона. Хондроитин-6-сульфат – в коже, сухожилиях, связках, пупочном канатике, сердечных клапанах.

хондроитин-4-сульфат хондроитин-6-сульфат

3. Гепарин – антикоагулянт крови и лимфы млекопитающих, синтезируется тучными клетками, которые являются элементом соединительной ткани. С протеогликанами его объединяет химическая структура – дисахаридное звено состоит из остатка глюкуронат-2-сульфата и остатка N-ацетил-глюкозамин-6-сульфата. Существуют несколько видов гепаринов, немного отличающихся по строению. Гепарин очень прочно связан с белком. Углеводная цепь гепарина и хондроитинсульфатов присоединяется к белку через О-гликозидную связь, соединяющую конечный углеводный остаток и остаток серина белковой молекулы.

4. Муреин – основной структурный полисахарид клеточных стенок бактерий. В муреине чередуются остатки двух различных моносахаридов, связанных в положении β(1→4): N-ацетилглюкозамина и характерной для муреина N-ацетилмурамовой кислоты. Последняя является простым эфиром молочной кислоты с N-ацетилглюкозамином. В клеточной стенке карбоксильная группа молочной кислоты связана амидной связью с пента-пептидом, который соединяет отдельные цепи муреина в трехмерную сетчатую структуру.

Нуклеопротеиды – сложные белки, в которых в роли небелковой части выступают нуклеиновые кислоты.

Несмотря на такое многообразие белков, существующее в клетках, природа на самом деле не перебирала все возможные сочетания аминокислот. Большинство белков произошло от ограниченного числа предковых генов.

Гомологичными называются белки, выполняющие у разных видов одинаковые функции, например, гемоглобин у всех позвоночных осуществляет транспорт кислорода, цитохром с во всех клетках участвует в процессах биологического окисления.

Гомологичные белки большинства видов:

а) имеют одинаковую или очень близкую молекулярную массу;

б) во многих положениях содержат одни и те же аминокислоты, называемые инвариантными остатками;

в) в некоторых положениях наблюдаются значительные различия в амино-кислотной последовательности, так называемые вариабельные области;

Сравнение аминокислотной последовательности гомологичных белков выявило:

1) консервативные, инвариантные аминокислотные остатки важны для формирования уникальной пространственной структуры и биологической функции данных белков;

2) наличие гомологичных белков говорит об общем эволюционном происхождении видов;

3) число вариабельных аминокислотных остатков в гомологичных белках пропорционально филогенетическим различиям между сравниваемыми видами;

4) в некоторых случаях даже небольшие изменения аминокислотной последовательности могут вызвать нарушения свойств и функций белков;

5) однако далеко не все изменения аминокислотной последовательности вызывают нарушения биологических функций белков;

6) наибольшие нарушения структуры и функции белков возникают при замене аминокислот входящих в ядро сворачивания белка, входящих в состав активного центра, на участках пересечения полипептидной цепи при образовании третичной структуры.

Белки, имеющие гомологичные участки полипептидной цепи, сходную конформацию и родственные функции, выделяют в семейства белков. Например, сериновые протеиназы – семейство белков, выполняющих функцию протеолитических ферментов. Некоторые аминокислотные замены привели к изменению субстратной специфичности этих белков и возникнове-нию функционального многообразия внутри семейства.

Конец работы -

Эта тема принадлежит разделу:

ХИМИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ

Государственное образовательное учреждение... высшего профессионального образования Пермский государственный технический университет Кафедра химии и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

ПРОСТЫЕ И СЛОЖНЫЕ БЕЛКИ

Наименование параметра Значение
Тема статьи: ПРОСТЫЕ И СЛОЖНЫЕ БЕЛКИ
Рубрика (тематическая категория) Химия

Простыми называются белки, которые при гидролизе распадаются только на аминокислоты. Название является достаточно условным, так как большая часть так называемых простых белков в клетках связаны с другими молекулами небелкового строения. Тем не менее традиционно выделяют следующие группы простых белков :

1. Гистоны – низкомолекулярные основные белки, участвуют в упаковке ДНК клетки, являются весьма консервативными белками, мутации в них гибельны. Выделяют пять фракций гистонов: фракция Н1 – богатые лизином, фракции Н2а и Н2б – умеренно богатые лизином, фракции Н3 и Н4 – богатые аргинином. Аминокислотная последовательность гистонов мало изменилась в процессе эволюции, гистоны млекопитающих, растений и дрожжей очень сходны друг с другом. К примеру, Н4 человека и пшеницы отличаются лишь несколькими аминокислотами, к тому же размер молекулы белка и ее полярность довольно постоянны. Из этого можно заключить, что гистоны были оптимизированы еще в эпоху общего предшественника животных, растений и грибов (более 700 млн лет назад). Хотя с тех пор в гистоновых генах происходили бесчисленные точечные мутации, всœе они, очевидно, приводили к вымиранию мутантных организмов.

2. Протамины – группа простейших низкомолекулярных белков, обладают выраженными основными свойствами за счёт содержания 60–85% аргинина, хорошо растворимы в воде, являются аналогами гистонов, но более плотно упаковывают ДНК в сперматозоидах позвоночных, чтобы избежать разрывов при делœении клеток.

3. Проламины – белки злаков, содержат 20–25% глутаминовой кислоты и 10–15% пролина, растворимы в 60–80% спирте, в то время как остальные белки в этих условиях выпадают в осадок. В проламинах почти полностью отсутствует лизин, что существенно снижает пищевую ценность растительных белков.

4. Глютеины – также белки растительного происхождения, составляют основную массу клейковины злаков.

5. Альбумины – белки крови, составляют больше половины белков крови, относятся к глобулярным белкам, растворимы в воде и слабых растворах солей, выпадают в осадок в насыщенном растворе (NH 4) 2 SO 4 , изоэлектрическая точка – 4,7, имеют высокий отрицательный заряд при рН крови. Альбумин крови человека состоит из одной полипептидной цепи, включающей 584 аминокислотных остатков с повышенным содержанием аспарагиновой и глутаминовой кислот. В молекуле имеются три повторяющихся гомологичных домена, каждый из которых содержит шесть дисульфидных мостиков. Можно предположить, что в ходе эволюции ген, детерминирующий данный белок, дважды дуплицировался. Альбумин обусловливает основное осмотическое давление крови (его называют онкотическим) и обладает способностью связывать липофильные вещества, вследствие чего он может транспортировать жирные кислоты, билирубин, лекарственные вещества, некоторые стероидные гормоны, витамины, ионы кальция и магния. Альбумины существуют и в растительных клетках, там они характеризуются повышенным содержанием метионина и триптофана.

6. Глобулины – глобулярные белки плазмы крови, растворяются только в слабом растворе NaCl, в ненасыщенном растворе (NH 4) 2 SO 4 выпадают в осадок, благодаря чему их можно отделить от альбуминов. Соотношение альбуминов и глобулинов – важная биохимическая характеристика крови, сохраняется на постоянном уровне. Глобулины при электрофорезе делят на несколько фракций:

α 1 – антитрипсин, антихимотрипсин, протромбин, транскортин, переносящий кортикостероиды, переносчик прогестерона, тироксин-переносящий глобулин;

α 2 – антитромбин, холинэстераза, плазминоген, макроглобулин, связывающий протеиназы и переносящий ионы цинка, ретинол-переносящий белок, витамин D-переносящий белок;

β – содержит трансферрин, переносящий желœезо, церулоплазмин, переносящий медь, фибриноген, глобулин, переносящий половые гормоны, транскобаламин, переносящий витамин В 12 , С-реактивный протеин, активирующий систему комплемента;

γ – фракция иммуноглобулинов.

Существуют также глобулины растений, они характеризуются повышенным содержанием аргинина, аспарагина и глутамина и состоят из двух фракций.

7. Склеропротеиды – белки, нерастворимые или ограниченно растворимые в воде, водных растворах нейтральных солей, этаноле и смесях этанола с водой. Это фибриллярные белки (кератины, коллаген, фиброин и др.), они отличаются высокой устойчивостью к химическим реактивам, действию протеолитических ферментов и выполняют в организме структурную функцию.

8. Токсические белки – токсины яда змей, скорпионов, пчел. Οʜᴎ характеризуются очень низкой молекулярной массой.

Сложные белки - ϶ᴛᴏ белки, при гидролизе распадающиеся на амино-кислоты и небелковое вещество. В случае если небелковое вещество прочно связано с белковым компонентом, то его называют простетической группой.

Сложные белки делятся на типы исходя из небелкового компонента.

Хромопротеиды – содержат в качестве простетической группы окрашенное вещество. Делят на три группы:

а) гемопротеиды (желœезопорфирины) – гемоглобин, миоглобин, цитохромы, каталаза, пероксидаза,

б) магнийпорфирины – хлорофилл,

в) флавопротеиды – ФАД и ФМН, входящие в состав оксидоредуктаз.

Металлопротеиды – содержат помимо белка ионы какого-либо одного или нескольких металлов. К ним относятся белки, содержащие негеминовое желœезо, а также белки, координационно связанные с атомами металлов в составе сложных белков-ферментов:

а) ферритин – высокомолекулярный водорастворимый сложный белок, содержащий около 20% желœеза, сосредоточен в селœезенке, печени, костном мозге, выполняет роль депо желœеза в организме. Желœезо в ферритинœе находится в окисленной форме (FeO·OH) 8 ·(FeO·PO 3 H 2), причем атомы желœеза координационно связываются с атомами азота пептидных групп;

б) трансферрин – входит в состав фракции β-глобулинов, содержит 0,13% желœеза, является переносчиком желœеза в организме. Атом желœеза соединяется с белком координационными связями по гидроксильным группам тирозина.

Фосфопротеиды – белки, содержащие фосфорную кислоту, присоединœенную сложноэфирной связью к гидроксильным радикалам серина и треонина. Содержание фосфорной кислоты достигает в фосфопротеидах 1%. Выполняют питательную функцию, запасая фосфор для построения костной и нервной ткани. Представителями фосфопротеидов являются:

а) вителлин – белок яичного желтка;

б) ихтулин – фосфопротеид икры рыб.

в) казеиноген – фосфопротеид молока, существует в виде растворимой соли с Са 2+ , при створаживании молока Са 2+ отсоединяется и казеин выпадает в осадок;

Липопротеиды – белки, содержащие в качестве простетической группы нейтральные жиры, свободные жирные кислоты, фосфолипиды, холестериды. Липопротеиды входят в состав цитоплазматической мембраны и внутриклеточных мембран ядра, митохондрий, эндоплазматического ретикулума, а также присутствуют в свободном состоянии (в основном, в плазме крови). Липопротеиды стабилизируются нековалентными связями различной природы.

Липопротеиды плазмы крови имеют характерное строение: внутри находится жировая капля (ядро), содержащая неполярные липиды (триацилглицериды, этерифицированный холестерин); жировая капля окружена оболочкой, в состав которой входят фосфолипиды и свободный холестерин, полярные группы которых обращены к воде, а гидрофобные погружены в ядро; белковая часть представлена белками, называемыми апопротеинами. Апопротеины играют решающую роль в функционировании липопротеинов: они служат молекулами узнавания для мембранных рецепторов и необходимыми партнерами для ферментов и белков, которые участвуют в метаболизме и обмене липидов. Липопротеиды плазмы крови делят на несколько групп:

Хиломикроны (ХМ), осуществляют транспорт липидов из клеток кишечника в печень и ткани;

Пре-β-липопротеиды (липопротеиды очень низкой плотности – ЛПОНП), осуществляют транспорт липидов, синтезируемых в печени;

- β-липопротеиды (липопротеиды низкой плотности – ЛПНП), осуществляют транспорт холестерина в ткани;

- α-липопротеиды (липопротеиды высокой плотности – ЛПВП), осуществляют транспорт холестерина из тканей в печень, удаляют избыток холестерина из клеток, являются донором апопротеинов для остальных липопротеинов.

Чем больше липидное ядро, то есть чем большую часть составляют неполярные липиды, тем меньше плотность липопротеинового комплекса. Хиломикроны не могут проникать внутрь сосудистой стенки из-за своих больших размеров, а ЛПВП, ЛПНП и частично ЛПОНП могут. При этом ЛПВП из-за своего малого размера легче удаляются из стенки через лимфатическую систему, кроме того они имеют более высокий процент белка и фосфолипидов и метаболизируются быстрее, чем богатые холестерином и триацилглицеридами ЛПНП и ЛПОНП.

Гликопротеиды – содержат углеводы и их производные, прочно связанные с белковой частью молекулы. Углеводные компоненты, помимо информативной (иммунологической) функции, значительно повышают стабильность молекул к различного рода химическим, физическим воздействиям и предохраняют их от действия протеиназ. Гликозилированными чаще всœего являются белки наружной стороны цитоплазматической мембраны и секретируемые из клетки белки. Связь между углеводным компонентом и белковой частью в разных гликопротеидах осуществляется посредством связи через одну из трех аминокислот: аспарагин, серин или треонин.

К гликопротеинам относятся всœе белки плазмы крови, кроме альбуминов, гликопротеиды цитоплазматической мембраны, некоторые ферменты, некоторые гормоны, гликопротеины слизистых оболочек, антифризы крови антарктических рыб.

Примером гликопротеинов являются иммуноглобулины – семейство Y-образных гликопротеинов, у которых обе вершины могут связывать антиген. Иммуноглобулины в организме находятся в виде мембранных белков на поверхности лимфоцитов и в свободном виде в плазме крови (антитела). Молекула IgG представляет собой крупный тетрамер из двух идентичных тяжелых цепей (Н-цепей) и двух идентичных легких цепей (L-цепей). В обеих Н-цепях имеется ковалентно связанный олигосахарид. Тяжелые цепи IgG состоят из четырех глобулярных доменов V, С 1 , С 2 , С 3 , легкие цепи – из двух глобулярных доменов V и С. Буква С обозначает константные области, V – вариабельные. Обе тяжелые цепи, а также тяжелая цепь с легкой, связаны дисульфидными мостиками. Домены внутри также стабилизированы дисульфидными мостиками. Домены имеют длину около 110 аминокислотных остатков и обладают взаимной гомологией. Такая структура, очевидно, возникла благодаря дупликации гена. В центральной области молекулы иммуноглобулина расположен шарнирный участок, который придает антителам внутримолекулярную подвижность. Иммуноглобулины расщепляются ферментом папаином на два F ab и один F c -фрагмент. Оба F ab -фрагмента состоят из одной L-цепи и N-концевой части Н-цепи и сохраняют способность связывать антиген. F c -фрагмент состоит из С-концевой половины обеих Н-цепей. Эта часть IgG выполняет функции связывания с клеточной поверхностью, взаимодействия с системой комплемента и участвует в переносœе иммуноглобулинов клетками.

Гликофорин – гликопротеин мембраны эритроцитов, содержит около 50% углеводов в форме длинной полисахаридной цепи, ковалентно присоединœенной к одному из концов полипептидной цепи. Углеводная цепь выступает наружу с внешней стороны мембраны, она содержит антигенные детерминанты, определяющие группу крови, кроме того, на ней имеются участки, связывающие некоторые патогенные вирусы. Полипептидная цепь погружена внутрь мембраны, расположенный в серединœе молекулы гликофорина гидрофобный пептидный участок проходит через липидный бислой, полярный конец с отрицательно заряженными остатками глутамата и аспартата погружен в цитоплазму.

Протеогликаны – отличаются от гликопротеидов соотношением углеводной и белковой части. В гликопротеидах крупная молекула белка в некоторых местах гликозилирована углеводными остатками, протеогликаны состоят из длинных углеводных цепей (95%), связанных с небольшим количеством белка (5%). Протеогликаны представляют из себяосновную субстанцию межклеточного матрикса соединительной ткани, их также называют гликозаминогликанами, мукополисахаридами. Углеводная часть представлена линœейными неразветвленными полимерами, построенными из повторяющихся дисахаридных единиц, в их состав обязательно входят остатки мономера глюкозамина или галактозамина и D- или L-идуроновая кислота.

В состав протеогликанов входит 0,04% кремния, то есть на 130-280 повторяющихся звеньев животных протеогликанов приходится один атом этого элемента͵ у представителœей растительного царства содержание кремния в пектинах примерно в пять раз выше. Предполагают, что ортокремниевая кислота Si(OH) 4 реагирует с гидроксильными группами углеводов, в резуль-тате чего образуются эфирные связи, которые могут играть роль мостиков между цепями:

Отдельные представители протеогликанов:

1. Гиалуроновая кислота – очень широко распространенный протеогликан. Он присутствует в соединительной ткани животных, стекловидном телœе глаза, в синовиальной жидкости суставов. Вместе с тем, она синтезируется различными бактериями. Основные функции гиалуроновой кислоты – связывание воды в межклеточном пространстве, удерживание клеток в желœеподобном матриксе, смазочные свойства и способность смягчать удары, участие в регуляции проницаемости тканей. Доля белка – 1–2%. Дисахаридное звено состоит из остатка глюкуроновой кислоты и остатка N-ацетилглюкозамина, связанных β(1→3) гликозидной связью, между собой дисахаридные звенья соединœены β(1→4) гликозидной связью. Благодаря присутствию β(1→3)-связей молекула гиалуроновой кислоты, насчитывающая несколько тысяч моносахаридных остатков, принимает конформацию спирали. На один виток спирали приходится три дисахаридных блока. Локализованные на внешней стороне спирали гидрофильные карбоксильные группы остатков глюкуроновой кислоты могут связывать ионы Са 2+ . За счёт сильной гидратации этих групп гиалуроновая кислота и другие протеогликаны при образовании гелœей связывают 10 000-кратный объём воды.

остаток глюкуроной кислоты + остаток N-ацетилглюкозамина

2. Хондроитинсульфаты – отличаются от гиалуроновой кислоты тем, что вместо N-ацетилглюкозамина в ней содержится N-ацетилгалактозамин-4(или 6)-сульфат. Хондроитин-4-сульфат локализован преимущественно в хрящах, костях, роговице глаза и хряще эмбриона. Хондроитин-6-сульфат – в коже, сухожилиях, связках, пупочном канатике, сердечных клапанах.

хондроитин-4-сульфат хондроитин-6-сульфат

3. Гепарин – антикоагулянт крови и лимфы млекопитающих, синтезируется тучными клетками, которые являются элементом соединительной ткани. С протеогликанами его объединяет химическая структура – дисахаридное звено состоит из остатка глюкуронат-2-сульфата и остатка N-ацетил-глюкозамин-6-сульфата. Существуют несколько видов гепаринов, немного отличающихся по строению. Гепарин очень прочно связан с белком. Углеводная цепь гепарина и хондроитинсульфатов присоединяется к белку через О-гликозидную связь, соединяющую конечный углеводный остаток и остаток серина белковой молекулы.

4. Муреин – основной структурный полисахарид клеточных стенок бактерий. В муреинœе чередуются остатки двух различных моносахаридов, связанных в положении β(1→4): N-ацетилглюкозамина и характерной для муреина N-ацетилмурамовой кислоты. Последняя является простым эфиром молочной кислоты с N-ацетилглюкозамином. В клеточной стенке карбоксильная группа молочной кислоты связана амидной связью с пента-пептидом, который соединяет отдельные цепи муреина в трехмерную сетчатую структуру.


Нуклеопротеиды – сложные белки, в которых в роли небелковой части выступают нуклеиновые кислоты.

Несмотря на такое многообразие белков, существующее в клетках, природа на самом делœе не перебирала всœе возможные сочетания аминокислот. Большинство белков произошло от ограниченного числа предковых генов.

Гомологичными называются белки, выполняющие у разных видов одинаковые функции, к примеру, гемоглобин у всœех позвоночных осуществляет транспорт кислорода, цитохром с во всœех клетках участвует в процессах биологического окисления.

Гомологичные белки большинства видов:

а) имеют одинаковую или очень близкую молекулярную массу;

б) во многих положениях содержат одни и те же аминокислоты, называемые инвариантными остатками;

в) в некоторых положениях наблюдаются значительные различия в амино-кислотной последовательности, так называемые вариабельные области;

Сравнение аминокислотной последовательности гомологичных белков выявило:

1) консервативные, инвариантные аминокислотные остатки важны для формирования уникальной пространственной структуры и биологической функции данных белков;

2) наличие гомологичных белков говорит об общем эволюционном происхождении видов;

3) число вариабельных аминокислотных остатков в гомологичных белках пропорционально филогенетическим различиям между сравниваемыми видами;

4) в некоторых случаях даже небольшие изменения аминокислотной последовательности могут вызвать нарушения свойств и функций белков;

5) однако далеко не всœе изменения аминокислотной последовательности вызывают нарушения биологических функций белков;

6) наибольшие нарушения структуры и функции белков возникают при замене аминокислот входящих в ядро сворачивания белка, входящих в состав активного центра, на участках пересечения полипептидной цепи при образовании третичной структуры.

Белки, имеющие гомологичные участки полипептидной цепи, сходную конформацию и родственные функции, выделяют в семейства белков. К примеру, сериновые протеиназы – семейство белков, выполняющих функцию протеолитических ферментов. Некоторые аминокислотные замены привели к изменению субстратной специфичности этих белков и возникнове-нию функционального многообразия внутри семейства.

ПРОСТЫЕ И СЛОЖНЫЕ БЕЛКИ - понятие и виды. Классификация и особенности категории "ПРОСТЫЕ И СЛОЖНЫЕ БЕЛКИ" 2014, 2015.