Диффузионный потенциал расчет. Диффузионный и мембранный потенциалы. Мембранный диффузионный потенциал

Как уже указывалось, концентрационные цепи имеют большое практическое значение, так как с их помощью можно определять такие важные величины как коэффициент активности и активность ионов, растворимость малорастворимых солей, числа переноса и т.д. Такие цепи практически легко осуществимы и соотношения, связывающие ЭДС концентрационной цепи с активностями ионов, так же проще, чем для других цепей. Напомним, что электрохимическая цепь, содержащая границу двух растворов, называется цепью с переносом и схема ее изображается следующим образом:

Ме 1 ½раствор (I) раствор (II)½Ме 2 ½Ме 1 ,

где пунктирная вертикальная черта указывает на существование между двумя растворами диффузионного потенциала, который является гальвани – потенциалом между точками, находящимися в разных по химическому составу фазах, а потому его нельзя точно измерить. Величина диффузионного потенциала входит в сумму для расчета ЭДС цепи:

Малая величина ЭДС концентрационной цепи и необходимость точного ее измерения делают особенно важным либо полное устранение, либо точный расчет диффузионного потенциала, который возникает на границе двух растворов в такой цепи. Рассмотрим концентрационную цепь

Ме½Ме z+ ½Ме z+ ½Me

Напишем уравнение Нернста для каждого из электродов этой цепи:

для левого

для правого

Допустим, что активность ионов металла у правого электрода больше, чем у левого, т.е.

Тогда очевидно, что j 2 положительнее, чем j 1 и ЭДС концентрационной цепи (Е к) (без диффузионного потенциала) равна разности потенциалов j 2 – j 1 .

Следовательно,

, (7.84)

тогда при Т = 25 0 С , (7.85)

где и – моляльные концентрации ионов Ме z + ; g 1 и g 2 – коэффициенты активности ионов Ме z + соответственно у левого (1) и правого (2) электродов.

а) Определение средних ионных коэффициентов активности электролитов в растворах

Для наиболее точного определения коэффициента активности необходимо измерить ЭДС концентрационной цепи без переноса, т.е. когда отсутствует диффузионный потенциал.

Рассмотрим элемент, состоящий из хлорсеребряного электрода, погруженного в раствор HCl (моляльностью C m) и водородного электрода:

(–) Pt, H 2 ½HCl½AgCl, Ag (+)

Процессы, происходящие на электродах:

(–) H 2 ® 2H + + 2

(+) 2AgCl + 2 ® 2Ag + 2Cl –

токообразующая реакция H 2 + 2AgCl ® 2H + + 2Ag + 2Cl –

Уравнение Нернста

для водородного электрода: ( = 1атм)

для хлорсеребряного:

Известно, что

= (7.86)

Учитывая, что средняя ионная активность для HClравна

и ,

где С m – моляльная концентрация электролита;

g ± – средний ионный коэффициент активности электролита,

получаем (7.87)

Для расчета g ± по данным измерения ЭДС необходимо знать стандартный потенциал хлорсеребряного электрода, который в данном случае будет и стандартным значением ЭДС (Е 0), т.к. стандартный потенциал водородного электрода равен 0.

После преобразования уравнения (7.6.10) получим

(7.88)

Уравнение (7.6.88) содержит две неизвестные величины j 0 и g ± .

По теории Дебая – Хюккеля для разбавленных растворов 1-1 электролитов

lng ± = –A ,

где А – коэффициент предельного закона Дебая и согласно справочным данным для этого случая А = 0,51.

Поэтому, последнее уравнение (7.88) можно переписать в следующем виде:

(7.89)

Для определения строят график зависимости от и проводят экстраполяцию к С m = 0 (рис. 7.19).


Рис. 7.19. График для определения Е 0 при вычислении g ± р-ра НСl

Отрезок, отсекаемый от оси ординат, будет величиной j 0 хлорсеребряного электрода. Зная , можно по экспериментальным величинам Е и известной моляльности для раствора HCl (C m), используя уравнение (7.6.88), найти g ±:

(7.90)

б) Определение произведения растворимости

Знание стандартных потенциалов позволяет легко рассчитать произведение растворимости труднорастворимой соли или оксида.

Для примера рассмотрим AgCl: ПР = L AgCl = a Ag + . a Cl –

Выразим L AgCl через стандартные потенциалы, согласно электродной реакции

AgCl – AgCl+ ,

идущей на электроде IIрода

Cl – / AgCl, Ag

И реакции Ag + + Ag,

идущей на электроде Iрода с токообразующей реакцией

Cl – + Ag + ®AgCl

; ,

т.к. j 1 = j 2 (электрод один и тот же) после преобразования:

(7.91)

= ПР

Значения стандартных потенциалов берутся из справочника, тогда легко рассчитать ПР.

в) Диффузионный потенциал концентрационной цепи. Определение чисел переноса

Рассмотрим обычную концентрационную цепь с использованием солевого мостика с целью исключения диффузионного потенциала

(–) Ag½AgNO 3 ½AgNO 3 ½Ag (+)

ЭДС такой цепи без учета диффузионного потенциала равна:

(7.92)

Рассмотрим эту же цепь без солевого мостика:

(–) Ag½AgNO 3 AgNO 3 ½Ag (+)

ЭДС концентрационной цепи с учетом диффузионного потенциала:

Е КД = Е К + j Д (7.93)

Пусть через раствор пройдет 1 фарадей электричества. Каждый вид ионов переносит часть от этого количества электричества, равную его числу переноса (t + или t –). Количество электричества, которое перенесут катионы и анионы, будет равно t + . F и t – . F соответственно. На границе соприкосновения двух растворов AgNO 3 разной активности возникает диффузионный потенциал (j Д). Катионы и анионы, преодолевая (j Д), совершают электрическую работу.

В расчете на 1 моль:

DG = –W эл = – zFj Д = – Fj д (7.94)

При отсутствии диффузионного потенциала ионы при пересечении границы раствора совершают только химическую работу. При этом изменяется изобарный потенциал системы:

Аналогично для второго раствора:

(7.98)

Тогда по уравнению (7.6.18)

(7.99)

Преобразуем выражение (7.99), с учетом выражения (7.94):

(7.100)

(7.101)

Числа переноса (t + и t –) могут быть выражены через ионные проводимости:

;

Тогда (7.102)

Если l – > l + , то j д > 0 (диффузионный потенциал помогает движению ионов).

Если l + > l – , то j д < 0 (диффузионный потенциал препятствует движению ионов, уменьшает ЭДС). Если l + = l – , то j д = 0.

Если в уравнение (7.99) подставим значение j д из уравнения (7.101), то получим

Е КД = Е К + Е К (t – – t +), (7.103)

после преобразования:

Е КД = Е К + (1 + t – – t +) (7.104)

Известно, что t + + t – = 1; тогда t + = 1 – t – и выражение

(7.105)

Если выразить Е КД через проводимости, то получим:

Е КД = (7.106)

Измеряя Е КД экспериментально, можно определить числа переноса ионов, их подвижности и ионные проводимости. Этот метод значительно проще и удобнее, чем метод Гитторфа.

Таким образом, с помощью экспериментального определения различных физико-химических величин можно провести количественные расчеты по определению ЭДС системы.

Используя концентрационные цепи, можно определить раствори-мость малорастворимых солей в растворах электролитов, коэффициент активности и диффузионный потенциал.


Электрохимическая кинетика

Если электрохимическая термодинамика занимается исследованием равновесий на границе электрод – раствор, то измерение скоростей процессов на этой границе и выяснение закономерностей, которым они подчиняются, является объектом изучения кинетики электродных процессов или электрохимической кинетики.

Электролиз

Законы Фарадея

Поскольку прохождение электрического тока через электро-химические системы связано с химическим превращением, то должна существовать определенная зависимость между количеством электри-чества и количеством прореагировавших веществ. Эта зависимость была открыта Фарадеем (1833-1834 гг.) и получила отражение в первых количественных законах электрохимии, названных законами Фарадея .

Электролиз возникновение химических превращений в электрохимической системе при пропускании через нее электрического тока от внешнего источника. Путем электролиза удается провести процессы, самопроизвольное протекание которых невозможно согласно законам термодинамики. Например, разложение HСl (1M) на элементы сопровождается возрастанием энергии Гиббса 131,26 кДж/моль. Однако под действием электрического тока этот процесс легко может быть осуществлен.

Первый закон Фарадея.

Количество прореагировавшего на электродах вещества пропорционально силе тока, прошедшего через систему, и времени его прохождения.

Математически выражается:

Dm = kэI t = kэq, (7.107)

где Dm – количество прореагировавшего вещества;

kэ – некоторый коэффициент пропорциональности;

q – количество электричества, равное произведению силы

тока I на время t.

Если q = It = 1, тоDm = k э, т.е. коэффициент k э представляет собой количество вещества, реагирующее при протекании единицы количества электричества. Коэффициент пропорциональности k э называется электро-химическим эквивалентом . Так как в качестве единицы количества электричества могут быть выбраны различные величины (1 Кл= 1А. с; 1F = 26,8 А. ч = 96500 К), то для одной и той же реакции следует различать электрохимические эквиваленты, относящиеся к этим трем единицам: А. с k э, А. ч k э и F k э.

Второй закон Фарадея .

При электрохимическом разложении различных электролитов одним и тем же количеством электричества содержание полученных на электродах продуктов электрохимической реакции пропорционально их химическим эквивалентам.

По второму закону Фарадея при постоянном количестве прошедшего электричества массы прореагировавших веществ относятся между собой как их химические эквиваленты А .

. (7.108)

Если за единицу количества электричества выбрать фарадей, то

Dm 1 = F k э 1 ; Dm 2 = F k э 2 и Dm 3 = F k э 3 , (7.109)

(7.110)

Последнее уравнение позволяет объединить оба закона Фарадея в виде одного общего закона, по которому количество электричества, равное одному фарадею (1F или 96500 Кл, или 26,8 А. ч), всегда изменяет электрохимически один грамм-эквивалент любого вещества, независимо от его природы.

Законы Фарадея применимы не только к водным и неводным растворам солей при обычной температуре, но справедливы и в случае высокотемпературного электролиза расплавленных солей.

Выход вещества по току

Законы Фарадея являются наиболее общими и точными количественными законами электрохимии. Однако в большинстве случаев электрохимическому изменению подвергается меньшее количество данного вещества, чем рассчитанное на основании законов Фарадея. Так, например, если пропускать ток через подкисленный раствор сульфата цинка, то при прохождении 1F электричества выделяется обычно не 1 г-экв цинка, а примерно 0,6 г-экв. Если подвергать электролизу растворы хлоридов, то в результате пропускания 1F электричества образуется не один, а немногим более 0,8 г-экв газообразного хлора. Подобные отклонения от законов Фарадея связаны с протеканием побочных электрохимических процессов. В первом из разобранных примеров на катоде протекает фактически две реакции:

реакция осаждения цинка

Zn­­ 2+ + 2 = Zn

и реакция образования газообразного водорода

2Н + + 2 = Н 2

Результаты, полученные при выделении хлора, также не будут противоречить законам Фарадея, если учесть, что часть тока расходуется на образование кислорода и, кроме того, выделенный на аноде хлор может частично снова переходить в раствор вследствие вторичных химических реакций, например по уравнению

Cl 2 + H 2 O = HCl + HСlO

Чтобы учесть влияние параллельных, побочных и вторичных реакций, было введено понятие выхода по току Р . Выход по току – это часть количества протекшего электричества, которая приходится на долю данной электродной реакции

Р = (7.111)

или в процентах

Р = . 100 %, (7.112)

где q i – количество электричества, расходуемое на данную реакцию;

Sq i – общее количество прошедшего электричества.

Так, в первом из примеров выход по току цинка составляет 60 %, а водорода – 40 %. Часто выражение для выхода по току записывается в другой форме:

Р = . 100 %, (7.113)

где q p и q p – количество электричества, соответственно рассчитанное по закону Фарадея и пошедшее фактически на электрохимическое превращение данного количества вещества.

Можно также определить выход по току как отношение количества измененного вещества Dm p к тому, которое должно было бы прореагировать, если бы весь ток расходовался только на данную реакцию Dm р:

Р = . 100 %. (7.114)

Если из нескольких возможных процессов желателен только один, то необходимо, чтобы его выход по току был как можно выше. Имеются системы, в которых весь ток расходуется лишь на одну электрохимическую реакцию. Такие электрохимические системы используются для измерения количества прошедшего электричества и называются кулонометрами, или кулометрами.

В ячейках с переносом контактируют между собой растворы полуячеек различного качественного и количественного состава. Подвижности (коэффициенты диффузии) ионов, их концентрации и природа в полуячейках в общем случае различаются. Более быстрый ион заряжает слой по одну сторону воображаемой границы слоев своим знаком, оставляя по другую сторону слой, заряженный противоположно. Электростатическое притяжение не дает процессу диффузии отдельных ионов развиваться далее. Происходит разделение положительных и отрицательных зарядов на атомном расстоянии, что по законам электростатики приводит к возникновению скачка электрического потенциала, называемого в данном случае диффузионным потенциалом Дф и (синонимы - жидкостной потенциал, потенциал жидкостного соединения, контакта). Однако, диффузия- миграция электролита в целом продолжается при определенном градиенте сил, химических и электрических.

Как известно, диффузия - существенно неравновесный процесс. Диффузионный потенциал - неравновесная составляющая ЭДС (в отличие от электродных потенциалов). Он зависит от физико-химических характеристик отдельных ионов и даже от устройства контакта между растворами: пористая диафрагма, тампон, шлиф, свободная диффузия, асбестовая или шелковая нить, и т. д. Его величина не может быть точно измерена, а оценивается экспериментально и теоретически с той или иной степенью приближения.

Для теоретической оценки Дф 0 используются различные подходы Доп4В. В одном из них, называемом квази-термодина- мическим, электрохимический процесс в ячейке с переносом в целом считается обратимым, а диффузия - стационарной. Принимается, что на границе растворов создается некоторый переходный слой, состав которого изменяется непрерывно от раствора (1) до раствора (2). Этот слой мысленно разбивается на тонкие подслои, состав которых, т. е. концентрации, а с ними и химические и электрические потенциалы, изменяются на бесконечно малую величину по сравнению с соседним подслоем:

Те же соотношения сохраняются между последующими подслоями, и так до раствора (2). Стационарность заключается в неизменности картины во времени.

В условиях измерения ЭДС происходит диффузионный перенос зарядов и ионов между подслоями, т. е. совершаются электрическая и химическая работа, разделимые только мысленно, как при выводе уравнения электрохимического потенциала (1.6). Систему считаем бесконечно большой, и рассчитываем на 1 экв. вещества и 1 Фарадей заряда, переносимым каждым видом участвующих ионов:

Справа минус, потому что работа диффузии производится в направлении убыли силы - градиента химического потенциала; t; - число переноса, т. е. доля заряда, переносимого данным /-м видом ионов.

Для всех ионов-участников и для всей суммы подслоев, составляющих переходный слой от раствора (1) до раствора (2), имеем:

Заметим слева определение диффузионного потенциала как интегральной величины потенциала, непрерывно меняющегося по составу переходного слоя между растворами. Подставляя |1, = |ф +/?Г1пй, и учитывая, что (I, =const при р,Т= const, получим:

Искомая связь между диффузионным потенциалом и характеристиками ионов, такими как числа переноса, заряд и активности отдельных ионов. Последние, как известно, термодинамически не определимы, что затрудняет расчет A(p D , требуя нетермодинамических допущений. Интегрирование правой части уравнения (4.12) производится при различных предположениях о строении границы между растворами.

М. Планк (1890) считал границу резкой, слой тонким. Интегрирование при этих условиях привело к получению уравнения Планка для Дф 0 , оказавшимся трансцендентным относительно этой величины. Его решение находят итерационным методом.

Гендерсон (1907) вывел свое уравнение для Дф 0 , исходя из предположения, что между контактирующими растворами создается переходный слой толщиной d, состав которого изменяется линейно от раствора (1) до раствора (2), т. е.

Здесь С; - концентрация иона, х - координата внутри слоя. При интегрировании правой части выражения (4.12) приняты допущения:

  • активности ионов а, заменены на концентрации С, (Гендерсон и не знал активностей!);
  • числа переноса (подвижности ионов) приняты независящими от концентрации и постоянными в пределах слоя.

Тогда получается общее уравнение Гендерсона:


Zj, С„ «, - заряд, концентрация и электролитическая подвижность иона в растворах (1) и (2); знаки + и _ вверху относятся к катионам и анионам соответственно.

В выражении для диффузионного потенциала отражаются различия характеристик ионов по разные стороны границы, т. е. в растворе (1) и в растворе (2). Для оценки Дф 0 чаще всего используется именно уравнение Гендерсона, которое в типичных частных случаях ячеек с переносом упрощается. При этом используются различные характеристики подвижности ионов, связанные с и, - ионные электропроводности, числа переноса (Таблица 2.2), т. е. величины, доступные из справочных таблиц.

Формула Гендерсона (4.13) может быть записана несколько компактнее, если использовать ионные электропроводности:


(здесь обозначения растворов 1 и 2 заменены на " и " соответственно).

Следствием общих выражений (4.13) и (4.14) являются некоторые частные, приводимые ниже. Следует иметь в виду, что использование концентраций вместо ионных активностей и характеристик подвижности (электропроводности) ионов при бесконечном разбавлении делает эти формулы весьма приближенными (но тем более точными, чем более разбавлены растворы). При более строгом выводе учитываются зависимости характеристик подвижности и чисел переноса от концентрации, а вместо концентраций стоят активности ионов, которые с определенной степенью приближения можно заменить средними активностями электролита.

Частные случаи:

Для границы двух растворов одинаковой концентрации разных электролитов с общим ионом типа АХ и ВХ, или АХ и AY:

(формулы Льюиса - Сержента), где - предельные молярные электропроводности соответствующих ионов, А 0 - предельная молярная электропроводность соответствующих электролитов. Для электролитов типа АХ 2 и ВХ 2

С и С" одного и того же электролита типа 1:1

где V) и А.® - предельные молярные электропроводности катионов и анионов, t и г + - числа переноса аниона и катиона электролита.

Для границы двух растворов разной концентрации С" и С" одного и того же электролита с зарядами катионов z+, анионов z~, числами переноса t + и t_ соответственно

Для электролита типа М„+А г _, принимая во внимание условие электронейтральности v + z + = -v_z_ и стехиометрическое соотношение C + = v + C и C_ = v_C, можно упростить это выражение:

В приведенных выражениях для диффузионного потенциала отражаются различия подвижности (чисел переноса) и концентрации катионов и анионов по разные стороны границы растворов. Чем меньше эти различия, тем меньше величина Дф 0 . Это видно и из Табл. 4.1. Самые высокие значения Дфи (десятки мВ) получились для растворов кислоты и щелочей, содержащих ионы Н f и ОН“, обладающие уникально высокой подвижностью. Чем меньше различие подвижностей, т. е. чем ближе к 0.5 значение t + и тем меньше Дф ц. Это наблюдается для электролитов 6-10, которые называются «равнопроводя- щими» или «равнопереносягцими».

Для расчетов Дф 0 использованы предельные значения электропроводностей (и чисел переноса), но реальные значения концентраций. Это вносит определенную ошибку, которая для 1 - 1 электролитов (№№ 1 - 11) составляет от 0 до ±3%, тогда как для электролитов, содержащих ионы с зарядом |г,|>2 ошибка должна быть больше, ибо электропроводность изменяется с изменением ионной силы которую

наибольший вклад вносят именно многозарядные ионы.

Значения Дф 0 на границах растворов разных электролитов с одним и тем же анионом и одинаковыми концентрациями приведены в Табл. 4.2.

Заключения о диффузионных потенциалах, сделанные ранее для растворов одинаковых электролитов разных концентраций (Табл. 4.1), подтверждаются и в случае разных электролитов одинаковой концентрации (колонки 1-3 Табл. 4.2). Диффузионные потенциалы оказываются наибольшими, если по разные стороны границы находятся электролиты, содержащие ионы Н + или ОН". Они достаточно велики для электролитов, содержащих ионы, числа переноса которых в данном растворе далеки от 0.5.

Рассчитанные значения Афр неплохо совпадают с измеренными, особенно если учесть как приближения, использованные при выводе и применении уравнений (4.14а) и (4.14в), так и экспериментальные трудности (погрешности) при создании границы жидкостей.

Таблица 41

Предельные ионные электропроводности и электропроводности водных растворов электролитов, числа переноса и диффузионные потенциалы,

рассчитанные по формулам (414г- 414е) при для 25 °С

Электролит

Cm cm моль

См? cm 2 моль

См см 2 моль

Аф с,

NH 4CI

NH 4NO 3

CH 3COOU

У 2 СаС1 2

1/2 NcbSCX}

l/3LaCl 3

1/2 CuS0 4

l/2ZnS0 4

На практике чаще всего вместо количественной оценки величины Афр прибегают к его элиминированию, т. е. доведению его величины до минимума (до нескольких милливольт) включением между контактирующими растворами электролитического мостика («ключа»), заполненного концентрированным раствором так называемого равнопроводящего электролита, т. е.

электролита, катионы и анионы которого обладают близкими подвижностями и, соответственно, ~ / + ~ 0.5 (№№ 6-10 в Табл. 4.1). Ионы такого электролита, взятые в большой концентрации по отношению к электролитам в ячейке (в концентрации, близкой к насыщению), берут на себя роль основных переносчиков заряда через границу растворов. Вследствие близости подвижностей этих ионов и их преобладающей концентрации Дфо -> 0 мВ. Сказанное иллюстрируется колонками 4 и 5 Табл. 4.2. Диффузионные потенциалы на границах растворов NaCl и KCI с концентрированными растворами КС1 действительно близки к 0. В то же время на границах концентрированных растворов КС1 даже с разбавленными растворами кислоты и щелочи Д(р в не равен 0 и увеличивается с увеличением концентрации последних.

Таблица 4.2

Диффузионные потенциалы на границах растворов разных электролитов, рассчитанные но формуле (4.14а) при 25 °С

Жидкостное

соединение" 1

эксп. 6 ’,

Жидкостное соединение а),г>

нс1 о.1 :kci од

HCI 1.0||KCl Sa ,

НС1 0.1ЦКС1 Sat

НС1 0.01ЦКС1&,

НС10.1:NaCl 0.1

NaCl 1,0|| KCI 3,5

HCI 0.01 iNaCl 0.01

NaCl 0.11| KCI 3,5

HCI 0.01 ILiCl 0.01

KCI 0.1 iNaCl 0.1

KCI 0.1ЦКС1 Sat

KCI 0.01 iNaCl 0.01

KCI 0.01 iLiCl 0.01

NaOH 0.1ЦКС1 Sal

Kci o.oi :nh 4 ci o.oi

NaOH 1.0ЦКС1 Sat

LiCl 0.01:nh 4 ci 0.01

NaOH 1.0ЦКС1 3,5

LiCl 0.01 iNaCl 0.01

NaOH 0.1ЦКС1 0.1

Примечания:

Концентрации в моль/л.

61 Измерения ЭДС ячеек с переносом и без переноса; расчет с учетом средних коэффициентов активности; см. далее.

Расчет по уравнению Льюиса - Сержента (4Л4а).

" KCl Sal - это насыщенный раствор КС1 (~4.16 моль/л).

"Расчет по уравнению Гендерсона типа (4.13), но с использованием средних активностей вместо концентраций.

Диффузионные потенциалы с каждой стороны мостика имеют противоположные знаки, что способствует элиминированию суммарного Дф 0 , который в этом случае называют остаточным (residual) диффузионным потенциалом ДДф и res .

Границу жидкостей, на которой Дф р элиминирован включением электролитического мостика, принято обозначать (||), как это сделано в Табл. 4.2.

Дополнение 4В.

ДИФФУЗИОННЫЙ ПОТЕНЦИАЛ,

разность потенциалов на границе двух соприкасающихся р-ров электролитов. Обусловлен тем, что скорости переноса катионов и анионов через границу, вызванного различием их элсктрохим. потенциалов в р-рах 1 и 2, различны. Наличие Д. п. может вызывать погрешность при измерениях электродного потенциала, поэтому Д. п. стремятся рассчитать или устранить. Точный расчет невозможен из-за неопределимости коэф. активности ионов, а также отсутствия сведений о распределении концентраций ионов в пограничной зоне между соприкасающимися р-рами. Если в контакте находятся р-ры одного и того же z, z - зарядного электролита (z - число катионов, равное числу анионов) разл. концентраций и можно считать, что числа переноса анионов и катионов, соотв. t + и t_, не зависят от их активности, а коэф. активности анионов и катионов равны между собой в обоих р-рах, то Д. п.

Где a 1 и а 2 -средние активности ионов в р-рах 1 и 2, Т - абс. т-ра, R - , F - постоянная Фарадея. Имеются и др. приближенные ф-лы для определения Д. п. Снизить Д. п. до малой величины во мн. случаях можно, разделив р-ры 1 и 2 "солевым мостиком" из концентрир. р-ра , катионы и к-рой имеют примерно равные числа переноса (КСl, NH 4 NO 3 и др.). Лит.: Феттер К., Электрохимическая кинетика, пер. с нем., М., 1967, с. 70-76; Ротинян А. Л., Тихонов К. И., Шошина И. А., Теоретическая . Л., 1981, с. 131-35. А. Д. Давыдов.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ДИФФУЗИОННЫЙ ПОТЕНЦИАЛ" в других словарях:

    диффузионный потенциал - – потенциал, возникающий в гальваническом элементе при контакте электролитов; обусловлен разной скоростью диффузии ионов. Общая химия: учебник / А. В. Жолнин … Химические термины

    диффузионный потенциал - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN diffusion potential …

    диффузионный потенциал - difuzijos potencialas statusas T sritis Standartizacija ir metrologija apibrėžtis Potencialo pokytis, susidarantis dėl koncentracijų skirtumo kietųjų kūnų, tirpalų ir pan. sąlyčio riboje. atitikmenys: angl. diffusion potential vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    диффузионный потенциал - difuzinis potencialas statusas T sritis chemija apibrėžtis Potencialo šuolis, atsirandantis tirpalų sąlyčio riboje. atitikmenys: angl. diffusion potential rus. диффузионный потенциал … Chemijos terminų aiškinamasis žodynas

    диффузионный потенциал - difuzijos potencialas statusas T sritis fizika atitikmenys: angl. diffusion potential vok. Diffusionspotential, n rus. диффузионный потенциал, m pranc. potentiel de diffusion, m … Fizikos terminų žodynas

    диффузионный потенциал самопроизвольной поляризации в скважине - диффузионный потенциал Ед Электродвижущая сила, возникающая на контакте растворов различной минерализации. [ГОСТ 22609 77] Тематики геофизические исследования в скважинах Обобщающие термины обработка и интерпретация результатов геофизических… … Справочник технического переводчика

    ПОТЕНЦИАЛ - ПОТЕНЦИАЛ. Количество любого вида энергии может быть выражено произведением двух различных величин, из к рых одна характеризует «уровень энергии», определяет направле ние, в к ром должен совершаться ее переход; так напр. тяжелое тело… … Большая медицинская энциклопедия

    потенциал самопроизвольной поляризации в скважине - потенциал самопроизвольной поляризации Uпс Потенциал, созданный в скважине токами самопроизвольной поляризации. Примечание Потенциал самопроизвольной поляризации включает диффузионный, диффузионно абсорбционный и фильтрационный потенциал. [ГОСТ… … Справочник технического переводчика

    потенциал волны - – в классической полярографии потенциал, при котором диффузионный ток, вызванный восстановлением вещества на индикаторном электроде, достигает половины своей максимальной величины. Словарь по аналитической химии … Химические термины

    Разность электростатич. потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение Э. п. обусловлено пространств. разделением зарядов противоположного знака на границе раздела фаз и образованием двойного… … Химическая энциклопедия

Диффузионные потенциалы возникают на границе соприкосновения двух растворов. Причем это могут быть как растворы разных веществ, так и растворы одного и того же вещества, только в последнем случае они обязательно должны отличаться друг от друга своими концентрациями.

При соприкосновении двух растворов происходит взаимопроникновение в них частиц (ионов) растворенных веществ вследствие процесса диффузии.

Причина возникновения при этом диффузионного потенциала заключается в неодинаковой подвижности ионов растворенных веществ. Если ионы электролита обладают разной скоростью диффузии, то более быстрые ионы постепенно оказываются впереди менее подвижных. Образуются как бы две волны разнозаряженных частиц.

Если смешиваются растворы одного и того же вещества, но с разной концентрацией, то более разбавленный раствор приобретает заряд, совпадающий по знаку с зарядом более подвижных ионов, а менее разбавленный – заряд, совпадающий по знаку с зарядом менее подвижных ионов (рис. 90).

Рис. 90. Возникновение диффузионного потенциала вcледствие разной скорости ионов:I – «быстрые» ноны, заряженные отрицательно;II – «медленные» ионы, заряженные положительно

На границе раздела растворов возникает так называемый диффузионный потенциал. Он усредняет скорости движения ионов (тормозит более «быстрые» и ускоряет более «медленные»).

Постепенно, с завершением процесса диффузии данный потенциал снижается до нуля (обычно в течение 1-2 часов).

Диффузионные потенциалы могут возникать и в биологических объектах при повреждении оболочек клеток. При этом нарушается их проницаемость и электролиты могут диффундировать из клетки в тканевую жидкость или наоборот в зависимости от разности концентрации по обе стороны мембраны.

В результате диффузии электролитов возникает так называемый потенциал повреждения, который может достигать величин порядка 30-40 мV. Причем поврежденная ткань чаще всего заряжается отрицательно по отношению к неповрежденной.

Диффузионный потенциал возникает в гальванических элементах на границе соприкосновения двух растворов. Поэтому при точных вычислениях э.д.с. гальванических цепей обязательно должна вводиться поправка на его величину. Для устранения влияния диффузионного потенциала электроды в гальванических элементах часто соединяют друг с другом «солевым мостиком», представляющим собой насыщенный раствор KCl .

Ионы калия и хлора имеют почти одинаковые подвижности, поэтому их применение позволяет в значительной степени уменьшить влияние диффузионного потенциала на величину э.д.с.

Диффузионный потенциал может сильно возрасти, если растворы электролитов разного состава или разных концентраций разделить мембраной, проницаемой только для ионов определенного знака заряда или вида. Такие потенциалы будут гораздо более стойкими и могут сохраняться в течение более длительного времени – они называются иначе мембранными потенциалами . Мембранные потенциалы возникают при неравномерном распределении ионов по обе стороны мембраны, зависящем от её избирательной проницаемости, или в результате обмена ионами между самой мембраной и раствором.

На возникновении мембранного потенциала основан принцип работы так называемого ион-селективного илимембранного электрода.

Основой такого электрода является определенным образом полученная полупроницаемая мембрана, обладающая селективной ионной проводимостью. Особенностью мембранного потенциала является то, что в соответствующей ему электродной реакции не участвуют электроны. Здесь имеет место обмен ионами между мембраной и раствором.

Мембранные электроды с твердой мембраной содержат тонкую мембрану, по обе стороны которой находятся разные растворы, содержащие одни и те же определяемые ионы, но с неодинаковой концентрацией. С внутренней стороны мембрану омывает стандартный раствор с точно известной концентрацией определяемых ионов, с внешней стороны – анализируемый раствор с неизвестной концентрацией определяемых ионов.

Вследствие различной концентрации растворов по обе стороны мембраны ионы обмениваются с внутренней и внешней сторонами мембраны неодинаковым образом. Это приводит к тому, что на разных сторонах мембраны образуется разный электрический заряд и как результат этого, возникает мембранная разность потенциалов.

Среди ионо-селективных электродов большое распространение получил стеклянный электрод, который применяют для определения рН растворов.

Центральной частью стеклянного электрода (рис. 91) является шарик, изготовленный из специального токопроводящего гидратированного стекла. Он заполнен водным раствором HClс известной концентрацией (0,1 моль/дм 3). В этот раствор помещают электрод второго рода – чаще всего хлорсеребряный, выступающий в роли электрода сравнения. При измерениях стеклянный шарик опускают в анализируемый раствор, в котором находится второй электрод сравнения.

Принцип действия электрода основан на том, что в структуре стекла ионы K + ,Na + ,Li + заменены на ионы Н + путем его длительного вымачивания в растворе кислоты. Таким образом стеклянная мембрана может обмениваться своими ионами Н + с внутренним и внешним растворами (рис. 92). Причем по обе стороны мембраны вследствие этого процесса возникают различные потенциалы.

Рис. 91. Схема стеклянного электрода: 1 – стеклянный шарик (мембрана); 2 – внутренний раствор НС1; 3 – хлорсеребряный электрод; 4 – измеряемый раствор; 5 – металлический проводник

Рис. 92. Стеклянный электрод в растворе с неизвестной концентрацией ионов Н + (а) и схема обмена ионов между двумя фазами (б)

С помощью электродов сравнения, помещенных во внешний и внутренний растворы, измеряют их разность.

Потенциал на внутренней стороне мембраны постоянен, поэтому разность потенциалов стеклянного электрода будет зависеть только от активности ионов водорода в исследуемом растворе.

Общая схема цепи, включающая стеклянный электрод и два электрода сравнения, представлена на рис. 93.

Рис. 93. Схема цепи, поясняющая принцип работы стеклянного электрода

Стеклянный электрод имеет ряд существенных преимуществ по сравнению с водородным электродом, с помощью которого тоже можно измерять концентрацию ионов Н + в растворе.

Он совершенно не чувствителен к различным примесям в растворе, «не отравляется ими», им можно пользоваться, если в анализируемых жидкостях содержатся сильные окислители и восстановители, а также в самом широком диапазоне значений рН – от 0 до 12. Недостатком стеклянного электрода является его большая хрупкость.

Диффузионный потенциал - это разность потенциалов, возникающая на границе раздела между двумя неодинаковыми растворами электролита. Он обусловлен диффузией ионов через границу раздела и вызывает торможение более быстро диффундирующих ионов и ускорение более медленно диффундирующих ионов, будь то катионы или анионы. Таким образом, вскоре устанавливается равновесней потенциал на границе раздела достигает постоянной величины , которая зависит от числа переноса ионов, величины их заряда и концентрации электролита.

Э. д. с. концентрационной цепи (см.)

выражаемая уравнением

есть сумма двух электродных потенциалов и диффузионного потенциала Алгебраическая сумма двух электродных потенциалов теоретически равна

следовательно,

Предположим, что , тогда

или в общем случае для электрода, обратимого по отношению к катиону,

и для электрода, обратимого по отношению к аниону,

Для электродов, обратимых по отношению к катиону, когда если то величина положительная и добавляется к сумме электродных потенциалов; если то величина отрицательная и э. д. с. элемента в этом случае меньше, чем сумма электродных потенциалов. Предпринимались попытки исключить диффузионный потенциал введением солевого мостика, содержащего концентрированный раствор и других солей, для которых . В таком случае, поскольку раствор концентрированный, диффузия обусловлена электролитом самого солевого мостика и вместо диффузионного потенциала ячейки имеем два диффузионных потенциала, действующих в противоположных направлениях и имеющих близкую к нулю величину. Таким путем удается уменьшить диффузионные потенциалы, но полностью их исключить практически невозможно.