Каким эквивалентом оценивается мощность ядерного взрыва. Ядерный взрыв — самое страшное открытие человечества. Поражающие факторы ядерного взрыва

Мощность ядерных боеприпасов

Ядерное оружие обладает колоссальной мощностью. При делении урана

массой порядка килограмма освобождается такое же количество энергии, как

при взрыве тротила массой около 20 тысяч тонн. Термоядерные реакции синтеза являются еще более энергоемкими.

Ядерные боеприпасы - боеприпасы, содержащие ядерный заряд.

Ядерными боеприпасами являются:

ядерные боевые части баллистических, зенитных, крылатых ракет и торпед;

ядерные бомбы;

артиллерийские снаряды, мины и фугасы.

Мощность взрыва ядерных боеприпасов принято измерять в единицах тротилового эквивалента. Тротиловый эквивалент-это масса тринитротолуола, которая обеспечила бы взрыв, по мощности эквивалентный взрыву данного ядерного боеприпаса. Обычно он измеряется в килотоннах (кТ) или в мегатоннах (МгТ). Тротиловый эквивалент условен, поскольку распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса и, в любом случае, сильно отличается от химического взрыва. Современные ядерные боеприпасы имеют тротиловый эквивалент от нескольких десятков тонн до нескольких десятков млн. тонн тротила.

В зависимости от мощности ядерные боеприпасы принято делить на 5 калибров: сверхмалый (менее 1кТ), малый (от 1 до 10 кТ), средний (от 10 до 100 кТ), крупный (от 100 кТ до 1 МгТ), сверхкрупный (свыше 1 МгТ)

Термоядерными зарядами комплектуются боеприпасы сверхкрупного, крупного и среднего калибров; ядерными зарядами - сверхмалого, малого и среднего калибров, нейтронными зарядами комплектуются боеприпасы - сверхмалого и малого калибров.

Поражающие факторы ядерного взрыва

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва (ПФЯВ) являются:

ударная волна;

световое излучение;

проникающая радиация;

радиоактивное заражение местности;

электромагнитный импульс (ЭМИ).

При ядерном взрыве в атмосфере распределение выделяющейся энергии между ПФЯВ примерно следующее: около 50% на ударную волну, на долю светового излучения 35%, на радиоактивное заражение 10% и 5% на проникающую радиацию и ЭМИ.

Ударная волна

Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне вполне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек. ударная волна проходит около 1000 м, за 5 сек - 2000 м, за 8 сек. - около 3000 м.

Поражающее действия ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того, поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери населения могут оказаться большими, чем от непосредственного действия ударной волны. Поражения, наносимые ударной волной, подразделяются на

1) легкие,

2) средние,

3) тяжелые и

4) крайне тяжелые.

Степень поражения ударной волной зависит прежде всего от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние - до 2 км, тяжелые - до 1,5 км, крайне тяжелые - до 1,0 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва.

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. В случае отсутствия убежищ используются естественные укрытия и рельеф местности.

При подземном взрыве возникает ударная волна в грунте, а при подводном - в воде. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

Применительно к гражданским и промышленным зданиям степени разрушения характеризуются 1) слабым,

2) средним,

3) сильным и 4) полным разрушениями.

Слабое разрушение сопровождается разрушением оконных и дверных заполнений и легких перегородок, частично разрушается кровля, возможны трещины в стенах верхних этажей. Подвалы и нижние этажи сохраняются полностью.

Среднее разрушение проявляется в разрушении крыш, внутренних перегородок, окон, обрушением чердачных перекрытий, трещинами в стенах. Восстановление зданий возможно при проведении капитальных ремонтных работ.

Сильное разрушение характеризуется разрушением несущих конструкций и перекрытий верхних этажей, появлением трещин в стенах. Использование зданий становится невозможным. Ремонт и восстановление зданий становится нецелесообразным.

При полном разрушении обрушаются все основные элементы здания, включая и несущие конструкции. Использовать такие здания невозможно, и, чтобы они не представляли опасность, их полностью обрушают.

Необходимо отметить способность ударной волны. Она может, как вода, "затекать" в закрытые помещения не только через окна и двери, но также через небольшие отверстия и даже щели. Это приводит к разрушению перегородок и оборудования внутри здания и поражению находящихся в нем людей.

Ядерное оружие

Я́дерное ору́жие - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения (наряду с биологическим и химическим оружием). Ядерный боеприпас - взрывное устройство, использующее ядерную энергию - энергию, высвобождающуюся в результате лавинообразно протекающей цепной ядерной реакции деления тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер.

Действие ядерного оружия основано на использовании энергии взрыва ядерного взрывного устройства, высвобождающейся в результате неуправляемой лавинообразно протекающей цепной реакции деления тяжёлых ядер и/или реакции термоядерного синтеза.

Ядерные взрывы могут быть следующих видов:

· воздушный - в тропосфере

· высотный - в верхних слоях атмосферы и в ближнем околопланетном космосе

· космический - в дальнем околопланетном космосе и любой другой области космического пространства

· наземный взрыв - у самой земли

· подземный взрыв (под поверхностью земли)

· надводный (у самой поверхности воды)

· подводный (под водой)

Поражающие факторы ядерного взрыва:

· ударная волна

· световое излучение

· проникающая радиация

· радиоактивное заражение

· электромагнитный импульс (ЭМИ)

Соотношение мощности воздействия различных поражающих факторов зависит от конкретной физики ядерного взрыва. Например, для термоядерного взрыва характерны более сильные чем у т.н. атомного взрыва световое излучение, гамма-лучевой компонент проникающий радиации, но значительно более слабые корпускулярный компонент проникающей радиации и радиоактивное заражение местности.

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, которые зачастую являются фатальными для человека, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений. Электромагнитный импульс (ЭМИ) непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры (ламповая электроника и фотонная аппаратура сравнительно нечувствительны к воздействию ЭМИ).

Классификация ядерных боеприпасов

Все ядерные боеприпасы могут быть разделены на две основные категории:

· «атомные» - однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер (урана-235 или плутония) с образованием более лёгких элементов

· термоядерные (также «водородные») - двухфазные или двухступенчатые взрывные устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления тяжёлых ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса

Мощность ядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса, и, в любом случае, сильно отличается от химического взрыва. Во-вторых, просто невозможно добиться полного сгорания соответствующего количества химического взрывчатого вещества.

Принято делить ядерные боеприпасы по мощности на пять групп:

· сверхмалые (менее 1 кт)

· малые (1 - 10 кт)

· средние (10 - 100 кт)

· крупные (большой мощности) (100 кт - 1 Мт)

· сверхкрупные (сверхбольшой мощности) (свыше 1 Мт)

Варианты детонации ядерных боеприпасов

Пушечная схема

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой - неподвижный («мишень»).

Классическим примером пушечной схемы является бомба «Малыш» («Little Boy»), сброшенная на Хиросиму 6 августа 1945 г.

Имплозивная схема

Имплозивная схема детонации использует обжатие делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с высокой точностью. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток - ТАТВ (триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками (см. анимацию). Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее сложных и трудоёмких задач. Для её решения потребовалась выполнить гигантский объём сложных вычислений по гидро- и газодинамике.

Вторая из применённых атомных авиабомб - «Толстяк» («Fat Man»), - сброшенная на Нагасаки 9 августа 1945 года, была исполнена по такой же схеме.


2000 ядерных взрывов

Создатель атомной бомбы Роберт Оппенгеймер в день первого испытания своего детища сказал: «Если бы на небе разом взошли сотни тысяч солнц, их свет мог бы сравниться с сиянием, исходившим от Верховного Господа… Я — есть Смерть, великий разрушитель миров, несущий гибель всему живому». Эти слова были цитатой из «Бхагавад Гиты», которую американский физик прочитал в оригинале.

Фотографы из Лукаут Маунтэйн стоят по пояс в пыли, поднятой ударной волной после ядерного взрыва (фото 1953 года).


Название испытания: Umbrella
Дата: 8 июня 1958 года

Мощность: 8 килотонн

Подводный ядерный взрыв был произведён в ходе операции «Hardtack». В качестве мишеней использовались списанные корабли.

Название испытания: Chama (в рамках проекта «Доминик»)
Дата: 18 октября 1962 года
Место: Остров Джонстон
Мощность: 1.59 мегатонн

Название испытания: Oak
Дата: 28 июня 1958 года
Место: Лагуна Эниветок в Тихом океане
Мощность: 8.9 мегатонн

Проект «Апшот-Нотхол», испытание «Энни». Дата: 17 марта 1953 г.; проект: Апшот-Нотхол; испытание: Энни; место: Нотхол, полигон в Неваде, сектор 4; мощность: 16 кт. (Photo: Wikicommons)

Название испытания: Castle Bravo
Дата: 1 марта 1954 года
Место: атолл Бикини
Тип взрыва: на поверхности
Мощность: 15 мегатонн

Взрыв водородной бомбы Castle Bravo был самым мощным взрывом из всех испытаний, когда либо проводимых США. Мощность взрыва оказалась намного больше первоначальных прогнозов в 4-6 мегатонн.

Название испытания: Castle Romeo
Дата: 26 марта 1954 года
Место: на барже в кратере Bravo, атолл Бикини
Тип взрыва: на поверхности
Мощность: 11 мегатонн

Мощность взрыва оказалась в 3 раза больше первоначальных прогнозов. Romeo был первым испытанием, произведенным на барже.

Проект «Доминик», испытание «Ацтек»

Название испытания: Priscilla (в рамках серии испытаний «Plumbbob»)
Дата: 1957 год

Мощность: 37 килотонн

Именно так выглядит процесс высвобождения огромного количества лучистой и тепловой энергии при атомном взрыве в воздухе над пустыней. Тут еще можно разглядеть военную технику, которая через мгновение будет уничтожена ударной волной, запечатленной в виде кроны, окружившей эпицентр взрыва. Видно как ударная волна отразилась от земной поверхности и вот-вот сольется с огненным шаром.

Название испытания: Grable (в рамках операции «Апшот-Нотхол»)
Дата: 25 мая 1953 года
Место: Ядерный полигон в Неваде
Мощность: 15 килотонн

На испытательном полигоне в пустыне Невада фотографами центра Лукаут Маунтэйн в 1953 году была сделана фотография необычного явления (кольцо огня в ядерном грибе после взрыва снаряда из ядерной пушки), природа которого долгое время занимала умы ученых.

Проект «Апшот-Нотхол», испытание «Грабл». В рамках этого испытания был произведен взрыв атомной бомбы мощностью 15 килотонн, запущенной 280-миллиметровой атомной пушкой. Испытание прошло 25 мая 1953 года на полигоне Невады. (Photo: National Nuclear Security Administration / Nevada Site Office)

Грибовидное облако, образованное в результате атомного взрыва испытания «Траки», проводимого в рамках проекта «Доминик».

Проект «Бастер», испытание «Дог».

Проект «Доминик», испытание «Йесо». Испытание: Йесо; дата:10 июня 1962 г.; проект: Доминик; место: 32 км к югу от острова Рождества; тип испытания: B-52, атмосферный, высота - 2,5 м; мощность: 3.0 мт; тип заряда: атомный. (Wikicommons)

Название испытания: YESO
Дата: 10 июня 1962 года
Место: Остров Рождества
Мощность: 3 мегатонны

Испытание «Ликорн» на территории Французской Полинезии. Изображение №1. (Pierre J./French Army)

Название испытания: «Единорог» (фр. Licorne)
Дата: 3 июля 1970 года
Место: атолл во Французской Полинезии
Мощность: 914 килотонн

Испытание «Ликорн» на территории Французской Полинезии. Изображение №2. (Photo: Pierre J./French Army)

Испытание «Ликорн» на территории Французской Полинезии. Изображение №3. (Photo: Pierre J./French Army)

Для получения хороших снимков на испытательных полигонах часто работают целые команды фотографов. На фото: испытательный ядерный взрыв в пустыне Невада. Справа видны ракетные шлейфы, с помощью которых ученые определяют характеристики ударной волны.

Испытание «Ликорн» на территории Французской Полинезии. Изображение №4. (Photo: Pierre J./French Army)

Проект «Кастл», испытание «Ромео». (Photo: zvis.com)

Проект «Хардтэк», испытание «Амбрелла». Испытание: Амбрелла; дата: 8 июня 1958 г.; проект: Хардтэк I; место: лагуна атолла Эниветок; тип испытания: подводный, глубина 45 м; мощность: 8кт; тип заряда: атомный.

Проект «Редвинг», испытание «Семинол». (Photo: Nuclear Weapons Archive)

Испытание «Рия». Атмосферное испытание атомной бомбы на территории Французской Полинезии в августе 1971 года. В рамках этого испытания, которое прошло 14 августа 1971 года, была взорвана термоядерная боеголовка под кодовым названием «Рия», мощностью 1000 кт. Взрыв произошел на территории атолла Муруроа. Этот снимок был сделан с расстояния 60 км от нулевой отметки. Photo: Pierre J.

Грибовидное облако от ядерного взрыва над Хиросимой (слева) и Нагасаки (справа). На заключительной стадии Второй мировой войны, Соединенные Штаты нанесли 2 атомных удара по Хиросиме и Нагасаки. Первый взрыв прогремел 6 августа 1945 года, а второй - 9 августа 1945 года. Это был единственный случай, когда ядерное оружие применялось в военных целях. Согласно приказу президента Трумэна, 6 августа 1945 года американская армия сбросила ядерную бомбу «Малыш» на Хиросиму, а 9 августа последовал ядерный взрыв бомбы «Толстяк», сброшенной на Нагасаки. В течение 2-4 месяцев после ядерных взрывов в Хиросиме погибло от 90 000 до 166 000 человек, а в Нагасаки - от 60 000 до 80 000. (Photo: Wikicommons)


Проект «Апшот-Нотхол». Полигон в Неваде, 17 марта 1953 года. Взрывная волна полностью разрушила Строение №1, расположенное на расстоянии 1,05 км от нулевой отметки. Разница во времени между первым и вторым снимком составляет 21/3 секунды. Камера была помещена в защитный футляр с толщиной стенки 5 см. Единственным источником света в данном случае была ядерная вспышка. (Photo: National Nuclear Security Administration / Nevada Site Office)

Проект «Рэйнджер», 1951 год. Название испытания неизвестно. (Photo: National Nuclear Security Administration / Nevada Site Office)

Испытание «Тринити».

«Тринити» было кодовым названием первого испытания ядерного оружия. Это испытание было проведено армией Соединенных Штатов 16 июля 1945 года, на территории, расположенной приблизительно в 56 км к юго-востоку от Сокорро, штат Нью-Мексико, на ракетном полигоне «Уайт Сэндс». Для испытания использовалась плутониевая бомба имплозивного типа, получившая прозвище «Штучка». После детонации прогремел взрыв мощностью эквивалентной 20 килотоннам тротила. Дата проведения этого испытания считается началом атомной эры. (Photo: Wikicommons)

Название испытания: Mike
Дата: 31 октября 1952 года
Место: Остров Elugelab («Flora»), атолл Эневейта
Мощность: 10.4 мегатонны

Устройство, взорванное при испытании Майка и названное «колбасой», было первой настоящей «водородной» бомбой мегатонного класса. Грибовидное облако достигло высоты 41 км при диаметре 96 км.


АН602 (она же «Царь-бомба», она же «Кузькина мать») — термоядерная авиационная бомба, разработанная в СССР в 1954—1961 гг. группой физиков-ядерщиков под руководством академика Академии наук СССР И. В. Курчатова. Самое мощное взрывное устройство за всю историю человечества. По разным данным имело от 57 до 58,6 мегатонн тротилового эквивалента. Испытания бомбы состоялись 30 октября 1961 года. (Wikimedia)

Взрыв “MET”, осуществленный в рамках Операции “Типот”. Примечательно, что взрыв “MET” по мощности был сравним с плутониевой бомбой «Толстяк», сброшенной на Нагасаки. 15 апреля 1955 года, 22 кт. (Wikimedia)


Один из самых мощных взрывов термоядерной водородной бомбы на счету США - операция “Кастл Браво”. Мощность заряда составила 10 мегатонн. Взрыв был произведен 1 марта 1954 года на атолле Бикини, Маршалловы Острова. (Wikimedia)

Операция “Кастл Ромео” - один из самых мощных взрывов термоядреной бомбы, произведенных США. Атолл Бикини, 27 марта 1954 года, 11 мегатонн. (Wikimedia)

Взрыв “Бэйкер”, показана белая поверхность воды, потревоженной воздушной ударной волной, и верх полой колонны брызг, образовавшей полусферическое облако Вильсона. На заднем плане - берег атолла Бикини, июль 1946 года. (Wikimedia)

Взрыв американской термоядерной (водородной) бомбы “Майк” мощностью 10,4 мегатонны. 1 ноября, 1952 года. (Wikimedia)

Операция «Парник» (англ. Operation Greenhouse) — пятая серия американских ядерных испытаний и вторая из них за 1951 год. В ходе операции испытывались конструкции ядерных зарядов с использованием термоядерного синтеза для увеличения выхода энергии. Кроме того, исследовалось воздействие взрыва на сооружения, включая жилые здания, корпуса заводов и бункеры. Операция проводилась на Тихоокеанском ядерном полигоне. Все устройства были взорваны на высоких металлических вышках, имитирующих воздушный взрыв. Взрыв “Джордж”, 225 килотонн, 9 мая 1951 года. (Wikimedia)

Грибообразное облако, у которого вместо пылевой ножки водяной столб. Справа на столбе видна прореха: линкор «Арканзас» закрыл собой выброс брызг. Испытание “Бэйкер”, мощностью заряда - 23 килотонны в тротиловом эквиваленте, 25 июля 1946 года. (Wikimedia)

200-метровое облако над территорией Frenchman Flat после взрыва “MET” в рамках операции “Типот”, 15 апреля 1955 года, 22 кт. Этот снаряд имел редкую сердцевину из урана-233. (Wikimedia)


Кратер был сформирован, когда в 100 килотонн взрывной волны были взорваны под 635 футов пустыни 6 июля 1962 года, вытеснив 12 миллионов тонн земли.

Время: 0с. Расстояние: 0м. Инициация взрыва ядерного детонатора.
Время: 0.0000001c. Расстояние: 0м Температура: до 100 млн. °C. Начало и ход ядерных и термоядерных реакций в заряде. Ядерный детонатор своим взрывом создаёт условия для начала термоядерных реакций: зона термоядерного горения проходит ударной волной в веществе заряда со скоростью порядка 5000 км/с (106 — 107 м/с) Около 90% выделяющихся при реакциях нейтронов поглощается веществом бомбы, оставшиеся 10% вылетают наружу.

Время: 10−7c. Расстояние: 0м. До 80% и более энергии реагирующего вещества трансформируется и выделяется в виде мягкого рентгеновского и жёсткого УФ излучения с огромной энергией. Рентгеновское излучение формирует тепловую волну, которая нагревает бомбу, выходит наружу и начинает нагревать окружающий воздух.

Время: < 10−7c. Расстояние: 2м Температура: 30 млн.°C. Окончание реакции, начало разлёта вещества бомбы. Бомба сразу исчезает из виду и на её месте появляется яркая светящаяся сфера (огненный шар), маскирующая разлёт заряда. Скорость роста сферы на первых метрах близка к скорости света. Плотность вещества здесь за 0,01 сек падает до 1% плотности окружающего воздуха; температура за 2,6 сек падает до 7—8 тыс.°C, ~5 секунд удерживается и дальше снижается с подъёмом огненной сферы; давление через 2—3 сек падает до несколько ниже атмосферного.


Время: 1.1х10−7c. Расстояние: 10м Температура: 6 млн.°C. Расширение видимой сферы до ~10 м идёт за счёт свечения ионизованного воздуха под рентгеновским излучением ядерных реакций, а далее посредством радиационной диффузии самого нагретого воздуха. Энергия квантов излучения, покидающих термоядерный заряд такова, что их свободный пробег до захвата частицами воздуха порядка 10 м и вначале сравним с размерами сферы; фотоны быстро обегают всю сферу, усредняя её температуру и со скоростью света вылетают из неё, ионизуя всё новые слои воздуха, отсюда одинаковая температура и околосветовая скорость роста. Далее, от захвата к захвату, фотоны теряют энергию и длина их пробега сокращается, рост сферы замедляется.

Время: 1.4х10−7c. Расстояние: 16м Температура: 4 млн.°C. В целом от 10−7 до 0,08 секунд идёт 1-я фаза свечения сферы с быстрым падением температуры и выходом ~1 % энергии излучения, большей частю в виде УФ-лучей и ярчайшего светового излучения, способных повредить зрение у далёкого наблюдателя без образования ожогов кожи. Освещённость земной поверхности в эти мгновения на расстояниях до десятков километров может быть в сто и более раз больше солнечной.

Время: 1.7х10−7c. Расстояние: 21м Температура: 3 млн.°C. Пары бомбы в виде клубов, плотных сгустков и струй плазмы как поршень сжимают впереди себя воздух и формируют ударную волну внутри сферы — внутренний скачок, отличающийся от обычной ударной волны неадиабатическими, почти изотермическими свойствами и при тех же давлениях в несколько раз большей плотностью: сжимающийся скачком воздух сразу излучает большую часть энергии через пока прозрачный для излучений шар.
На первых десятках метров окружающие предметы перед налётом на них огневой сферы из-за слишком большой её скорости не успевают никак среагировать — даже практически не нагреваются, а оказавшись внутри сферы под потоком излучения испаряются мгновенно.

Температура: 2 млн.°C. Скорость 1000 км/с. С ростом сферы и падением температуры энергия и плотность потока фотонов снижаются и их пробега (порядка метра) уже не хватает для околосветовых скоростей расширения огневого фронта. Нагретый объём воздуха начал расширяться и формируется поток его частиц от центра взрыва. Тепловая волна при неподвижном воздухе на границе сферы замедляется. Расширяющийся нагретый воздух внутри сферы наталкивается на неподвижный у её границы и где-то начиная с 36—37 м появляется волна повышения плотности — будущая внешняя воздушная ударная волна; до этого волна не успевала появиться из-за огромной скорости роста световой сферы.

Время: 0,000001c. Расстояние: 34м Температура: 2 млн.°C. Внутренний скачок и пары бомбы находятся в слое 8—12 м от места взрыва, пик давления до 17 000 МПа на расстоянии 10,5 м, плотность ~ в 4 раза больше плотности воздуха, скорость ~100 км/с. Область горячего воздуха: давление на границе 2.500 МПа, внутри области до 5000 МПа, скорость частиц до 16 км/с. Вещество паров бомбы начинает отставать от внутр. скачка по мере того, как всё больше воздуха в нём вовлекается в движение. Плотные сгустки и струи сохраняют скорость.


Время: 0,000034c. Расстояние: 42м Температура: 1 млн.°C. Условия в эпицентре взрыва первой советской водородной бомбы (400кт на высоте 30 м), при котором образовалась воронка порядка 50 м диаметром и 8 м глубиной. В 15 м от эпицентра или в 5—6 м от основания башни с зарядом располагался железобетонный бункер со стенами толщиной 2 м. для размещения научной аппаратуры сверху укрытый большой насыпью земли толщиной 8 м разрушен.

Температура: 600тыс.°C.С этого момента характер ударной волны перестаёт зависеть от начальных условий ядерного взрыва и приближается к типовому для сильного взрыва в воздухе, т.е. такие параметры волны могли бы наблюдаться при взрыве большой массы обычной взрывчатки.

Время: 0,0036c. Расстояние: 60м Температура: 600тыс.°C. Внутренний скачок, пройдя всю изотермическую сферу, догоняет и сливается с внешним, повышая его плотность и образуя т. н. сильный скачок — единый фронт ударной волны. Плотность вещества в сфере падает до 1/3 атмосферной.

Время: 0,014c. Расстояние: 110м Температура: 400тыс.°C. Аналогичная ударная волна в эпицентре взрыва первой советской атомной бомбы мощностью 22 кт на высоте 30 м сгенерировала сейсмический сдвиг, разрушивший имитацию тоннелей метро с различными типами крепления на глубинах 10 и 20 м 30 м, животные в тоннелях на глубинах 10, 20 и 30 м погибли. На поверхности появилось малозаметное тарелкообразное углубление диаметром около 100 м. Сходные условия были в эпицентре взрыва "Тринити" 21 кт на высоте 30 м, образовалась воронка диаметром 80 м и глубиной 2 м.

Время: 0,004c. Расстояние: 135м
Температура: 300тыс.°C. Максимальная высота воздушного взрыва 1 Мт для образования заметной воронки в земле. Фронт ударной волны искривлён ударами сгустков паров бомбы:

Время: 0,007c. Расстояние: 190м Температура: 200тыс.°C. На гладком и как бы блестящем фронте уд. волны образуются большие волдыри и яркие пятна (сфера как бы кипит). Плотность вещества в изотермической сфере диаметром ~150 м падает ниже 10 % атмосферной.
Немассивные предметы испаряются за несколько метров до прихода огн. сферы («Канатные трюки»); тело человека со стороны взрыва успеет обуглиться, а полностью испаряется уже с приходом ударной волны.

Время: 0,01c. Расстояние: 214м Температура: 200тыс.°C. Аналогичная воздушная ударная волна первой советской атомной бомбы на расстоянии 60 м (52 м от эпицентра) разрушила оголовки стволов, ведущих в имитации тоннелей метро под эпицентром (см. выше). Каждый оголовок представлял собой мощный железобетонный каземат, укрытый небольшой грунтовой насыпью. Обломки оголовков обвалились в стволы, последние затем раздавлены сейсмической волной.

Время: 0,015c. Расстояние: 250м Температура: 170тыс.°C. Ударная волна сильно разрушает скальные породы. Скорость ударной волны выше скорости звука в металле: теоретический предел прочности входной двери в убежище; танк расплющивается и сгорает.

Время: 0,028c. Расстояние: 320м Температура: 110тыс.°C. Человек развеивается потоком плазмы (скорость ударной волны = скорости звука в костях, тело разрушается в пыль и сразу сгорает). Полное разрушение самых прочных наземных построек.


Время: 0,073c. Расстояние: 400м Температура: 80тыс.°C. Неровности на сфере пропадают. Плотность вещества падает в центре почти до 1%, а на краю изотерм. сферы диамером ~320 м до 2% атмосферной.На этом расстоянии в пределах 1,5 с нагрев до 30 000 °C и падение до 7000 °C, ~5 с удержание на уровне ~6.500 °C и снижение температуры за 10—20 с по мере ухода огненного шара вверх.

Время: 0,079c. Расстояние: 435м Температура: 110тыс.°C. Полное разрушение шоссейных дорог с асфальтовым и бетонным покрытием Температурный минимум излучения ударной волны, окончание 1-й фазы свечения. Убежище типа метро, облицованное чугунными тюбингами и монолитным железобетоном и заглублённое на 18 м, по расчёту способно выдержать без разрушения взрыв (40 кт) на высоте 30 м на минимальном расстоянии 150 м (давление ударной волны порядка 5 МПа), испытано 38 кт РДС-2 на расстоянии 235 м (давление ~1,5 МПа), получило незначительные деформации, повреждения. При температурах во фронте сжатия ниже 80тыс.°C новые молекулы NO2 больше не появляются, слой двуокиси азота постепенно исчезает и перестаёт экранировать внутреннее излучение. Ударная сфера постепенно становится прозрачной и через неё, как через затемнённое стекло, некоторое время видны клубы паров бомбы и изотермическая сфера; в целом огненная сфера похожа на фейерверк. Затем, по мере увеличения прозрачности, интенсивность излучения возрастает и детали как бы снова разгорающейся сферы становятся не видны. Процесс напоминает окончание эры рекомбинации и рождение света во Вселенной через несколько сотен тысяч лет после Большого взрыва.


Время: 0,1c. Расстояние: 530м Температура: 70тыс.°C. Отрыв и уход вперёд фронта ударной волны от границы огненной сферы, скорость роста её заметно снижается. Наступает 2-я фаза свечения, менее интенсивная, но на два порядка более длительная с выходом 99 % энергии излучения взрыва в основном в видимом и ИК спектре. На первых сотнях метров человек не успевает увидеть взрыв и погибает без мучений (время зрительной реакции человека 0,1 — 0,3 с, время реакции на ожог 0,15 — 0,2 с).

Время: 0,15c. Расстояние: 580м Температура: 65тыс.°C. Радиация ~100 000 Гр. От человека остаются обугленные осколки костей (скорость ударной волны порядка скорости звука в мягких тканях: по телу проходит разрушающий клетки и ткани гидродинамический удар).

Время: 0,25c. Расстояние: 630м Температура: 50тыс.°C. Проникающая радиация ~40 000 Гр. Человек превращается в обугленные обломки: ударная волна вызывает травматические ампутацииа подошедшая через долю сек. огненная сфера обугливает останки. Полное разрушение танка. Полное разрушение подземных кабельных линий, водопроводов, газопроводов, канализации, смотровых колодцев. Разрушение подземных ж/б труб диаметром 1,5м, с толщиной стенок 0,2м. Разрушение арочной бетонной плотины ГЭС. Сильное разрушение долговременных железобетонных фортсооружений. Незначительные повреждения подземных сооружений метро.

Время: 0,4c. Расстояние: 800м Температура: 40тыс.°C. Нагрев объектов до 3000 °C. Проникающая радиация ~20 000 Гр. Полное разрушение всех защитных сооружений гражданской обороны (убежищ) разрушение защитных устройств входов в метро. Разрушение гравитационной бетонной плотины ГЭС ДОТы становятся небоеспособны дистанции 250 м.

Время: 0,73c. Расстояние: 1200м Температура: 17тыс.°C. Радиация ~5000 Гр. При высоте взрыва 1200 м нагрев приземного воздуха в эпицентре перед приходом уд. волны до 900°C. Человек — 100 %-я гибель от действия ударной волны. Разрушение убежищ, рассчитанных на 200 кПа (тип А-III или класс 3). Полное разрушение железобетонных ДОТов сборного типа на дистанции 500 м по условиям наземного взрыва. Полное разрушение железнодорожных путей. Максимум яркости второй фазы свечения сферы к этому времени она выделила ~20 % световой энергии

Время: 1,4c. Расстояние: 1600м Температура: 12тыс.°C. Нагрев объектов до 200°C. Радиация 500 Гр. Многочисленные ожоги 3—4 степени до 60-90 % поверхности тела, тяжёлое лучевое поражение, сочетающиеся с другими травмами, летальность сразу или до 100 % в первые сутки. Танк отбрасывается ~ на 10 м и повреждается. Полное резрушение металлических и железобетонных мостов пролётом 30 — 50 м.

Время: 1,6c. Расстояние: 1750м Температура: 10тыс.°C. Радиация ок. 70 Гр. Экипаж танка погибает в течение 2-3 недель от крайне тяжёлой лучевой болезни. Полное разрушение бетонных, железобетонных монолитных (малоэтажных) и сейсмостойких зданий 0,2 МПа, убежищ встроенных и отдельностоящих, рассчитанных на 100 кПа (тип А-IV или класс 4), убежищ в подвальных помещениях многоэтажных зданий.

Время: 1,9c. Расстояние: 1900м Температура: 9тыс.°C Опасные поражения человека ударной волной и отброс до 300 м с начальной скоростью до 400 км/ч, из них 100—150 м (0,3—0,5 пути) свободный полёт, а остальное расстояние — многочисленные рикошеты о грунт. Радиация около 50 Гр — молниеносная форма лучевой болезни[, 100 % летальность в течение 6-9 суток. Разрушение встроенных убежищ, рассчитанных на 50 кПа. Сильное разрушение сейсмостойких зданий. Давление 0,12 МПа и выше — вся городская застройка плотная и разряжённая превращается в сплошные завалы (отдельные завалы сливаются в один сплошной), высота завалов может составлять 3—4 м. Огненная сфера в это время достигает максимальных размеров (D~2км), подминается снизу отражённой от земли ударной волной и начинает подъём; изотермическая сфера в ней схлопывается, образуя быстрый восходящий поток в эпицентре — будущую ножку гриба.

Время: 2,6c. Расстояние: 2200м Температура: 7,5тыс.°C. Тяжёлые поражения человека ударной волной. Радиация ~10 Гр — крайне тяжёлая острая лучевая болезнь, по сочетании травм 100 % летальность в пределах 1-2 недель. Безопасное нахождение в танке, в укреплённом подвале с усиленным ж/б перекрытием и в большинстве убежищ Г. О. Разрушение грузовых автомобилей. 0,1 МПа — расчётное давление ударной волны для проектирования конструкций и защитных устройств подземных сооружений линий мелкого заложения метрополитена.

Время: 3,8c. Расстояние: 2800м Температура: 7,5тыс.°C. Радиация 1 Гр — в мирных условиях и своевременном лечении неопасное лучевое поражение, но при сопутствующих катастрофе антисанитарии и тяжёлых физических и психологических нагрузках, отсутствии медицинской помощи, питания и нормального отдыха до половины пострадавщих погибают только от радиации и сопутствующих заболеваний, а по сумме повреждений (плюс травмы и ожоги) гораздо больше. Давление менее 0,1 МПа — городские районы с плотной застройкой превращаются в сплошные завалы. Полное разрушение подвалов без усиления конструкций 0,075 МПа. Среднее разрушение сейсмостойких зданий 0,08-0,12 МПа. Сильные повреждения железобетонных ДОТов сборного типа. Детонация пиротехнических средств.

Время: 6c. Расстояние: 3600м Температура: 4,5тыс.°C. Средние поражения человека ударной волной. Радиация ~0,05 Гр — доза неопасна. Люди и предметы оставляют «тени» на асфальте. Полное разрушение административных многоэтажных каркасных (офисных) зданий (0,05—0,06 МПа), укрытий простейшего типа; сильное и полное разрушение массивных промышленных сооружений. Практически вся городская застройка разрушена с образованием местных завалов (один дом — один завал). Полное разрушение легковых автомобилей, полное уничтожение леса. Электромагнитный импульс ~3 кВ/м поражает нечувствительные электроприборы. Разрушения аналогичны землетрясению10 бал. Сфера перешла в огненный купол, как пузырь всплывающий вверх, увлекая за собой столб из дыма и пыли с поверхности земли: растёт характерный взрывной гриб с начальной вертикальной скоростью до 500 км/час. Скорость ветра у поверхности к эпицентру ~100 км/ч.


Время: 10c. Расстояние: 6400м Температура: 2тыс.°C. Окончание эффективного времени второй фазы свечения, выделилось ~80 % суммарной энергии светового излучения. Оставшиеся 20 % неопасно высвечиваются в течение порядка минуты с непрерывным понижением интенсивности, постепенно теряясь в клубах облака. Разрушение укрытий простейшего типа (0,035—0,05 МПа). На первых километрах человек не услышит грохот взрыва из-за поражения слуха ударной волной. Отброс человека ударной волной ~20 м с начальной скоростью ~30 км/ч. Полное разрушение многоэтажных кирпичных домов, панельных домов, сильное разрушение складов, среднее разрушение каркасных административных зданий. Разрушения аналогичны землетрясению 8 баллов. Безопасно почти в любом подвале.
Свечение огненного купола перестаёт быть опасным, он превращается в огненное облако, с подъёмом растущее в объёме; раскалённые газы в облаке начинают вращаться в торообразном вихре; горячие продукты взрыва локализуются в верхней части облака. Поток запылённого воздуха в столбе движется в два раза быстрее подъёма «гриба», настигает облако, проходит сквозь, расходится и как бы наматывается на него, как на кольцеобразную катушку.

Время: 15c. Расстояние: 7500м . Лёгкие поражения человека ударной волной. Ожоги третьей степени открытых частей тела. Полное разрушение деревянных домов, сильное разрушение кирпичных многоэтажных домов 0,02—0,03МПа, среднее разрушение кирпичных складов, многоэтажных железобетонных, панельных домов; слабое разрушение административных зданий 0,02—0,03 МПа, массивных промышленных сооружений. Воспламенение автомобилей. Разрушения аналогичны землетрясению 6 бал., урагану 12 бал. до 39 м/с. «Гриб» вырос до 3 км над центром взрыва (истинная высота гриба больше на высоту взрыва боеголовки, примерно на 1,5 км), у него появляется «юбочка» из конденсата паров воды в потоке тёплого воздуха, веером затягиваемого облаком в холодные верхние слои атмосферы.

Время: 35c. Расстояние: 14км. Ожоги второй степени. Воспламеняется бумага, тёмный брезент. Зона сплошных пожаров, в районах плотной сгораемой застройки возможны огненный шторм, смерч (Хиросима, «Операция Гоморра»). Слабое разрушение панельных зданий. Вывод из строя авиатехники и ракет. Разрушения аналогичны землетрясению 4-5 баллов, шторму 9—11 балов V = 21 — 28,5м/с. «Гриб» вырос до ~5 км огненное облако светит всё слабее.

Время: 1мин. Расстояние: 22км. Ожоги первой степени — в пляжной одежде возможна гибель. Разрушение армированного остекления. Корчевание больших деревьев. Зона отдельных пожаров.«Гриб» поднялся до 7,5 км облако перестаёт излучать свет и теперь имеет красноватый оттенок из-за содержащихся в нём окислов азота, чем будет резко выделяться среди других облаков.

Время: 1,5мин. Расстояние: 35км . Максимальный радиус поражения незащищённой чувствительной электроаппаратуры электромагнитным импульсом. Разбиты почти все обычные и часть армированных стёкол в окнах— актуально морозной зимой плюс возможность порезов летящими осколками. «Гриб» поднялся до 10 км, скорость подъёма ~220 км/час. Выше тропопаузы облако развивается преимущественно в ширину.
Время: 4мин. Расстояние: 85км. Вспышка похожа на большое неестественно яркое Солнце у горизонта, может вызвать ожог сетчатки глаз, прилив тепла к лицу. Подошедшая через 4 минуты ударная волна ещё может сбить с ног человека и разбить отдельные стёкла в окнах. «Гриб» поднялся свыше 16 км, скорость подъёма ~140 км/час

Время: 8мин. Расстояние: 145км. Вспышка не видна за горизонтом, зато видно сильное зарево и огненное облако. Общая высота «гриба» до 24 км, облако 9 км в высоту и 20—30 км в диаметре, своей широкой частью оно "опирается " на тропопаузу. Грибовидное облако выросло до максимальных размеров и наблюдается ешё порядка часа или более, пока не развеется ветрами и не перемешается с обычной облачностью. Из облака в течение 10—20 часов выпадают осадки с относительно крупными частицами, формируя ближний радиоактивный след.

Время: 5,5-13 часов Расстояние: 300-500км. Дальняя граница зоны умеренного заражения (зона А). Уровень радиации на внешней границе зоны 0,08 Гр/ч; суммарная доза излучения 0,4—4 Гр.

Время: ~10 месяцев. Эффективное время половинного оседания радиоактивных веществ для нижних слоёв тропической стратосферы (до 21 км), выпадение также идёт в основном в средних широтах в том же полушарии, где произведён взрыв.


Памятник первому испытанию атомной бомбы «Тринити». Этот памятник был воздвигнут на полигоне «Уайт Сэндс» в 1965 году, через 20 лет после проведения испытания «Тринити». Мемориальная доска памятника гласит: «На этом месте 16 июля 1945 года прошло первое в мире испытание атомной бомбы». Еще одна мемориальная доска, установленная ниже, свидетельствует о том, что это место получило статус национального исторического памятника. (Photo: Wikicommons)

Ядерный взрыв представляет собой неуправляемый процесс. В ходе него осуществляется высвобождение большого количества лучистой и тепловой энергии. Данный эффект является результатом ядерной цепной реакции деления либо термоядерного синтеза, проходящей за небольшой временной отрезок.

Краткие общие сведения

Ядерный взрыв по своему происхождению может являться следствием человеческой деятельности на Земле либо в околоземном пространстве. Это явление также в ряде случаев возникает в результате природных процессов на некоторых видах звезд. Искусственный ядерный взрыв представляет собой мощное оружие. Применяется оно для уничтожения масштабных наземных и подземных защищенных объектов, скоплений техники и войск противника. Кроме того, используется это оружие для полного уничтожения и подавления противоборствующей стороны в качестве инструмента, разрушающего малые и большие населенные пункты с проживающими в них мирными гражданами, а также промышленные стратегические объекты.

Классификация

Как правило, ядерные взрывы характеризуют по двум признакам. К ним относят мощность заряда и местоположение точки заряда непосредственно в подрывной момент. Проекция этой точки на поверхность земли именуется эпицентром взрыва. Мощность измеряют в тротиловом эквиваленте. Это масса тринитротолуола, при подрыве которого происходит выделение такого же количества энергии, как и при оцениваемом ядерном. Чаще всего при измерении мощности используются такие единицы, как одна килотонна (1 кт) и одна мегатонна (1 Мт) тротилового эквивалента.

Явления

Ядерный взрыв сопровождается специфическими эффектами. Они характерны только для данного процесса и не присутствуют при прочих подрывах. Интенсивность явлений, которые сопровождают ядерный взрыв, зависит от местоположения центра. В качестве примера можно рассмотреть случай, являвшийся наиболее частым до момента запрета испытаний на планете (под водой, на земле, в атмосфере) и, собственно, в космосе, - искусственная цепная реакция в приземном слое. После детонирования процесса синтеза или деления за весьма краткое время (около долей микросекунд) происходит выделение в ограниченном объеме огромного количества тепловой и лучистой энергии. О завершении реакции, как правило, свидетельствует разлет конструкции устройства и испарения. Эти эффекты обусловлены влиянием повышенной температуры (до 107 К) и огромного давления (порядка 109 атм.) в самом эпицентре. С большого расстояния визуально данная фаза представляет собой очень яркую светящуюся точку.

Электромагнитное излучение

Световое давление во время реакции начинает нагревать и вытеснять окружающий воздух из эпицентра. В результате формируется огненный шар. Вместе с этим образуется скачок давления между сжатым излучением и невозмущенным воздухом. Это обусловлено превосходством скорости перемещения нагревательного фронта над звуковой скоростью в условиях среды. После того как ядерная реакция входит в стадию затухания, прекращается выделение энергии. Последующее расширение осуществляется благодаря разнице в давлениях и температурах в зоне огненного шара и непосредственно окружающего воздуха. Следует отметить, что рассматриваемые явления не имеют ничего общего с научными изысканиями героя современного сериала (его, кстати, зовут так же, как и известного физика Глэшоу - Шелдон) "Теория большого взрыва".

Проникающая радиация

Ядерные реакции представляют собой источник электромагнитного излучения разного типа. В частности, оно проявляется в широком спектре в диапазоне от радиоволн до гамма-квантов, атомных ядер, нейтронов, быстрых электронов. Появляющееся излучение, именуемое проникающей радиацией, в свою очередь, порождает определенные последствия. Они свойственны только ядерному взрыву. Высокоэнергичные гамма-кванты и нейтроны в процессе взаимодействия с атомами, входящими в состав окружающего вещества, претерпевают преобразование своей стабильной формы в радиоактивные изотопы нестабильного типа с разными периодами и путями полураспада. В результате формируется так называемая наведенная радиация. Вместе с осколками ядер атомов расщепляющегося вещества либо с продуктами от термоядерного синтеза, которые остаются от взрывного устройства, получившиеся радиоактивные компоненты поднимаются в атмосферу. Далее они рассеиваются на достаточно большой территории и формируют заражение на местности. Нестабильные изотопы, сопровождающие ядерный взрыв, находятся в таком спектре, что распространение радиации может продолжаться тысячелетиями, несмотря на то что интенсивность излучения со временем снижается.

Электромагнитный импульс

Образованные от ядерного взрыва высокоэнергичные гамма-кванты в процессе прохождения через окружающую среду ионизируют атомы, входящие в ее состав, выбивая электроны из них и сообщая им довольно большую энергию для осуществления каскадной ионизации прочих атомов (вплоть до тридцати тысяч ионизаций на гамма-квант). В итоге под эпицентром формируется "пятно" ионов, имеющих положительный заряд и окруженных электронным газом в огромном количестве. Данная конфигурация носителей, переменная во времени, образует мощное электрическое поле. Оно вместе с рекомбинацией ионизированных атомных частиц исчезает после взрыва. В процессе происходит порождение сильных электрических токов. Они служат в качестве дополнительного источника излучения. Весь описанный комплекс эффектов носит название электромагнитного импульса. Несмотря на то что в него уходит меньше 1/3 десятимиллиардной доли взрывной энергии, происходит он в течение весьма короткого периода. Мощность, которая при этом выделяется, может достигнуть 100 ГВт.

Процессы наземного типа. Особенности

В процессе химической детонации температура примыкавшего к заряду и привлеченного к движению грунта сравнительно невелика. Ядерный взрыв имеет свои особенности. В частности, температура грунта может составлять десятки миллионов градусов. Большая часть образованной от нагрева энергии в течение первых же мгновений выделяется в воздух и идет дополнительно на образование ударной волны и теплового излучения. При обычном взрыве данных явлений не наблюдается. В связи с этим отмечаются резкие различия в воздействии на грунтовый массив и поверхность. При наземном взрыве химического соединения передается до половины энергии в грунт, а при ядерном - буквально несколько процентов. Это обуславливает разницу в размерах воронки и энергии сейсмических колебаний.

Ядерная зима

Данное понятие характеризует гипотетическое состояние климата на планете в случае широкомасштабной войны с применением ядерного оружия. Предположительно, в связи с выносом в стратосферу огромного количества сажи и дыма, результатов многочисленных пожаров, спровоцированных несколькими боезарядами, на Земле температура понизится повсеместно до арктических показателей. Это будет обусловлено и значительным увеличением числа отраженных от поверхности солнечных лучей. Вероятность возникновения глобального похолодания была предсказана достаточно давно (еще во времена существования Советского Союза). Позже подтверждение гипотезы было осуществлено модельными расчетами.

3.2. Ядерные взрывы

3.2.1. Классификация ядерных взрывов

Ядерное оружие разработана в США во время Второй мировой войны в основном усилиями европейских ученых (Эйнштейн, Бор, Ферми и др.). Первое испытание этого оружия произошло в США на полигоне Аламогордо 16 июля 1945 г. (в это время в побежденной Германии проходила Потсдамская конференция). А только через 20 дней, 6 августа 1945 г., на японский город Хиросиму без всякой военной необходимости и целесообразности была сброшена атомная бомба колоссальной для того времени мощности - 20 килотонн. Через три дня, 9 августа 1945 г., атомной бомбардировке было подвергнуто второй японский город - Нагасаки. Последствия ядерных взрывов были ужасные. В Хиросиме с 255 тыс. жителей были убиты или ранены почти 130 тыс. человек. Из почти 200 тыс. жителей Нагасаки было поражено свыше 50 тыс. человек.

Потом ядерное оружие была изготовлена и испытывалась в СССР (1949), в Великобритании (1952), во Франции (1960), в Китае (1964). Сейчас в научно-техническом отношении к производству ядерного оружия готовы более 30 государств мира.

Теперь существуют ядерные заряды, которые используют реакцию деления урана-235 и плутония-239 и термоядерные заряды, в которых используется (во время взрыва) реакция синтеза. При захвате одного нейтрона ядро урана-235 делится на два осколка, выделяя гамма - кванты и еще два нейтроны (2,47 нейтрона для урана-235 и 2,91 нейтрона для плутония - 239). Если масса урана больше треть, то эти два нейтроны делят еще два ядра, выделяя уже четыре нейтроны. После разделения следующих четырех ядер выделяются восемь нейтронов и т.д. Происходит цепная реакция, которая приводит к ядерному взрыву.

Классификация ядерных взрывов:

По типу заряда:

- ядерные (атомные) - реакция деления;

- термоядерные - реакция синтеза;

- нейтронные - большой поток нейтронов;

- комбинированные.

По назначению:

Испытательные;

В мирных целях;

- в военных целях;

По мощности:

- сверхмалые (менее 1 тыс. т. тротила);

- малые (1 - 10 тыс. т.);

- средние (10-100 тыс. т);

- крупные (100 тыс. т. -1 Мт);

- сверхкрупные (свыше 1 Мт).

По виду взрыва:

- высотный (свыше 10 км);

- воздушный (световая облако не достигает поверхности Земли);

Наземный;

Надводный;

Подземный;

Подводный.

Поражающее факторы ядерного взрыва. Поражающими факторами ядерного взрыва являются:

- ударная волна (50 % энергии взрыва);

- световое излучение (35 % энергии взрыва);

- проникающая радиация (45 % энергии взрыва);

- радиоактивное заражение (10 % энергии взрыва);

- электромагнитный импульс (1% энергии взрыва);

Ударная волна (УХ) (50% энергии взрыва). УХ - это зона сильного сжатия воздуха, которая распространяется со сверхзвуковой скоростью во все стороны от центра взрыва. Источником ударной волны является высокое давление в центре взрыва, достигает 100 млрд. кПа. Продукты взрыва, а также очень нагретый воздух, расширяясь, сжимают окружающий слой воздуха. Этот сжатый слой воздуха и сжимает следующий слой. Таким образом давление передается от одного слоя к другому, создавая УХ. Передний рубеж сжатого воздуха называется фронтом УХ.

Основными параметрами УХ являются:

- избыточное давление;

- скоростной напор;

- время действия ударной волны.

Избыточное давление - это разность между максимальным давлением во фронте УХ и атмосферным давлением.

Г ф =Г ф.макс -Р 0

Измеряется в кПа или кгс/см 2 (1 агм = 1,033 кгс/см 2 = = 101,3 кПа; 1 атм = 100 кПа).

Значение избыточного давления в основном зависит от мощности и вида взрыва, а также от расстояния до центра взрыва.

Оно может достигать 100 кПа при взрывах мощностью 1 мт и более.

Избыточное давление быстро уменьшается с удалением от эпицентра взрыва.

Скоростной напор воздуха - это динамическая нагрузка, которое создает поток воздуха, обозначается Р, измеряется в кПа. Величина скоростного напора воздуха зависит от скорости и плотности воздуха за фронтом волны и тесно связана с значением максимального избыточного давления ударной волны. Скоростной напор заметно действует при избыточном давлении свыше 50 кПа.

Время действия ударной волны (избыточного давления) измеряется в секундах. Чем больше время действия, тем большее поражающее действие УХ. УХ ядерного взрыва средней мощности (10-100 кт) проходит 1000 м за 1,4 с, 2000 м-за 4 с; 5000 м. - за 12 с. УХ поражает людей и разрушает здания, сооружения, объекты и технику связи.

На незащищенных людей ударная волна воздействует непосредственно и опосредованно (косвенные поражения - это поражения, которые наносятся человеку обломками зданий, сооружений, осколками стекла и другими предметами, которые под действием скоростного напора воздуха перемещаются с большой скоростью). Травмы, которые возникают вследствие действия ударной волны, подразделяют на:

- легкие, характерные для РФ=20 - 40 кПа;

- /span> средние, характерные для РФ=40 - 60 кПа:

- тяжелые, характерные для РФ=60 - 100 кПа;

- очень тяжелые, характерные для РФ выше 100 кПа.

При взрыве мощностью в 1 Мт незащищенные люди могут получить легкие травмы, находясь от эпицентра взрыва за 4,5 - 7 км, тяжелые - по 2 - 4 км.

Для защиты от УХ используются специальные хранилища, а также подвалы, подземные выработки, шахты, естественные укрытия, складки местности и др.

Объем и характер разрушения зданий и сооружений зависит от мощности и вида взрыва, расстояния от эпицентра взрыва, прочности и размеров зданий и сооружений. Из наземных зданий и сооружений наиболее стойкими являются монолитные железобетонные сооружения, дома с металлическим каркасом и здания антисейсмической конструкции. При ядерном взрыве мощностью 5 Мт железобетонные конструкции разрушатся в радиусе 6,5 км., кирпичные дома - до 7,8 км., деревянные будут полностью разрушены в радиусе 18 км.

УХ имеет свойство проникать в помещения через оконные и дверные проемы, вызывая разрушение перегородок и аппаратуры. Технологическое оборудование устойчивее и разрушается главным образом в результате обрушения стен и перекрытия домов, в которых оно смонтировано.

Световое излучение (35 % энергии взрыва). Световое излучение (СВ) является электромагнитным излучением в ультрафиолетовой, видимой и инфракрасной областях спектра. Источником СВ является светящаяся область, которая распространяется со скоростью света (300 000 км/с). Время существования светящейся области зависит от мощности взрыва и составляет для зарядов различных калибров: надмалого калибра - десятые части секунды, среднего - 2 - 5 с, сверхбольшого - несколько десятков секунд. Размер светящейся области для надмалого калибра - 50-300 м, среднего 50 - 1000 м, сверхбольшого - несколько километров.

Основным параметром, характеризующим СВ, является световой импульс. Измеряется в калориях на 1 см 2 поверхности, расположенной перпендикулярно направлению прямого излучения, а также в кілоджоулях на м 2:

1 кал/см 2 = 42 кДж/м 2 .

В зависимости от величины воспринятого светового импульса и глубины поражения кожного покрова у человека возникают ожоги трех степеней:

- ожоги i степени характеризуются покраснением кожи, припухлостью, болезненностью, вызываются световым импульсом 100-200 кДж/м 2 ;

- ожоги II степени (волдыри) возникают при световом импульсе 200...400 кДж/м 2 ;

- ожоги III степени (язвы, омертвения кожи) появляются при величине светового импульса 400-500 кДж/м 2 .

Большая величина импульса (более 600 кДж/м 2) вызывает обугливание кожи.

Во время ядерного взрыва 20 кт опеки И степени будут наблюдаться в радиусе 4,0 км., 11 степени - в пределах 2,8 кт, III степени - в радиусе 1,8 км.

При мощности взрыва 1 Мт эти расстояния увеличиваются до 26,8 км., 18,6 км., и 14,8 км. соответственно.

СВ распространяется прямолинейно и не проходит сквозь непрозрачные материалы. Поэтому любая преграда (стена, лес, броня, густой туман, холмы и т.п.) способна образовать зону тени, защищает от светового излучения.

Сильнейшим эффектом СВ являются пожары. На размер пожаров влияют такие факторы, как характер и состояние застройки.

При плотности застройки свыше 20% очаги пожара могут слиться в одну сплошную пожар.

Потери от пожара Второй мировой войне составили 80%. При известном бомбардировке Гамбурга одновременно підпалювалося 16 тыс. домов. Температура в районе пожаров достигала 800°С.

СВ значительно усиливает действие УХ.

Проникающая радиация (45% энергии взрыва) вызывается излучением и потоком нейтронов, которые распространяются на несколько километров вокруг ядерного взрыва, ионизируя атомы этой среды. Степень ионизации зависит от дозы излучения, единицей измерения которой служит рентген (в 1 см сухого воздуха при температуре и давлении 760 мм рт. ст. образуется около двух миллиардов пар ионов). Ионизирующая способность нейтронов оценивается в экологических эквивалентах рентгена (Бэр - доза нейтронов, влияние которых равна влиятельные рентгена излучение).

Влияние проникающей радиации на людей вызывает у них лучевую болезнь. Лучевая болезнь i степени (общая слабость, тошнота, головокружение, спітнілість) развивается в основном при дозе 100 - 200 рад.

Лучевая болезнь II степени (рвота, резкая головная боль) возникает при дозе 250-400 советов.

Лучевая болезнь III степени (50% умирает) развивается при дозе 400 - 600 рад.

Лучевая болезнь IV степени (в основном наступает смерть) возникает при облучении свыше 600 советов.

При ядерных взрывах малой мощности влияние проникающей радиации значительнее, чем УХ и светового облучения. С увеличением мощности взрыва относительная доля поражений проникающей радиации уменьшается, поскольку возрастает число травм и ожогов. Радиус поражения проникающей радиацией ограничивается 4 - 5 км. независимо от увеличения мощности взрыва.

Проникающая радиация существенно влияет на эффективность работы радиоэлектронной аппаратуры и систем связи. Импульсное излучение, поток нейтронов нарушают функционирование многих электронных систем, особенно тех, что работают в импульсном режиме, вызывая перерыва в электроснабжении, замыкания в трансформаторах, повышение напряжения, искажения формы и величины электрических сигналов.

При этом излучение вызывает временные перерывы в работе аппаратуры, а поток нейтронов - необратимые изменения.

Для диодов при плотности потока 1011 (германиевые) и 1012 (кремниевые) нейтронов/эм 2 изменяются характеристики прямого и обратного токов.

В транзисторах уменьшается коэффициент усиления тока и увеличивается обратный ток коллектора. Кремниевые транзисторы более устойчивы и сохраняют свои укрепляющие свойства при потоках нейтронов свыше 1014 нейтронов/см 2 .

Электровакуумные приборы устойчивы и сохраняют свои свойства до плотности потока 571015 - 571016 нейтронов/ см 2 .

Резисторы и конденсаторы стойкие к плотности 1018 нейтронов/см 2 . Потом у резисторов изменяется проводимость, у конденсаторов увеличиваются утечки и потери, особенно для електролічильних конденсаторов.

Радиоактивное заражение (до 10% энергии ядерного взрыва) возникает через наведенную радиацию, выпадение на землю осколков деления ядерного заряда и части остаточного урана-235 или плутония-239.

Радиоактивное заражение местности характеризуется уровнем радиации, который измеряется в рентгенах в час.

Выпадение радиоактивных веществ продолжается при движении радиоактивного облака под воздействием ветра, вследствие чего на поверхности земли образуется радиоактивный след в виде полосы зараженной местности. Длина следа может достигать нескольких десятков километров и даже сотен километров, а ширина - десятков километров.

В зависимости от степени заражения и возможных последствий облучения выделяют 4 зоны: умеренного, сильного, опасного и чрезвычайно опасного заражения.

Для удобства решения проблемы оценки радиационной обстановки границы зон принято характеризовать уровнями радиации на 1 час после взрыва (Р а) и 10 ч после взрыва, Р 10 . Также устанавливают значения доз гамма-излучения Д, которые получают за время от 1 часа после взрыва до полного распада радиоактивных веществ.

Зона умеренного заражения (зона А) - Д = 40,0-400 рад. Уровень радиации на внешней границе зоны Г в = 8 Р/ч., Р 10 = 0,5 Р/ч. В зоне А работы на объектах, как правило, не останавливаются. На открытой местности, расположенной в середине зоны или у ее внутренней границы, работы прекращаются на несколько часов.

Зона сильного заражения (зона Б) - Д = 4000-1200 советов. Уровень радиации на внешней границе Г в = 80 Р/ч., Р 10 = 5 Р/ч. Работы останавливаются на 1 сутки. Люди прячутся в убежищах или эвакуируются.

Зона опасного заражения (зона В) - Д = 1200 - 4000 рад. Уровень радиации на внешней границе Г в = 240 Р/ч., Р 10 = 15 Р/ч. В этой зоне работы на объектах останавливаются от 1 до 3-4 суток. Люди эвакуируются или укрываются в защитных сооружениях.

Зона чрезвычайно опасного заражения (зона Г) на внешней границе Д = 4000 рад. Уровни радиации Г в = 800 Р/ч., Р 10 = 50 Р/ч. Работы останавливаются на несколько суток и возобновляются после спада уровня радиации до безопасного значения.

Для примера на рис. 23 показаны размеры зон А, Б, В, Г, которые образуются во время взрыва мощностью 500 кт и скорости ветра 50 км/ч.

Характерной особенностью радиоактивного заражения при ядерных взрывах являются сравнительно быстрый спад уровней радиации.

Большое влияние на характер заражения производит высота взрыва. При высотных взрывах радиоактивное облако поднимается на значительную высоту, сносится ветром и рассеивается на большом пространстве.

Таблица

Зависимость уровня радиации от времени после взрыва

Время после взрыва, ч.

Уровень радиации, %

43,5

27,0

19,0

14,5

11,6

7,15

5,05

0,96

Пребывания людей на зараженной местности вызывает их облучения радиоактивными веществами. Кроме того, радиоактивные частицы могут попадать внутрь организма, оседать на открытых участках тела, проникать в кровь через раны, царапины, вызывая тот или иной степень лучевой болезни.

Для условий военного времени безопасной дозой общего однократного облучения считаются следующие дозы: в течение 4 суток - не более чем 50 советов, 10 суток - не более 100 советов, 3 месяца - 200 советов, за год - не более 300 рад.

Для работы на зараженной местности используются средства индивидуальной защиты, при выходе из зараженной зоны проводится дезактивация, а люди подлежат санитарной обработке.

Для защиты людей используются убежища и укрытия. Каждая постройка оценивается коэффициентом ослабления К услу, под которым понимают число, указывающее, во сколько раз доза облучения в хранилище меньше дозы облучения на открытой местности. Для каменных домов К посуду - 10, автомобиля - 2, танк - 10, подвалов - 40, для специально оборудованных хранилищ он может быть еще большим (до 500).

Электромагнитный импульс (EMI) (1 % энергии взрыва) представляет собой кратковременный всплеск напряжения электрического и магнитного полей и токов вследствие движения электронов от центра взрыва, возникающие вследствие ионизации воздуха. Амплитуда EMI очень быстро уменьшается по экспоненте. Длительность импульса равна сотой части микросекунды (рис. 25). За первым импульсом вследствие взаимодействия электронов с магнитным полем Земли возникает второй, более длительный импульс.

Диапазон частот ЭМИ - до 100 м Гц, но в основном его энергия распределена возле средне-частотного диапазона 10-15 кГц. Поражающее действие EMI - несколько километров от центра взрыва. Так, при наземном взрыве мощностью 1 Мт вертикальная составляющая электрического поля EMI на расстоянии 2 км. от центра взрыва - 13 кВ/м, на 3 км - 6 кВ/м, 4 км - 3 кВ/м.

EMI непосредственно на тело человека не влияет.

При оценке воздействия на электронную аппаратуру EMI нужно учитывать и одновременное воздействие EMI - излучения. Под воздействием излучения увеличивается проводимость транзисторов, микросхем, а под влиянием EMI происходит их пробивания. EMI является чрезвычайно эффективным средством для повреждения электронной аппаратуры. В программе СОИ предусмотрено проведение специальных взрывов, при которых создается EMI, достаточный для уничтожения электроники.