Решение линейных разностных уравнений с изменяющимися во времени коэффициен­тами. Линейные разностные уравнения с постоянными коэффициентами Порядок разностного уравнения равен

Решение обыкновенных линейных разностных уравнений

с постоянными коэффициентами

Связь выхода и входа линейной дискретной системы может быть описана обыкновенным линейным разностным уравнением с постоянными коэффициентами

,

где y[ n] - выходной сигнал в момент n ,

x[ n] - входной сигнал в момент n ,

a i , b k – постоянные коэффициенты.

Для решения таких уравнений могут использоваться два метода

  • Прямой метод,
  • Метод Z – преобразования.

Вначале рассмотрим решение линейного разностного уравнения с помощью прямого метода.

Общее решение неоднородного (с отличной от нуля правой частью) линейного разностного уравнения равно сумме общего решения линейного однородного разностного уравнения и частного решения неоднородного уравнения

Общее решение однородного разностного уравнения (zero- input response ) y h [ n]

определяется в виде

.

Подставляя это решение в однородное уравнение, получаем

Такой полином называют характеристическим полиномом системы. Он имеет N корней . Корни могут быть действительными или комплексными и некоторые корни - совпадающими (кратными).

Если корни являются действительными и разными, то решение однородного уравнения имеет вид

где коэффициенты

Если некоторый корень, например, λ 1 имеет кратность m , то соответствующий ему член решения приобретает форму

Если все коэффициенты однородного уравнения и соответственно характеристического многочлена действительны, то два члена решения, соответствующие простым комплексно сопряженным корням можно представить (записать) в виде , при этом коэффициенты A, B определяются по начальным условиям.

Вид частного решения y p [ n] уравнения зависит от правой части (входного сигнала) и определяется согласно нижеприведенной таблице

Таблица 1. Вид частного решения для различного характера правой части

Входной сигнал x[n]

Частное решение y p [n]

A (константа)

Решение линейного разностного уравнения методом Z – преобразования заключается в применении Z – преобразования к уравнению с использованием свойств линейности и временного сдвига. В результате получается линейное алгебраическое уравнение относительно Z - изображения искомой функции. Обратное Z – преобразование дает искомое решение во временной области. Для получения обратного Z – преобразования чаще всего используется разложение рационального выражения на простые (элементарные) дроби, так как обратное преобразование от отдельной элементарной дроби имеет простой вид.

Заметим, что для перехода во временную область могут использоваться и другие методы вычисления обратного Z – преобразования.

Пример . Определим отклик (выходной сигнал) системы, описываемой линейным разностным уравнением , на входной сигнал

Решение .

1. Прямой метод решения уравнения.

Однородное уравнение . Его характеристический полином .

Корни полинома .

Решение однородного уравнения .

Поскольку,то частное решение определяем в виде .

Подставляем его в уравнение

Для нахождения константы К примем n = 2 . Тогда

Или , К=2,33

Отсюда частное решение и общее решение разностного уравнения (1)

Найдем константы С 1 и С 2 . Для этого положим n = 0 , тогда из исходного разностного уравнения получаем . Для данного уравнения

Поэтому . Из выражения (1)

Следовательно,

.

Из выражения (1) для n = 1 имеем .
Получаем следующие два уравнения для С 1 и С 2

.

Решение этой системы дает следующие значения: С 1 =0,486 и С 2 = -0,816.

Следовательно, общее решение данного уравнения

2. Решение методом Z – преобразования.

Возьмем Z – преобразование от исходного разностного уравнения , учитывая свойство (теорему) временного сдвига . Получаем

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Разностное уравнение представляет собой уравнение, связывающее значение некоторой неизвестной функции в любой точке с её значением в одной или нескольких точках, отстоящих от данной на определенный интервал. Пример:

\[Г (z+1) = zГ(z)\]

Для разностных уравнений с постоянными коэффициентами существуют детально разработанные методы нахождения решения в замкнутой форме. Неоднородное и однородное разностные уравнения n-го порядка задаются соответственно уравнениями, где \ постоянные коэффициенты.

Однородные разностные уравнения.

Рассмотрим уравнение n-го порядка

\[(a_nE^n +a{n-1}E^n1 + \cdots +a_1Е + a_1)y(k) = 0 \]

Предлагаемое решение следует искать в виде:

где \ - подлежащая определению постоянная величина. Вид предполагаемого решения, задаваемый уравнением, не является наиболее распространенным. Допустимые значения \ служат корнями многочлена от \[ е^r.\] При\[ \beta = е^r \]предполагаемое решение становится таким:

где \[\beta\] - подлежащая определению постоянная величина. Подставляя уравнение и учитывая \, получим следующее характеристическое уравнение:

Неоднородные разностные уравнения. Метод неопределенных коэффициентов. Рассмотрим разностное уравнение n-го порядка

\[ (a_nЕn +а_{n-1}Еn^-1+\cdots+ а_1Е +a_1)y(k) =F(k) \]

Ответ имеет следующий вид:

Где можно решить разностное уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Введение

В последние десятилетия математические методы всё настойчивее проникают в гуманитарные науки и в частности, в экономику. Благодаря математике и её эффективному применению можно надеяться на экономический рост и процветание государства. Эффективное, оптимальное развитие невозможно без использования математики.

Целью данной работы является изучение применения разностных уравнений в экономической сфере общества.

Перед данной работой ставятся следующие задачи: определение понятия разностных уравнений; рассмотрение линейных разностных уравнений первого и второго порядка и их применение в экономике.

При работе над курсовым проектом были использованы доступные для изучения материалы учебных пособий по экономике, математическому анализу, работы ведущих экономистов и математиков, справочные издания, научные и аналитические статьи, опубликованные в Интернет - изданиях.

Разностные уравнения

§1. Основные понятия и примеры разностных уравнений

Разностные уравнения играют большую роль в экономической теории. Многие экономические законы доказывают с помощью именно этих уравнений. Разберем основные понятия разностных уравнений.

Пусть время t выступает как независимая переменная, а зависимая переменная определяется для времени t, t-1, t-2 и т.д.

Обозначим через значение в момент времени t; через - значение функции в момент, сдвинутый назад на единицу (например, в предыдущем часу, на предыдущей неделе и т.д.); через - значение функции y в момент, сдвинутый на две единицы назад, и т.д.

Уравнение

где - постоянные, называется разностным неоднородным уравнением n-го порядка с постоянными коэффициентами.

Уравнение

В котором =0, называется разностным однородным уравнением n-го порядка с постоянными коэффициентами. Решить разностное уравнение n-го порядка - значит найти функцию, которая обращает это уравнение в верное тождество.

Решение, в котором отсутствует произвольная постоянная, называется частным решением разностного уравнения; если же в решении есть произвольная постоянная, то оно называется общим решением. Можно доказать следующие теоремы.

Теорема 1. Если однородное разностное уравнение (2) имеет решения и, то решением будет также функция

где и - произвольные постоянные.

Теорема 2. Если - частное решение неоднородного разностного уравнения (1) и - общее решение однородного уравнения (2), то общим решением неоднородного уравнения (1) будет функция

Произвольные постоянные. Эти теоремы сходны с теоремами для дифференциальных уравнений. Системой линейных разностных уравнений первого порядка с постоянными коэффициентами называется система вида

где - вектор из неизвестных функций, - вектор из известных функций.

Есть матрица размера nn.

Эта система может быть решена сведением к разностному уравнению n-го порядка по аналогии с решением системы дифференциальных уравнений.

§ 2. Решение разностных уравнений

Решение разностного уравнения первого порядка. Рассмотрим неоднородное разностное уравнение

Соответствующее однородное уравнение есть

Проверим, будет ли функция

решением уравнения (3).

Подставляя в уравнение (4), получаем

Следовательно, есть решение уравнения (4).

Общее решение уравнения (4) есть функция

где C - произвольная постоянная.

Пусть - частное решение неоднородного уравнения (3). Тогда общее решение разностного уравнения (3) есть функция

Найдем частное решение разностного уравнения (3), если f(t)=c, где c - некоторая переменная.

Будем искать решение в виде постоянной m. Имеем

Подставив эти постоянные в уравнение

получаем

Следовательно, общее решение разностного уравнения

Пример1 . Найти с помощью разностного уравнения формулу прироста денежного вклада А в сбербанке, положенного под p % годовых.

Решение . Если некоторая сумма положена в банк под сложный процент p, то к концу года t её размер составит

Это однородное разностное уравнение первого порядка. Его решение

где C - некоторая постоянная, которую можно рассчитать по начальным условиям.

Если принять, то C=A, откуда

Это известная формула подсчета прироста денежного вклада, положенного в сбербанк под сложный процент.

Решение разностного уравнения второго порядка. Рассмотрим неоднородное разностное уравнение второго порядка

и соответствующее однородное уравнение

Если k является корнем уравнения

есть решение однородного уравнения (6).

Действительно, подставляя в левую часть уравнения (6) и учитывая (7), получаем

Таким образом, если k - корень уравнения (7), то - решение уравнения (6). Уравнение (7) называется характеристическим уравнением для уравнения (6). Если дискриминант характеристическое уравнение (7) больше нуля, то уравнение (7) имеет два разных действительных корня и, а общее решение однородного уравнения (6) имеет следующий вид.

Контрольные вопросы:

1. Какая функция называется сеточной?

2. Какое уравнение называется разностным?

3. Какие уравнения называются разностными уравнениями 1-го порядка?

4. Как находится общее решение неоднородного разностного уравнения 1-го порядка?

5. Какое решение разностного уравнения называется фундаментальным?

6. Почему общее решение однородного уравнения с постоянными коэффициентами имеет вид геометрической прогрессии?

Задания.

1. Написать процедуру решения разностного уравнения первого порядка с начальным условием .

2. Для заданного уравнения найти общее и частное решение аналитически.

3. Сравнить результаты вычислений по рекуррентной формуле с аналитическим решением.

4. Выяснить, как влияет на результат возмущение начального условия, коэффициентов уравнения, правой части.

Указания

Найдем общее решение разностного уравнения 1-го порядка

. (1)

Частное решение однородного уравнения при получим, используя рекуррентную формулу: . Поскольку значение Y в каждом следующем узле сетки удваивается, получается геометрическая прогрессия со знаменателем q=2:

Частное решение неоднородного уравнения найдем в виде:, где А - неопределенный коэффициент. Тогда , , и, приравняв полученное значение к заданной правой части, найдем неопределенный коэффициент A=. Окончательно, общее решение: .

Используя начальное условие , находим константу: . Окончательно, частное решение при заданном начальном условии:

.

Для исследования устойчивости решения к возмущению самого решения и начального условия рассмотрим следующее уравнение:

с возмущенным начальным условием

(здесь - величина возмущения). Вычитая исходное уравнение (1), получим разностное уравнение для возмущения:

с начальным условием . Решение этого уравнения имеет вид: , т.е. даже малое возмущение в каком-либо узле экспоненциально растет с увеличением номера узла.

Студенту необходимо проиллюстрировать сказанное выше: исследовать влияние возмущений начального условия, правых частей и коэффициентов уравнения, изменив рекуррентную формулу.

Вариант, в соответствии с номером студента по списку в журнале, необходимо решить на языке программирования C++ (допускается использование среды Builder) или Pascal (допускается использование среды Delphi).

  1. Рекуррентная формула для получения численного решения.
  2. Аналитическое решение разностного уравнения. Общее решение и частное решение, удовлетворяющее заданным начальным условиям.
  3. Исследовать устойчивость решения к возмущению начального условия и решения аналитически.

б) при возмущении коэффициентов уравнения;

в) при возмущении правой части.


Тема:Разностные уравнения 2 порядка

Контрольные вопросы:

1. Какие уравнения называются разностными уравнениями 2-го порядка?

2. Что такое характеристическое уравнение?

3. Как выглядит частное решение однородного разностного уравнения 2-го порядка с действительными корнями характеристического уравнения?

4. Как выглядит частное решение однородного разностного уравнения 2-го порядка с комплексными корнями характеристического уравнения?

5. Как находится общее решение неоднородного разностного уравнения 2-го порядка?

6. Что такое численное и аналитическое решение разностного уравнения 2-го порядка?

7. Какие задачи называются хорошо обусловленными?

Задания

1. Написать процедуру решения разностной краевой задачи для уравнения второго порядка с граничными условиями , .

2. Для заданного уравнения найти общее и частное решение аналитически и проверить критерий обусловленности.

3. Сравнить результаты вычислений по рекуррентной формуле с аналитическим решением.

4. Выяснить, как влияет на результат возмущение граничных условий и правой части.

Найдем общее решение разностного уравнения 2-го порядка можно найти выбором произвольных постоянных .

Наряду с задачами Коши, для уравнений 2-го порядка рассматриваются также двухточечные краевые задачи, в которых заданы значения сеточной функции в двух узлах, расположенных не подряд, а на концах некоторого конечного отрезка: (граничные условия ). Аналитическое решение такой задачи можно получить подходящим выбором произвольных постоянных в общем решении. Однако, в отличие от задачи с начальными условиями, краевая задача не обязательно будет однозначно разрешимой. Поэтому большое значение имеет выяснение класса краевых задач, которые обладают однозначной разрешимостью и слабой чувствительностью к возмущению (вследствие ошибок округления) правых частей и граничных условий. Такие задачи будем называть хорошо обусловленными

Рассмотрим пример плохо обусловленной краевой задачи

  1. Постановка задачи. Исходное разностное уравнение и граничные условия.
  2. Процедура для получения численного решения.
  3. Аналитическое решение разностной краевой задачи. Общее решение и частное решение, удовлетворяющее заданным граничным условиям. Проверка критерия обусловленности.
  4. Графики численного решения и аналитического решения (в одних осях).
  5. График разности численного и аналитического решения.
  6. Графики возмущенных численных решений и разности возмущенного и невозмущенного решений:

а) при возмущении начального условия;

б) при возмущении правой части.

  1. Вывод об обусловленности краевой задачи.