Магнитный момент – фундаментальное свойство элементарных частиц

Орбитальный М. м. электрона mорб связан с механическим орбитальным моментом орб соотношением g opб = |mорб| / | орб| = |e |/2m ec , то есть магнитомеханическое отношение gopб в два раза меньше, чем g cп. Квантовая механика допускает лишь дискретный ряд возможных проекций mорб на направление внешнего поля (так называемое квантование пространственное): mНорб = mlmв, где ml -магнитное квантовое число, принимающее 2l + 1 значений (0, ±1, ±2,..., ±l , где l -орбитальное квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (g cп ¹ g opб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механическому моменту J .Поэтому часто рассматривают слагающую полного М. м. на направление вектора J , равную

где g J - магнитомеханическое отношение электронной оболочки, J - полное угловое квантовое число.

М. м. протона, спин которого равен

должен был бы по аналогии с электроном равняться

где Mp - масса протона, которая в 1836,5 раз больше m e, mяд - ядерный магнетон, равный 1/1836,5mв. У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона mp = 2,7927mяд, а нейтрона mn = -1,91315mяд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфические ядерные взаимодействия (см. Ядерные силы , Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными mяд или mp и mn. Таким образом, М. м. ядра калия равен -1,29 mяд. Причиной этой неаддитивности является влияние ядерных сил, действующих между образующими ядро нуклонами. М. м. атома в целом равен векторной сумме М. м. электронной оболочки и атомного ядра.

Для характеристики магнитного состояния макроскопических тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. называется намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, ферри- и антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) - носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абсолютном нуле температуры) на число атомов - носителей М. м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора mв оказываются дробными (например, в переходных d-металлах Fe, Со и Ni соответственно 2,218 mв, 1,715 mв и 0,604 mв) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (например, ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР, ФМР и т.п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., который определяется через найденную на опыте постоянную Кюри, входящую в выражение для Кюри закона или Кюри - Вейса закона (см. Парамагнетизм).

Лит.: Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Ландау Л. Д. и Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм микрочастиц, М., 1973.

С. В. Вонсовский.

МАГНИТНЫЙ МОМЕНТ - физ. величина, характеризующая магн. свойства системы заряж. частиц (или отд. частицы) и определяющая наряду с др. мультипольными моментами (дипольным электрич. моментом, квадрупольным моментом и т. д., см. Мулътиполи )взаимодействие системы с внеш. эл--магн. полями и с др. подобными системами.

Согласно представлениям классич. , магн. поле создаётся движущимися электрич. . Хотя совр. теория не отвергает (и даже предсказывает) существование частиц с магн. зарядом (магнитных монополей) , такие частицы пока экспериментально не наблюдались и в обычном веществе отсутствуют. Поэтому элементарной характеристикой магн. свойств оказывается именно М. м. Система, обладающая М. м. (аксиальный вектор), на больших расстояниях от системы создаёт магн. поле


(- радиус-вектор точки наблюдения). Аналогичный вид имеет электрич. поле диполя, состоящего из двух близко расположенных электрич. зарядов противоположного знака. Однако, в отличие от электрич. дипольного момента. М. м. создаётся не системой точечных "магн. зарядов", а электрич. токами, текущими внутри системы. Если замкнутый электрич. ток течёт в ограниченном объёме V , то создаваемый им М. м. определяется ф-лой

В простейшем случае замкнутого кругового тока I , текущего вдоль плоского витка площади s, , причём вектор М. м. направлен вдоль правой нормали к витку.

Если ток создаётся стационарным движением точечных электрич. зарядов с массами , имеющими скорости , то возникающий М. м., как следует из ф-лы (1), имеет вид


где подразумевается усреднение микроскопич. величин по времени. Поскольку стоящее в правой части векторное произведение пропорционально вектору момента кол-ва движения частицы (предполагается, что скорости ), то вклады отд. частиц в М. м. и в момент кол-ва движения оказываются пропорциональными:

Коэффициент пропорциональности е/2тс наз. ; эта величина характеризует универсальную связь между магн. и механич. свойствами заряж. частиц в классич. электродинамике. Однако движение элементарных носителей заряда в веществе (электронов) подчиняется законам

Магнитный момент

основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классической теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М ) силы тока i на площадь контура σ (М = i σ/c в СГС системе единиц (См. СГС система единиц), с - скорость света). Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = m l , где m - эквивалентный Магнитный заряд контура, а l - расстояние между «зарядами» противоположных знаков (+ и - ).

М. м. обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. М. м. элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - Спин а. М. м. ядер складываются из собственных (спиновых) М. м. образующих эти ядра протонов и нейтронов, а также М. м., связанных с их орбитальным движением внутри ядра. М. м. электронных оболочек атомов и молекул складываются из спиновых и орбитальных М. м. электронов. Спиновый магнитный момент электрона m сп может иметь две равные и противоположно направленные проекции на направление внешнего магнитного поля Н. Абсолютная величина проекции

где μ в = (9,274096 ±0,000065)·10 -21 эрг/гс - Бора магнетон , h - Планка постоянная , е и m e - заряд и масса электрона, с - скорость света; S H - проекция спинового механического момента на направление поляH . Абсолютная величина спинового М. м.

где s = 1 / 2 - спиновое квантовое число (См. Квантовые числа). Отношение спинового М. м. к механическому моменту (спину)

так как спин

Исследования атомных спектров показали, что m Н сп фактически равно не m в, а m в (1 + 0,0116). Это обусловлено действием на электрон так называемых нулевых колебаний электромагнитного поля (см. Квантовая электродинамика , Радиационные поправки).

Орбитальный М. м. электрона m орб связан с механическим орбитальным моментом орб соотношением g opб = |m орб | / | орб | = |e |/2m e c , то есть Магнитомеханическое отношение g opб в два раза меньше, чем g cп. Квантовая механика допускает лишь дискретный ряд возможных проекций m орб на направление внешнего поля (так называемое Квантование пространственное): m Н орб = m l m в , где m l - магнитное квантовое число, принимающее 2l + 1 значений (0, ±1, ±2,..., ±l , где l - орбитальное квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (g cп ¹ g opб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механическому моменту J . Поэтому часто рассматривают слагающую полного М. м. на направление вектора J , равную

где g J - магнитомеханическое отношение электронной оболочки, J - полное угловое квантовое число.

М. м. протона, спин которого равен

где M p - масса протона, которая в 1836,5 раз больше m e , m яд - ядерный магнетон, равный 1/1836,5m в. У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона m p = 2,7927m яд, а нейтрона m n = -1,91315m яд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфические ядерные взаимодействия (см. Ядерные силы , Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными m яд или m p и m n . Таким образом, М. м. ядра калия

Для характеристики магнитного состояния макроскопических тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. называется намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, ферри- и антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) - носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абсолютном нуле температуры) на число атомов - носителей М. м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора m в оказываются дробными (например, в переходных d-металлах Fe, Со и Ni соответственно 2,218 m в, 1,715 m в и 0,604 m в) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (например, ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР, ФМР и т.п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., который определяется через найденную на опыте постоянную Кюри, входящую в выражение для

Известно, что магнитное поле оказывает ориентирующее действие на рамку с током, и рамка поворачивается вокруг своей оси. Происходит это потому, что в магнитном поле на рамку действует момент сил, равный:

М = I S |B → | sin α.

Здесь B → - вектор индукции магнитного поля, I - ток в рамке, S - ее площадь и α - угол между силовыми линиями и перпендикуляром к плоскости рамки. В это выражение входит произведение I S которое называют магнитным дипольным моментом или просто магнитным моментом рамки Оказывается, величина магнитного момента полностью характеризует взаимодействие рамки с магнитным полем. Две рамки, у одной из которых большой ток и малая площадь, а у другой - большая площадь и малый ток, будут вести себя в магнитном поле одинаково, если их магнитные моменты равны. Если рамка маленькая, то ее взаимодействие с магнитным полем не зависит от ее формы.

Удобно считать магнитный момент вектором, который расположен на линии, перпендикулярной плоскости рамки. Направление вектора (вверх или вниз вдоль этой линии) определяется «правилом буравчика»: буравчик нужно расположить перпендикулярно плоскости рамки и вращать по направлению тока рамки - направление движения буравчика укажет направление вектора магнитного момента.

Таким образом, магнитный момент - это вектор I S, перпендикулярный плоскости рамки.

Теперь наглядно представим поведение рамки в магнитном поле. Она будет стремиться развернуться так. чтобы ее магнитный момент был направлен вдоль вектора индукции магнитного поля B →

Магнитный момент - важное понятие в физике. В состав атомов входят ядра, вокруг которых вращаются электроны. Каждый движущийся вокруг ядра электрон как заряженная частица создает ток, образуя как бы микроскопическую рамку с током. Вычислим магнитный момент одного электрона, движущегося по круговой орбите радиуса r.

Электрический ток, т. е. величина заряда, которая переносится электроном на орбите за 1 с, равна заряду электрона е, помноженному на число совершаемых им оборотов v/2πr:

Следовательно, величина магнитного момента электрона равна:

μ = I S=ev/(2πr) (πr 2) = evr/2.

μ можно выразить через величину момента импульса электрона L=m v r. Тогда величина магнитного момента электрона, связанная с его движением по орбите, или, как говорят, величина орбитального магнитного момента, равна:

Атом - это объект, который нельзя описать с помощью классической физики: для таких малых объектов действуют совершенно иные законы - законы квантовой механики. Тем не менее результат, полученный для орбитального магнитного момента электрона, оказывается таким же, как и в квантовой механике. Иначе дело обстоит с собственным магнитным моментом электрона - спином, который связан с его вращением вокруг своей оси. Для спина электрона квантовая механика дает величину магнитного момента, в 2 раза большую, чем классическая физика:

и это различие между орбитальным и спиновым магнитными моментами невозможно объяснить с классической точки зрения. Полный магнитный момент атома складывается из орбитальных и спиновых магнитных моментов всех электронов, а поскольку они отличаются в 2 раза, то в выражении для магнитного момента атома появляется множитель g(1

Таким образом, атом, как и обычная рамка с током, обладает магнитным моментом, и во многом их поведение сходно. В частности, как и в случае классической рамки, поведение атома в магнитном поле полностью определяется величиной его магнитного момента. В связи с этим понятие магнитного момента очень важно при объяснении различных физических явлений, происходящих с веществом в магнитном поле.