Потенциальная энергия заряда в электрическом поле формула. Потенциальность электростатического поля. Потенциальная энергия взаимодействия электрического заряда с электрическим полем

Особенности электрического взаимодей-ствия имеют много общего с гравитацион-ными. В частности, работа силы тяжести и работа электрической силы выражаются по-добными зависимостями.

Для силы тяготения:

A = mg(h 1 — h 2) = -(mgh 1 — mgh 2).

Для электрической силы:

A = qE(l 1 — l 2) = -(qEl 2 — qEl 1).

Из этого можно сделать вывод, что ра-бота электрической силы равна изменению потенциальной энергии тела, взятой с про-тивоположным знаком. То есть заряженное тело в однородном электрическом поле име-ет потенциальную энергию

W p = qEl.

Заряженное тело в электроста-тическом поле имеет потен-циальную энергию.

Потенциальная энергия заряженного те-ла определяется как электрическими харак-теристиками тела (его заряд), так и харак-теристиками выбранной точки электричес-кого поля — напряженность и координата. Изменение одной из трех характеристик ве-дет к изменению потенциальной энергии тела в целом.

Значение потенциальной энер-гии заряженного тела зависит от его заряда, напряженности электрического поля и коорди-наты.

Исследуем одну из точек электрического поля с целью определения ее энергети-ческих характеристик. Для этого проведем несколько мысленных экспериментов с то-чечным заряженным телом.

Пусть точечное тело имеет заряд q 1 и находится в поле напряженностью на расстоянии l от источника поля. Его потен-циальная энергия будет равна

W p1 = q 1 El.

Увеличим значение заряда в 2 раза. Его потенциальная энергия будет

W p 2 = 2q 1 El.

Таким образом, потенциальная энергия тела увеличится в 2 раза. Любые изменения заряда тела ведут к соответствующему из-менению его потенциальной энергии. Но в каждом случае отношение потенциальной энергии заряженного тела к его электри-ческому заряду в данной точке поля будет оставаться постоянным

W p / q = φ.

Величина φ называется потенциалом точ-ки поля. Если в полученное соотношение подставить значение потенциальной энергии W p , то получим

φ = qEl / q = El.

В значении потенциала отсутствуют ха-рактеристики тела, в том числе и его заряд. Поэтому можно считать справедливым ут-верждение, что потенциал является харак-теристикой электрического поля.

Физическая величина, которая является эне-ргетической характеристикой электрическо-го поля и равна отношению потенциальной энергии заряженного тела в электрическом поле к его заряду, называется потенциалом .

φ = W p / q,

где W p — потенциальная энергия заряжен-ного тела; q — заряд тела.

При измерении потенциала пользуются единицей, которая называется вольтом (В). Единица названа в честь итальянского уче-ного Алессандро Вольта.

Алессандро Вольта (1745 - 1825) - италь­янский физик и физиолог, один из ос­нователей учения об электрическом то­ке. Изобрел смоляной электрофор, чувст­вительный электроскоп с конденсато­ром, первый химический источник элект­рического тока, проводил широкие ис­следования электрических возбужде­ний мышц и нервов.

В соответствии с определением

1 В = 1 Дж / 1 Кл.

Применяются также кратные и дольные единицы потенциала :

1 милливольт = 1 мВ = 10 -3 В;

1 микровольт = 1 мкВ = 10 -6 В;

1 киловольт = 1 кВ = 10 3 В;

1 мегавольт = 1 MB = 10 6 В.

Все вышеизложенные соображения каса-ются однородного поля , напряженность ко-торого не зависит от координаты точки на-блюдения.

Но их можно распространить и на другие случаи, в частности на электрическое поле точечного заряженного тела . Ононеодно-родно, напряженность изменяется от точки к точке вдоль силовых линий по закону

E = (1 / 4πε 0 ) . (q / r 2 ).

Воспользуемся определением потенциала точки электрического поля:

φ = El = (1 / 4πε 0 ) . (q . l / r 2 )

Учитывая, что l = r, получим

φ = (1 / 4πε 0 ) . (q / r ).

Потенциал поля точечного заряженного тела уменьшается обратно пропорционально расстоянию.

Потенциал не имеет направле-ния.

Потенциал является скалярной величи-ной и не имеет направления. Поэтому мож-но говорить, что вокруг точечного заряжен-ного тела существует бесконечно большое множество точек, в которых потенциалы будут одинаковы. Все они будут лежать на сферической поверхности радиуса r с цент-ром в источнике поля. Такую поверхность называют эквипотенциальной . Материал с сайта

На понятие потенциала распространяет-ся принцип суперпозиции . Потенциал точ-ки, в которой действуют поля нескольких электрически заряженных тел, равняется алгебраической сумме потенциалов каждого из них (рис. 4.60). При этом считается, что потенциал поля отрицательно заряженного тела отрицательный.

φ A = φ 1 + φ 2 — φ 3 .

В общем случае

φ = φ 1 + φ 2 + φ 3 + … + φ n .

Для измерения потенциала можно исполь-зовать электрометр, который в этом случае называют электростатическим вольтметром . Если внешний металлический корпус со-единить с поверхностью Земли, потенциал которой условно считается равным нулю, то электрометром можно измерять потенциал тела, соединенного с его стержнем.

На этой странице материал по темам:

  • Кулоновский потенциальная энергия

  • Урок физики. потенциальная энергия заряженного тела. потенциал

Вопросы по этому материалу:


Вычислим потенциальную энергию электрических зарядов для наиболее простых, но очень важных частных случаев.
Потенциальная энергия заряда в однородном поле Пусть заряд q перемещается в однородном электрическом поле с напряженностью Е из точки 1 в точку 2. Положение точки 1 определяется радиусом-вектором а точки 2 ради- усом-вектором г2. Действующая на заряд сила F = qE постоянна. Работа силы F не зависит от формы траектории, соединяющей точки 1 и 2. Это следует из общего доказательства потенциальности электростатического поля. Можно провести доказательство и с помощью непосредственного вычисления работы при перемещении заряда по разным путям точно так же, как это было сделано в «Механике» для гравитационных сил. Сейчас мы это делать не будем.
Проще всего вычислить работу, если заряд перемещается вдоль прямой, соединяющей точку 1 и точку 2 (рис. 1.78). Вектор перемещения Дг = г2 - rv Работа равна скалярному произведению силы на перемещение:
A = F Ar^qE (r2-r1) = qE r2-qE гг (1.18.1)
С другой стороны, согласно (1.17.1), А = ~(W 2 ~ Сравнивая выражения (1.18.1) и (1.17.1), получим выражение для потенциальной энергии заряда в однородном поле:
Wp ~ -qE г. (1.18.2)
Однородное поле создается, в частности, в пространстве между параллельными пластинами, несущими заряды противоположных знаков (рис. 1.79). Естественно выбрать систему координат так, чтобы ось X была направлена перпендикулярно пластинам. Тогда проекции Е„ и Е, равны нулю и выраже-
у z
ниє (1.18.2) приобретает вид:
Wp = -q(Exx + Еуу + Ezz) = ~qExx. (1.18.3)

Формула (1.18.3) подобна формуле Wp = mgh для потенци-альной энергии тела над поверхностью Земли. Роль массы играет заряд, ускорения свободного падения - напряженность поля, а вместо высоты h стоит координата х. Но знак энергии другой: минус вместо плюса. Дело здесь вот в чем. Масса всегда положительна, и сила тяготения обязательно направлена вертикально вниз. С учетом этих обстоятельств и была записана формула Wp = mgh. В ней стоит модуль ускорения свободного падения, и высота h отсчитывается от поверхности Земли. Формула (1.18.3) является более общей. Заряд q может быть как положительным, так и отрицательным; напряженность поля может быть направлена куда угодно, и ее проекция может иметь как положительное значение, так и отрицательное в зависимости от выбора системы координат.
В частности, если напряженность поля Е направлена вертикально вниз, а ось X вверх, то
Wp = qE\x\ (1.18.4)
в точном соответствии с выражением Wp = mgh.
Если электрическое поле совершает положительную работу, то энергия заряженного тела в поле уменьшается: AW 0. Такое движение заряженной частицы подобно движению камня, брошенного вверх. Потенциальная энергия частицы при этом растет, а кинетическая энергия уменьшается: частица тормозится.
Нулевой уровень потенциальной энергии
Потенциальная энергия в электродинамике определяется, как и в механике, с точностью до произвольной постоянной. Вместо выражения (1.18.2) мы могли бы написать:
W=-qE-r + C, (1.18.5)
где С - произвольная константа. При этом изменение потенциальной энергии остается тем же, а работа определяет имен- но изменение потенциальной энергии, а не саму энергию. Записывая формулу (1.18.2), мы фактически приравняли постоянную С к нулю. Это соответствует определенному выбору нулевого уровня потенциальной энергии. Например, для случая, изображенного на рисунке 1.79, потенциальная энергия считается равной нулю на поверхности пластины В. Но, как и при действии сил тяготения, нулевой уровень потенциальной энергии выбирают произвольно. Можно считать, что W - О на расстоянии от пластины В. Тогда
Wp = -qExx-qExx у
Физический смысл имеет не сама потенциальная энергия, а разность ее значений, определяемая работой поля при перемещении заряда из начального положения в конечное.
Энергия взаимодействия точечных зарядов
В курсе механики было получено выражение для энергии взаимодействия точечных тел:
ті и» W = -G--- .
Р г
Если вместо точечных масс взять два разноименных по знаку заряда q1 и q2 (заряды притягиваются), то можно получить аналогичное выражение для потенциальной энергии их взаимодействия:
w (1.18.6)
Р г у "
Для зарядов одного знака (заряды отталкиваются) знак потенциальной энергии будет противоположным:
w (1.18.7)
Р г у "
Формулы (1.18.6) и (1.18.7) можно объединить в одну, если вместо модулей зарядов взять их алгебраические значения:
W . (1.18.8)
Р г v "
Знак потенциальной энергии автоматически получится пра-вильным.
Если заряды ql и q2 имеют одинаковые знаки, то потенциальная энергия их взаимодействия положительна (рис. 1.80, а). Она тем больше, чем меньше расстояние между зарядами, так как работа, которую могут совершить кулоновские силы при отталкивании зарядов друг от друга, будет больше. Если заряды имеют противоположные знаки, то энергия отрицательна и максимальное ее значение, равное нулю, достигается при г -> оо (рис. 1.80, б). Чем больше г, тем большую работу совершат силы притяжения при сближении зарядов.

Рис. 1.80
При записи потенциальной энергии в форме (1.18.8) уже сделан определенный выбор нулевого уровня потенциальной энергии. Считается, что потенциальная энергия бесконечно удаленных зарядов равна нулю: Wp -» 0 при г -» оо. Такой выбор нулевого уровня удобен, но не обязателен. Вместо выражения (1.18.8) можно было бы с тем же успехом записать, что
(1.18.9)
р г у "
где С - произвольная постоянная. Отсюда видно, что положительное или отрицательное значение потенциальной энергии особого физического смысла не имеет. Знак потенциальной энергии будет определенным при фиксации произвольной постоянной С. Изменив значение С, мы можем изменить знак Wp при данном расстоянии г между зарядами.
Потенциальная энергия системы точечных зарядов
Потенциальная энергия системы точечных зарядов qv q2, ... ,qN равна сумме потенциальных энергий всех пар взаи-модействующих зарядов. Для трех зарядов
w kbSi+hbS*+hwз л
Р Г1,2 Г1,3 Г2,3
Докажите это самостоятельно, используя следующий прием. Вначале заряды q2 и qz находятся на бесконечно большом расстоянии от заряда qv Затем заряд q2 перемещается в точку, находящуюся на расстоянии гl 2 от первого заряда. Вслед за тем заряд qz перемещается в точку на расстоянии г1 3 от первого заряда и г2 3 от второго. Надо вычислить работу кулонов- ских сил, совершаемую при этих перемещениях, и приравнять ее изменению потенциальной энергии, взятому с противоположным знаком.
В общем случае N зарядов
N N
Wp= I llk7rh> (1.18.11)
i=lfc=l (i*k)
где r; k - расстояние между зарядами номеров ink. Коэффи- 1
циент 2 получается из-за того, что при суммировании потенциальная энергия учитывается дважды в виде одинаковых
ri, k rk, і
Формулы для потенциальной энергии электрического заряда в однородном поле (1.18.2) и для двух точечных зарядов (1.18.8) целесообразно запомнить. Они будут встречаться достаточно часто.
? 1. Можно ли создать электростатическое по-
ле, линии напряженности которого парал- ^^^^^^^
лельны, а модуль напряженности возраста-
ет в направлении, перпендикулярном ли-
ниям (рис. 1.81)? Рис. 1.81
Нарисуйте график зависимости потенциальной энергии разноименно заряженных частиц от расстояния при условии, что произвольная постоянная С в формуле (1.18.9) положительна.
Как будет выглядеть формула (1.18.8), если заряды находятся в среде с диэлектрической проницаемостью є?

Если электрическое тело действует на электрически заряженные тела, то оно способно совершить работу по перемещению заряженных тел. Электростатическое поле, создаваемое точечным зарядом, является центральным, то есть сила, действующая на точечный заряд в таком поле, направлена вдоль прямой, соединяющей заряд-источник и пробный заряд. Ранее мы показали, что любая центральная сила является потенциальной, то есть работа этой силы не зависит от формы траектории, а определяется только начальным и конечным положением тела.

Вкратце напомним доказательство этого важнейшего утверждения. Пусть точечный пробный заряд q движется в центральном поле, создаваемом неподвижным зарядом Q (Рис. 174). Сила, действующая на пробный заряд, определяется законом Кулона

Где - вектор, проведенный от заряда источника Q, к точке A, в которой находится пробный заряд. При движении заряда по дугам окружностей с центром на заряде Q (например, по дугам AB, CD) работа электрической силы равна нулю, так векторы силы и перемещения взаимно перпендикулярны. При движении же в радиальном направлении (например, по отрезкам BC, DE) работа зависит только от начального и конечного расстояния до заряда источника. Так работы электростатического поля при перемещении по отрезкам DE и D1E1 , очевидно равны. Самое красивое доказательство этого утверждения связано с симметрией поля – повернем нашу систему вокруг оси проходящей через источник, так, что бы отрезок D1E1 совпал с отрезком DE - распределение поля при этом не изменится, почему должна изменится работа поля?

Так как для напряженности электростатического поля справедлив принцип суперпозиции, то потенциальным является любое электростатическое поле. Действительно, пусть точечный заряд q находится в электрическом поле, создаваемым системой неподвижных точечных зарядов Q1, Q2, … ,QN . При перемещении заряда на малый вектор перемещения, по определению, электрическое поле совершит работу, где

Результирующая сила, действующая на движущийся заряд q, равная сумме сил, действующих со стороны каждого из неподвижных точечных зарядов Qk. Работа этой силы может быть вычислена по формуле

Для того, чтобы вычислить работу по конечному участку траектории, необходимо разбить траекторию на малые участки (Рис. 175), затем с помощью формулы (1) вычислить работу на каждом малом участке, после чего их просуммировать

. (2)Фактически, данная сумма является двойной, так как каждая результирующая сила, является суммой сил, в соответствии с формулой (1). Обратим внимание, что в формуле (2) результирующая сила изменяется, так как вычисляется в разных точках траектории.

Как мы показали ранее, работа электрического поля точечного заряда не зависит от формы траектории, то есть каждое слагаемое из формулы (1) не зависит от формы траектории, следовательно, и вся сумма не зависит от формы траектории. Таким образом, любое электростатическое поле является потенциальным.

Следовательно, для точечного заряда, находящегося в электростатическом поле можно ввести потенциальную энергию взаимодействия U(x,y,z). Эта функция имеет следующий физический смысл: работа электрического поля при перемещения точечного заряда из одной точки с координатами (x1,y1,z1) в другую, с координатами (x2,y2,z2) равна изменению потенциальной энергии, взятому с противоположным знаком:

. (3)Изменение знака в данном определении достаточно логично: если электрическое поле совершило положительную работу (A > 0), то его энергия уменьшается (ΔU < 0). Для вычисления работы силы взаимодействия между двумя точечными заряженными телами достаточно подсчитать эту работу при движении вдоль радиального отрезка при изменении расстояния от r1 до r2 (Рис. 176). Если построить зависимость силы взаимодействия между зарядами от расстояния r между телами, тогда площадь под графиком этой зависимости в указанных пределах и будет равна искомой работе (Рис. 177). Зависимость силы электростатического взаимодействия от расстояния аналогична силе гравитационного взаимодействия, с одним существенным отличием: гравитационная сила всегда есть сила притяжения, а электрическая может быть как силой притяжения, так и силой отталкивания. В частности два положительных заряда отталкиваются. Поэтому выражение для работы электрического поля, будет аналогично формуле для работы гравитационной силы, но иметь противоположный знак

Эта работа равна уменьшению потенциальной энергии взаимодействия, то есть Из этого выражения можно определить выражение для потенциальной энергии электростатического взаимодействия двух точечных зарядов . (4) При таком определении потенциальная энергия взаимодействия двух зарядов одного знака положительна и стремится к нулю при бесконечном расстоянии между телами. Сила взаимодействия зарядов противоположных знаков направлена в противоположную сторону, поэтому работа этой силы при увеличении расстояния между зарядами будет отрицательна. Однако нам нет необходимости делать какие-то дополнительные оговорки, так как формула (4) автоматически учитывает знаки зарядов – если заряды противоположны, то их произведение (соответственно и энергия) отрицательны. Знак потенциальной энергии взаимодействия зарядов имеет очень наглядный смысл. Заряды одного знака отталкиваются, поэтому при их «разбегании» на бесконечно большое расстояние, электрическое поле совершит положительную работу – следовательно, изначально система этих зарядов обладает способностью совершить работу, поэтому ее энергия положительна, при удалении зарядов друг от друга их энергия уменьшается до нуля. Заряды противоположных знаков притягиваются, для того чтобы удалить их на бесконечно большое расстояние, внешние силы должны совершать положительную работу. При этом энергия пары зарядов должна возрастать, следовательно, изначально она отрицательна, а при удалении зарядов друг от друга возрастает до нуля. В целом обычная ситуация – притяжению соответствует отрицательная энергия, а отталкиванию - положительная. Отметим только, что такая очевидность справедлива только при выборе нулевого уровня потенциальной энергии на бесконечности. Формула (4) определяет потенциальную энергию взаимодействия двух точечных заряженных тел. Величины зарядов тел Q и q входят, как и следовало ожидать, в эту формулу симметрично. Подразделение зарядов на заряд-источник и пробный заряд является условным, их вполне можно поменять местами. Поэтому данную формулу предпочтительнее записывать в симметричном виде: энергия взаимодействия двух точечных зарядов q1 и q2 равна , (5)и имеет смысл работы, совершаемой полем при увеличении расстояния между зарядами от r до бесконечности, независимо от того, движется ли первый заряд, или второй, или движутся оба заряда, наконец, не зависимо от траекторий движения обоих зарядов. Далее, нельзя сказать какому именно заряду «принадлежит» эта энергия, в дальнейшем мы покажем, что энергия взаимодействия зарядов есть часть энергии самого электростатического поля, то есть она «размазана» по всему пространству, где существует поле, создаваемое этими зарядами. Если система состоит из более чем двух зарядов, то для подсчета энергии взаимодействия этих зарядов необходимо просуммировать энергии взаимодействия всех пар зарядов

здесь Uik - энергия взаимодействия зарядов qi и qk, находящихся на расстоянии rik друг от друга (Рис. 178).

40 Вопрос:

Электростатическое поле - эл. поле неподвижного заряда.

Fэл, действующая на заряд, перемещает его, совершая раборту. В однородном электрическом поле Fэл = qE - постоянная величина

Работа поля (эл. силы) не зависит от формы траектории и на замкнутой траектории = нулю.

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

Электростатическая энергия - потенциальная энергия системы заряженных тел (т.к. они взаимодействуют и способны совершить работу).

Так как работа поля не зависит от формы траектории, то одновременно

сравнивая формулы работы, получим потенциальную энергию заряда в однородном электростатическом поле

Если поле совершает положительную работу (вдоль силовых линий), то потенциальная энергия

заряженного тела уменьшается (но согласно закону сохранения энергии увеличивается кинетическая энергия) и наоборот.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Энергитическая характеристика эл. поля.

Равен отношению потенциальной энергии заряда в поле к этому заряду.

Скалярная величина, определяющая потенциальную энергию заряда в любой точке эл. поля.

Величина потенциала считается относительно выбранного нулевого уровня.

РАЗНОСТЬ ПОТЕНЦИАЛОВ (или иначе НАПРЯЖЕНИЕ)

Это разность потенциалов в начальной и конечной точках траектории заряда.

Напряжение между двумя точками (U) равно разности потенциалов этих точек и равно работе поля по перемещению единичного заряда.

СВЯЗЬ МЕЖДУ НАПРЯЖЕННОСТЬЮ ПОЛЯ И РАЗНОСТЬЮ ПОТЕНЦИАЛОВ

Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда:

где W п1 и W п2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q , изменение потенциальной энергии равно

.

При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r 1 и r 2 от заряда Q ,

Если поле создано системой точечных зарядов Q 1 , Q 2 ,¼ , Q n , то изменение потенциальной энергии заряда q в этом поле:

.

Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q , а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q , находящегося в электрическом поле, созданном другим точечным зарядом Q , получим

,

где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥ ), тогда постоянная C = 0 и предыдущее выражение принимает вид

При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную . В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q :

.

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Q i (i = 1, 2, ... , n ). Энергия взаимодействия всех n зарядов определится соотношением

,

где r ij - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля , определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда, j = W п / q , откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).

Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью e :

Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q 1, Q 2 ¼ , Q n имеем

,

где r i - расстояние от точки поля, обладающей потенциалом j , до заряда Q i . Если заряд произвольным образом распределен в пространстве, то

,

где r - расстояние от элементарного объема dx , dy , dz до точки (x , y , z ), где определяется потенциал; V - объем пространства, в котором распределен заряд.

Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q (j 1 - j 2 ) .
Если по аналогии с потенциальной энергией считать, что в точках, бесконечно удалённых от электрических зарядов - источников поля, потенциал равен нулю, то работу сил электрического поля при перемещении заряда q из точки 1 в бесконечность можно представить как A ¥ = q j 1 .
Таким образом, потенциал â данной точке электростатического поля - это физическая величина, численно равная работе, совершаемой силами электрического поля при перемещении единичного положительного точечного заряда из данной точки поля в бесконечно удаленную : j = A ¥ / q .
В некоторых случаях потенциал электрического поля нагляднее определяется как физическая величина, численно равная работе внешних сил против сил электрического поля при перемещении единичного положительного точечного заряда из бесконечности в данную точку . Последнее определение удобно записать следующим образом:

В современной науке и технике, особенно при описании явлений, происходящих в микромире, часто используется единица работы и энергии, называемая электрон-вольтом (эВ). Это работа, совершаемая при перемещении заряда, равного заряду электрона, между двумя точками с разностью потенциалов 1 В: 1 эВ = 1,60× 10 - 1 9 Кл× 1 В = 1,60× 10 - 1 9 Дж.

Вопросы

1) Дайте определение потенциала данной точки поля и разности потенциалов двух точек поля.

2) Приведите графики зависимостей напряженности поля и потенциала от расстояния для равномерно заряженной сферической поверхности. Дайте их объяснение и обоснование.

§ 12.3 Работа сил электростатического поля. Потенциал. Эквипотенциальные поверхности

На заряд q пр помещённый в произвольную точку электростатического поля с напряжённостью Е, действует сила F= q пр E. Если заряд не закреплён, то сила заставит его перемещаться и, значит, будет совершаться работа. Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда q пр из точки а электрического поля в точку b на отрезке пути dℓ, по определению, равна

(α - угол между F и направлением движения) (рис.12.13).

Если работа совершается внешними силами, то dA< 0 , если силами поля, то dA > 0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении q пр из точки a в точку b


(12.20)

Рисунок -12.13

(

- кулоновская сила, действующая на пробный зарядq пр в каждой точке поля с напряжённостью E).

Тогда работа


(12.21)

Перемещение совершается перпендикулярно вектору , следовательноcosα =1, работа переноса пробного заряда q пр от a к b равна


(12.22)

Работа сил электрического поля при перемещении заряда не зависит от формы пути, а зависит лишь от взаимного расположения начальной и конечной точек траектории.

Следовательно, электростатического поля точечного заряда является потенциальным , а электростатические силы – консервативными .

Это свойство потенциальных полей. Из него следует, что работа совершаемая в электрическом поле по замкнутому контуру, равна нулю:


(12.23)

Интеграл

называется циркуляцией вектора напряженности . Из обращения в нуль циркуляции вектора Е следует, что линии напряжённости электростатического поля не могут быть замкнутыми, они начинаются на положительных и кончаются на отрицательных зарядах.

Как известно, работа консервативных сил совершается за счёт убыли потенциальной энергии. Поэтому, работу сил электростатического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд q пр в начальной и конечной точках поля заряда q:


(12.24)

откуда следует, что потенциальная энергия заряда q пр в поле заряда q равна


(12.25)

Для одноименных зарядов q пр q >0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноимённых зарядов q пр q < 0 и потенциальная энергия их взаимодействия (притяжения) отрицательна.

Если поле создаётся системой n точечных зарядов q 1, q 2, …. q n , то потенциальная энергия U заряда q пр, находящегося в этом поле, равна сумме его потенциальных энергий U i , создаваемых каждым из зарядов в отдельности:


(12.26)

Отношение не зависят от зарядаq и является энергетической характеристикой электростатического поля.

Скалярная физическая величина, измеряемая отношением потенциальной энергии пробного заряда в электростатическом поле к величине этого заряда, называется потенциалом электростатического поля.


(12.27)

Потенциал поля, создаваемый точечным зарядом q, равен


(12.28)

Единица потенциала – вольт .

Работа, совершаемая силами электростатического поля при перемещении заряда q пр из точки 1 в точку 2 может быть представлена как

т.е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках.

Разность потенциалов двух точек электростатического поля φ 1 -φ 2 равна напряжению. Тогда

Отношение работы, совершаемой электростатическим полем при перемещении пробного заряда из одной точки поля в другую, к величине этого заряда называется напряжением между этими точками.


(12.30)

Графически электрическое поле можно изображать не только с помощью линий напряжённости, но и с помощью эквипотенциальных поверхностей.

Эквипотенциальные поверхности – совокупность точек, имеющих одинаковый потенциал. Из рисунка видно, что линии напряжённости (радиальные лучи) перпендикулярны эквипотенциальным линиям.

Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленноемножество (рис.12.14). Однако их проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряжённость поля в разных точках. Там, где эти поверхности расположены гуще, напряжённость поля больше. Зная расположение эквипотенциальных линий (поверхностей), можно построить линии напряжённости или по известному расположению линий напряжённости можно построить эквипотенциальные поверхности.

§ 12.4 Связь напряжённости и потенциала

Электростатическое поле имеет две характеристики: силовую (напряжённость) и энергетическую (потенциал). Напряжённость и потенциал – различные характеристики одной и той же точки поля, следовательно, между ними должна быть связь.

Работа по перемещению единичного точечного положительного заряда из одной точки в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и х 1 – х 2 = dx , равна qЕ х dx. Та же работа равна q(φ 1 - φ 2)= -dφq. Приравнивая оба выражения, можем записать


Повторив аналогичные рассуждения для осей у и z, можем найти вектор :


где

- единичные векторы координатных осей х, у,z.

Из определения градиента следует, что


или

(12.31)

т.е. напряжённость поля Е равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряжённости Е поля направлен в сторону убывания потенциала.

Установленная связь между напряжённостью и потенциалом позволяет по известной напряжённости поля найти разность потенциалов между двумя произвольными точками этого поля.

      Поле равномерно заряженной сферы радиусом R

Напряжённость поля вне сферы определяется по формуле


(r >R)

Разность потенциалов между точками r 1 и r 2 (r 1 >R; r 2 >R) определим, используя соотношение


Потенциал сферы получим, если r 1 = R, r 2 → ∞:


      Поле равномерно заряженного бесконечно длинного цилиндра

Напряжённость поля вне цилиндра (r >R) определяется формулой


(τ – линейная плотность).

Разность потенциалов между двумя точками, лежащими на расстоянии r 1 и r 2 (r 1 >R; r 2 >R) от оси цилиндра, равна


(12.32)

      Поле равномерно заряженной бесконечной плоскости

Напряжённость поля этой плоскости определяется формулой


(σ - поверхностная плотность).

Разность потенциалов между точками, лежащими на расстоянии х 1 и х 2 от плоскости, равна


(12.33)

      Поле двух разноименно заряженных бесконечных параллельных плоскостей

Напряженность поля этих плоскостей определяется формулой


Разность потенциалов между плоскостями равна


(12.34)

(d – расстояние между плоскостями).

Примеры решения задач

Пример 12.1 . Три точечных заряда Q 1 =2нКл, Q 2 =3нКл и Q 3 =-4нКл расположены в вершинах равностороннего треугольника со стороной длиной a =10см. Определите потенциальную энергию этой системы.

Дано : Q 1 =2нКл=2∙10 -9 Кл; Q 2 =3нКл=3∙10 -9 Кл; и Q 3 =-4нКл=4∙10 -9 Кл; a =10см=0,1м.

Найти : U .

Решение: Потенциальная энергия системы зарядов равна алгебраической сумме энергий взаимодействия каждой из взаимодействующих пар зарядов, т.е.

U=U 12 +U 13 +U 23

где соответственно потенциальные энергии одного из зарядов, находящегося в поле другого заряда на расстоянии а от него, равны


;

;

(2)

Подставим формулы (2) в выражение (1), найдём искомую потенциальную энергию системы зарядов


Ответ: U=-0,126мкДж.

Пример 12.2 . Определите потенциал в центре кольца с внутренним радиусом R 1 =30см и внешним R 2 =60см, если на нём равномерно распределён заряд q=5нКл.

Дано: R 1 =30см=0,3м; R 2 =60см=0,6м; q=5нКл=5∙10 -9 Кл

Найти : φ .

Решение: Кольцо разобьём на концентрические бесконечно тонкие кольца внутренним радиусом r и внешним – (r+dr).

Площадь рассматриваемого тонкого кольца (см.рисунок) dS=2πrdr.

Потенциал в центре кольца, создаваемый бесконечно тонким кольцом,


где – поверхностная плотность заряда.

Для определения потенциала в центре кольца следует арифметически сложить dφ от всех бесконечно тонких колец. Тогда


Учитывая, что заряд кольца Q=σS, где S= π(R 2 2 -R 1 2)- площадь кольца, получим искомый потенциал в центре кольца


Ответ : φ=25В

Пример 12.3. Два точечных одноименных заряда (q 1 =2нКл и q 2 =5нКл) находятся в вакууме на расстоянии r 1 = 20см. Определите работу А, которую надо совершить, чтобы сблизить их до расстояния r 2 =5см.

Дано: q 1 =2нКл=2 ∙10 -9 Кл; q 2 =5нКл=5 ∙10 -9 Кл; r 1 = 20см=0,2м; r 2 =5см=0,05м.

Найти : А.

Решение: Работа, совершаемая силами электростатического поля при перемещении заряда Q из точки поля, имеющей потенциал φ 1 , в точку с потенциалом φ 2 .

A 12 = q(φ 1 - φ 2)

При сближении одноимённых зарядов работу совершают внешние силы, поэтому работа этих сил равна по модулю, но противоположна по знаку работе кулоновских сил:

A= -q(φ 1 - φ 2)= q(φ 2 - φ 1). (1)

Потенциалы точек 1 и 2 электростатического поля


;

(2)

Подставив формулы (2) в выражение (1), найдём искомую работу, которую надо совершить, чтобы сблизить заряды,


Ответ: А=1,35 мкДж.

Пример 12.4. Электростатическое поле создаётся положительно заряженной бесконечной нитью. Протон, двигаясь под действием электростатического поля вдоль линии напряжённости от нити с расстояния r 1 =2см до r 2 =10см, изменил свою скорость от υ 1 =1Мм/с до υ 2 =5Мм/с. Определите линейную плотность τ заряда нити..

Дано: q=1,6∙10 -19 Кл; m=1,67∙10 -27 кг; r 1 =2см=2∙10 -2 м; r 2 = 10см=0,1м; r 2 =5см=0,05м; υ 1 =1Мм/с=1∙10 6 м/с; до υ 2 =5Мм/с=5∙10 6 м/с.

Найти : τ .

Решение: Работа, совершаемая силами электростатического поля при перемещении протона из точки поля с потенциалом φ 1 в точку с потенциалом φ 2 идёт на увеличение кинетической энергии протона

q(φ 1 - φ 2)=ΔТ (1)

В случае нити электростатическое поле обладает осевой симметрией, поэтому


или dφ=-Edr,

тогда разность потенциалов между двумя точками, находящимися на расстоянии r 1 и r 2 от нити,


(учли, что напряжённость поля, создаваемого равномерно заряженной бесконечной нитью,

).

Подставив выражение (2) в формулу (1) и учитывая, что

, получим


Откуда искомая линейная плотность заряда нити


Ответ : τ = 4,33 мкКл/м.

Пример 12.5. Электростатическое поле создаётся в вакууме шаром радиусом R =8см, равномерно заряженными с объёмной плотностью ρ=10нКл/м 3 . Определите разность потенциалов между двумя точками этого поля, лежащими от центра шара на расстояниях: 1) r 1 =10см и r 2 =15см; 2) r 3 = 2см и r 4 =5см..

Дано: R=8см=8∙10 -2 м; ρ=10нКл/м 3 =10∙10 -9 нКл/м 3 ; r 1 =10см=10∙10 -2 м;

r 2 =15см=15∙10 -2 м; r 3 = 2см=2∙10 -2 м; r 4 =5см=5∙10 -2 м.

Найти : 1) φ 1 - φ 2 ; 2) φ 3 - φ 4 .

Решение: 1) Разность потенциалов между двумя точками, лежащими на расстоянии r 1 и r 2 от центра шара.


(1)

где

- напряжённость поля, создаваемого равномерно заряженным с объёмной плотностью ρ шаром, в любой точке, лежащей вне шара на расстоянииr от его центра.

Подставив это выражение в формулу (1) и проинтегрировав, получим искомую разность потенциалов


2) Разность потенциалов между двумя точками, лежащими на расстоянии r 3 и r 4 от центра шара,


(2)

где

- напряжённость поля, создаваемого равномерно заряженным с объёмной плотностью ρ шаром, в любой точке, лежащей внутри шара на расстоянииr от его центра.

Подставив это выражение в формулу (2) и проинтегрировав, получим искомую разность потенциалов


Ответ : 1) φ 1 - φ 2 =0,643 В; 2) φ 3 - φ 4 =0,395 В