Какой свет губительно действует на микробы. Эпизоотология. Температурные диапазоны гибели микроорганизмов

Введение……………………………………………………………..………….….2

1)Влияние физических факторов на микроорганизмы…………………..………3

1.1Излучения………………………………………..………………………3

1.2Ультразвук…………………………………….....………………………4

2)Ионизирующие излучения…………………………..…….…………………….5

2.1Практическое использование ионизирующих излучений……….......7

3)Заключение………………………………………………………...……..………8

Список литературы………………….………………………………..………….9

Введение

Все существующие микроорганизмы живут в непрерывном взаимодействии с внешней средой, в которой они находятся, поэтому подвергаются разнообразным влияниям. В одних случаях они могут способствовать лучшему развитию, в других подавлять их жизнедеятельность. Необходимо помнить, что изменчивость и быстрая смена поколений позволяет приспосабливаться к разным условиям жизни. Поэтому быстро закрепляются новые признаки.

Находясь в процессе развития в тесном взаимодействии со средой, микроорганизмы не только могут изменяться под её воздействием, но могут изменять среду в соответствии с особенностями. Так микробы в процессе дыхания выделяют продукты обмена, которые в свою очередь изменяют химический состав среды, поэтому меняется реакция среды и содержание различных химических веществ.

Все факторы, влияющие на развитие микробов, делят на:

· Физические

· Химические

· Биологические

Ниже подробнее рассмотрим каждый из факторов.

1)Влияние физических факторов на микроорганизмы

Температура по отношению к температурным условиям микроорганизмы разделяют на термофильные, психрофильные и мезофильные.

· Термофильные виды . Зона оптимального роста равна 50-60°С, верхняя зона задержки роста - 75°С. Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена.

· Психрофильные виды (холодолюбивые) растут в диапазоне температур 0-10°С, максимальная зона задержки роста 20-30°С. К ним относит большинство сапрофитов, обитающих в почве, пресной и морской воде. Но есть некоторые виды, например, иерсинии, психрофильные варианты клебсиелл, псевдомонад, вызывающие заболевания у человека.

· Мезофильные виды лучше растут в пределах 20-40°С; максимальная 43-45°С, минимальная 15-20°С. В окружающей среде могут переживать, но обычно не размножаются. К ним относится большинство патогенных и условно-патогенных микроорганизмов.

1.1Излучения

Солнечный свет губительно действует на микроорганизмы, исключением являются фототрофные виды. Наибольший микробицидный эффект оказывает коротковолновые УФ-лучи. Энергию излучения используют для дезинфекции, а также для стерилизации термолабильных материалов.

Ультрафиолетовые лучи (в первую очередь коротковолновые, т.е. с длиной волны 250-270 нм) действуют на нуклеиновые кислоты. Микробицидное действие основано на разрыве водородных связей и образовании в молекуле ДНК димеров тимидина, приводящем к появлению нежизнеспособных мутантов. Применение ультрафиолет излучения для стерилизации ограничено его низкой проницаемостью и высокой поглотительной активностью воды и стекла.

Рентгеновское и g-излучение в больших дозах также вызывает гибель микробов. Облучение вызывает образование свободных радикалов, разрушающих нуклеиновые кислоты и белки с последующей гибелью микробных клеток. Применяют для стерилизации бактериологических препаратов, изделий из пластмасс.

Микроволновое излучение применяют для быстрой повторной стерилизации длительно хранящихся сред. Стерилизующий эффект достигается быстрым подъемом температуры.

1.2Ультразвук.

Определенные частоты ультразвука при искусственном воздействии способны вызывать деполимеризацию органелл микробных клеток, под действием ультразвука газы, находящиеся в жидкой среде цитоплазмы, активируются и внутри клетки возникает высокое давление (до 10 000 атм). Это приводит к разрыву клеточной оболочки и гибели клетки. Ультразвук используют для стерилизации пищевых продуктов (молока, фруктовых соков), питьевой воды.

Давление.

Бактерии относительно мало чувствительны к изменению гидростатического давления. Повышение давления до некоторого предела не сказывается на скорости роста обычных наземных бактерий, но в конце концов начинает препятствовать нормальному росту и делению. Некоторые виды бактерий выдерживают давление до 3 000 – 5 000 атм, а

бактериальные споры - даже 20 000 атм.

В условиях глубокого вакуума субстрат высыхает и жизнь невозможна.

Фильтрование.

Для удаления микроорганизмов применяют различные материалы (мелкопористое стекло, целлюлоза, коалин); они обеспечивают эффективную элиминацию микроорганизмов из жидкостей и газов. Фильтрацию применяют для стерилизации жидкостей, чувствительных к температурным воздействиям, разделения микробов и их метаболитов (экзотоксинов, ферментов), а также для выделения вирусов.

2)Ионизирующие излучения

Потоки фотонов или частиц, взаимодействие которых со средой приводит к ионизации ее атомов или молекул. Различают фотонное (электромагнитное) и корпускулярное

К фотонному И.и. относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и др. ядерных реакциях (гл. обр. g-излучение) и при торможении заряженных частиц в электрическое или магнитное поле - тормозное рентгеновское излучение, синхротронное излучение.

К корпускулярному И.и. относят потоки a- и b-частиц, ускоренных ионов и электронов, нейтронов, осколков деления тяжелых ядер и др.

Механизмы действия ионизирующих излучений на живые организмы

Процессы взаимодействия ионизирующего излучения с веществом в живых организмах приводят к специфическому биологическому действию, завершающемуся повреждением организма. В процессе этого повреждающего действия условно можно выделить три этапа:

b. влияние радиации на клетки;

c. действие радиации на целый организм.

Первичным актом этого действия является возбуждение и ионизация молекул, в результате чего возникают свободные радикалы (прямое действие излучения) или начинается химическое превращение (радиолиз) воды, продукты которого (радикал ОН, перекись водорода - H 2 O 2 и др.) вступают в химическую реакцию с молекулами биологической системы.

Первичные процессы ионизации не вызывают больших нарушений в живых тканях. Повреждающее действие излучения связано, по-видимому, со вторичными реакциями, при которых происходит разрыв связей внутри сложных органических молекул, например SH-групп в белках, хромофорных групп азотистых оснований в ДНК, ненасыщенных связей в липидах и пр.

Влияние ионизирующего излучения на клетки обусловлено взаимодействием свободных радикалов с молекулами белков, нуклеиновых кислот и липидов, когда вследствие всех этих процессов образуются органические перекиси и возникают быстропреходящие реакции окисления. В результате перекисного окисления накапливается множество измененных молекул, в результате чего начальный радиационный эффект многократно усиливается. Все это отражается прежде всего на структуре биологических мембран, меняются их сорбционные свойства и повышается проницаемость (в том числе мембран лизосом и митохондрий). Изменения в мембранах лизосом приводят к освобождению и активации ДНК-азы, РНК-азы, катепсинов, фосфатазы, ферментов гидролиза мукополисахаридов и ряда других ферментов.

Высвобождающиеся гидролитические ферменты могут путем простой диффузии достичь любой органеллы клетки, в которую они легко проникают благодаря повышению проницаемости мембран. Под действием этих ферментов происходит дальнейший распад макромолекулярных компонентов клетки, в том числе нуклеиновых кислот, белков. Разобщение окислительного фосфорилирования в результате выхода ряда ферментов из митохондрий в свою очередь приводит к угнетению синтеза АТФ, а отсюда и к нарушению биосинтеза белков.

Таким образом, в основе радиационного поражения клетки лежит нарушение ультраструктур клеточных органелл и связанные с этим изменения обмена веществ. Кроме того, ионизирующая радиация вызывает образование в тканях организма целого комплекса токсических продуктов, усиливающих лучевой эффект - так называемых радиотоксинов . Среди них наибольшей активностью обладают продукты окисления липидов- перекиси, эпоксиды, альдегиды и кетоны. Образуясь тотчас после облучения, липидные радиотоксины стимулируют образование других биологически активных веществ - хинонов, холина, гистамина и вызывают усиленный распад белков. Будучи введенными необлученным животным, липидные радиотоксины оказывают действие, напоминающее лучевое поражение. Ионизирующее излучение оказывает наибольшее воздействие на ядро клетки, угнетая митотическую активность.

Температура является наиболее значимым фактором, оказывающим влияние на жизнедеятельность микробов. Температура, необходимая для роста и размножения бактерий одного и того же вида варьирует в широких пределах. Различают температурный оптимум, минимум и максимум.

Температурный оптимум соответствует физиологической норме данного вида микробов, при которой размножение происходит быстро и интенсивно. Для большинства патогенных и условно-патогенных микробов температурный оптимум соответствует 37 0 С.

Температурный минимум соответствует температуре, при которой данный вид микроба не проявляет жизнедеятельность .

Температурный максимум – температура, при которой рост и размножение прекращается, все процессы метаболизма замедляются, и может наступить гибель.

В зависимости от температуры, оптимальной для жизнедеятельности, различают 3 группы микроорганизмов:

1) психрофильные , холодолюбивые, размножающиеся при температуре ниже 20 0 С (иерсинии, психрофильные варианты клебсиелл, псевдомонады, вызывающие заболевания человека;

2) термофильные , оптимум развития которых лежит в пределах 55 0 С (в организме теплокровных не размножаются и медицинского значения не имеют);

3) мезофильные , активно размножаются при температуре 20-40 0 С, оптимум температуры развития для них 37 0 С (патогенные для человека бактерии).

Микроорганизмы хорошо выдерживают низкие температуры. На этом основано длительное сохранение бактерий в замороженном состоянии. Однако ниже температурного минимума проявляется повреждающее действие низких температур, обусловленное разрывом клеточной мембраны кристаллами льда и приостановкой метаболических процессов.

Низкая температура приостанавливает гнилостные и бродильные процессы. Это лежит в основе консервации субстратов (в частности, пищевых продуктов) холодом.

Губительное действие высокой температуры (выше температурного максимума для каждой группы) используется при стерилизации. Стерилизация (обеспложивание) – это процесс умерщвления на изделиях или удаление из объекта микроорганизмов всех видов, находящихся на всех стадиях развития, включая споры (термические и химические методы и средства). Для гибели вегетативных форм бактерий достаточно действия температуры 60 0 С в течение 20-30 мин; споры погибают при 170 0 С или при температуре пара 120 0 С под давлением (в автоклаве).

Асептика – комплекс мероприятий, направленных против возможности попадания микроорганизмов в рану, ткани, органы, полости тела больного при хирургических операциях, перевязках, инструментальных исследованиях, а также на предотвращение микробного и другого загрязнения при получении стерильной продукции на всех этапах технологического процесса.



Антисептика – комплекс лечебно-профилактических мероприятий, направленных на уничтожение микроорганизмов, способных вызвать инфекционный процесс на поврежденных или интактных участках кожи или слизистых оболочек.

Дезинфекция – обеззараживание объектов окружающей среды: уничтожение патогенных для человека и животных микроорганизмов с помощью химических веществ, обладающих антимикробным действием.

Рост и размножение микробов происходит при наличии воды, необходимой для пассивной диффузии и активного транспорта питательных веществ в цитоплазму клетки. Снижение влажности (высушивание) приводит к переходу клетки в стадию покоя, а затем к гибели. Наименее устойчивыми к высушиванию являются патогенные микроорганизмы – менингококки, гонококки, трепонемы, бактерии коклюша, ортомиксо-, парамиксо- и герпес-вирусы. Микобактерии туберкулеза, вирус натуральной оспы, сальмонеллы, актиномицеты, грибы устойчивы к высушиванию. Особой устойчивостью к высушиванию обладают споры бактерий. Устойчивость к высушиванию повышается, если микробы предварительно замораживают. Для сохранения жизнеспособности и стабильности свойств микроорганизмов в произ­водственных целях используется метод лиофильной сушки - высушивание из замороженного состояния под глубоким вакуумом.

В процессе лиофилизации производят: 1) предварительное замораживание материала при t -40 0 - -45 0 С в спиртовых ваннах в течение 30-40 мин; 2) осуществляют сушку из замороженного состояния в вакууме в сублимационных аппаратах в течение 24-28 часов.

Процесс высушивания имеет 2 фазы: сублимация льда при t ниже 0°С и де­сорбцию - удаление части свободной и связанной воды при t выше 0°С.



Лиофилизацию используют для получения сухих препаратов, когда не проис­ходит денатурации белков и не изменяется структура материала (сыворотки, вакцины, сухая бактериальная масса). В лабораторных условиях лиофилизированные культуры микробов сохраняются в течение 10-20 лет, причем культура остает­ся чистой и не подвергается мутациям.

Прокаливание производят в пламени спиртовки или газовой горелки. Этим способом стерилизуют бактериологические петли, препаровальные иглы, пинцеты и некоторые другие инструменты.

Кипячение применяют для стерилизации шприцев, мелкого хирургического инструментария, предметных, покровных стекол и т. д. Стерилизацию проводят в стерилизаторах, в которые наливают воду и доводят ее до кипения. Для устранения жесткости и повышения температуры кипения к воде добавляют 1-2% бикарбонат натрия. Инструменты обычно кипятят в течение 30 мин. Данный метод не обеспечивает полной стерилизации, так как споры бактерий при этом не погибают.

Пастеризация - стерилизация при 65-70°С в течение 1 часа для уничтожения бесспоровых микроорганизмов (молоко освобождается от бруцелл, микобактерий туберкулеза, шигелл, сальмонелл, стафилококков). Хранят на холоде.

Тиндализация - дробная стерилизация материалов при 56-58 0 С в течение 1 часа 5-6 дней подряд. Применяется для стерилизации легко разрушающихся при высокой температуре веществ (сыворотка крови, витамины и др.).

Действие лучистой энергии на микроорганизмы. Солнечный свет, особенно его ультрафиолетовый и инфракрасный спектры, губительно действуют на вегета­тивные формы микробов в течение нескольких минут.

Стерилизация инфракрасным излучением происходит за счет теплового воздействия температурой 300 0 С в течение 30 мин. Инфракрасные лучи оказывают воздействие на свободнорадикальные процессы, в результате чего нарушаются химические связи в молекулах микробной клетки.

Для дезинфекции воздуха помещений лечебно-профилактических учрежде­ний и аптек широко используются ртутно-кварцевые и ртутно-увиолевые лампы, являющиеся источником ультрафиолетовых лучей. Ультрафиолетовое бактерицидное излучение в диапазоне 254 нм уничтожает микроорганизмы, споры, грибки и вирусы, что делает его очень эффективным профилактическим санитарно-противоэпидемическим средством для дезинфекции воздуха. Ультрафиолетовый бактерицидный рециркулятор Дезар-5 обеспечивает наивысшую степень дезинфекции (99,9 %) и соответствуют высочайшим требованиям, предъявляемым к состоянию воздуха в операционных, ожоговых и реанимационных палатах, родильных отделениях, т.е. там, где требуется полная стерильность. Также рециркулятор предназначен для использования в помещениях с повышенным риском распространения заболеваний, передающихся воздушно-капельным путем. Губительное действие УФ излуче­ния вызвано повреждением ДНК микробных клеток, приводящим к мутациям и гибели. Возможна стерилизация белков, витаминов, антибиотиков. УФ-лучи обладают слабой проникающей способностью.

Ионизирующая радиация . В настоящее время используют радиационный метод (гамма-излучение, ускоренные электроны) для стерилизации перевязочного материала, хирургического инструментария, фармацевтических препаратов, сывороток, пищевых продуктов и других предметов.

Гамма- и рентгеновские лучи - волны, обладающие значительной проникающей способностью. Чтобы задержать лучи, необходим защитный слой, например, слой бетона толщиной 60 - 70 см. Наиболее широко используется гамма-излучающий изотоп кобальта-60, реже изотоп цезия-137, в связи с его низким уровнем энергии и излучения.

Стерилизационный эффект ионизирующего излучения является результатом воздействия на обменные процессы клетки, тогда как радиоактивное и инфракрасное излучение, высокочастотные колебания оказывают свое бактерицидное действие с помощью тепла, развиваемого в обрабатываемом предмете.

Любая форма облучения вызывает изменения в белках, нуклеиновых кислотах и других составных элементах клетки, обусловливающих ее жизнедеятельность.

Применение ионизирующей радиации имеет ряд преимуществ перед тепловой стерилизацией. При стерилизации с помощью ионизирующего излучения температура стерилизуемого объекта поднимается незначительно, в связи с чем такие методы называют холодной стерилизацией.

Для стерилизации ионизирующим излучением имеются специальные установки, и работа на них производится в соответствии с определенными инструкциями. При стерилизации в больших масштабах, например, на промышленных предприятиях, может быть создан конвейер. Материалы стерилизуют в упакованном виде. Имеется два вида оборудования для облучения: гамма-установки и ускорители электронов.

Средняя летальная доза одинакова, в случаях, если облучение проводить при низкой интенсивности, но в течение длительного времени, или оно осуществляется при высокой интенсивности, но короткое время. Выдержка зависит также от мощности установки. Например, при мощности установки 10 Вт/кг для получения стерильности материала его следует подвергнуть воздействию ионизирующих лучей в течение примерно 5 ч.

Стерилизующая доза зависит как от материала, подвергающегося стерилизации, так и от количества и радиоустойчивости микроорганизмов, находящихся в облучаемом материале, в связи с чем для облучения сильно обсемененных объектов увеличивают дозу облучения по сравнению с облучением объектов, мало обсемененных микроорганизмами.

Медицинские инструменты, в том числе шприцы, иглы, катетеры, перевязочные материалы, ёмкости для переливаемой крови и другие изделия подвергают стерилизации путем воздействия дозой 2,5 кДж/кг. Стерилизация ионизирующим облучением наиболее широко применяется на промышленных предприятиях, изготовляющих изделия медицинского назначения одноразового использования, например, системы для переливания крови, акушерские комплекты, которые используют при приеме родов в родильных домах. Стерилизуемые ионизирующим облучением предметы упаковываются в герметичные полиэтиленовые пакеты. Срок сохранения стерильности в таких упаковках до нескольких лет. После стерилизации необходимо проводить контроль остаточной радиации.

Действие ультразвука в определенных частотах на микроорганизмы вызывает деполимеризацию органелл клетки, денатурацию входящих в их состав молекул в результате локального нагревания или повышения давления. Стерилизация объек­тов ультразвуком осуществляется на промышленных предприятиях, так как источ­ником УЗ являются мощные генераторы. Стерилизации подвергаются жидкие среды, в которых уничтожаются не только вегетативные формы, но и споры. Ультразвук используют для стерилизации пищевых продуктов (их питательная ценность при этом сохраняется максимально), вакцин, некоторых объектов лабораторного оборудования, которые портятся при действии повышенной температуры и химической стерилизации.

Стерилизация фильтрованием - освобождение от микробов материала, ко­торый не может быть подвергнут нагреванию (сыворотка крови, ряд лекарств). Используются фильтры с очень мелкими порами, не пропускающими микробы: из фарфора (фильтр Шамберлена), каолина, асбестовых пластинок (фильтр Зейтца). Фильтрование происходит под повышенным давлением, жидкость нагнетается через поры фильтра в приемник или создается разрежение воздуха в приемнике и жидкость всасывается в него через фильтр. К фильтрующему прибору присоединя­ется нагнетающий или разрежающий насос. Прибор стерилизуют в автоклаве.

Стерилизацию сухим жаром осуществляют в сухожаровых шкафах (печь Пастера). Сухим жаром стерилизуют лабораторную посуду. Ее неплотно загружают в печь, чтобы был равномерный прогрев материала. Лабораторную посуду перед стерилизацией необходимо тщательно вымыть, высушить, завернуть в бумагу. Чашки заворачивают в бумагу по одной или не­сколько штук. В верхние концы пипеток вставляют ватные тампоны, предупреж­дающие засасывание материала. Градуированные пипетки заворачивают в длин­ные полоски бумаги шириной 5 см. На бумаге отмечают объем завернутой пипет­ки. В пеналах пипетки стерилизуют без дополнительного завертывания в бумагу.

Острые концы пастеровских пипеток запаивают в пламени горелки и завора­чивают в бумагу по 3-5 штук.

Флаконы, колбы, пробирки закрывают ватно-марлевыми пробками. Пробка должна входить в горлышко сосуда на 2/3 длины, не слишком туго, но и не свобод­но. Поверх пробок на сосуд надевают бумажный колпачок. Пробирки связывают по 5-50 штук и обертывают поверх бумагой.

Дверь шкафа плотно закрывают, включают электронагревательный прибор, доводят температуру до 160-165 0 С и стерилизуют 1 час. По окончании стерилизации выключают обогрев, но дверцу шкафа не от­крывают, пока печь не остынет (иначе холодный воздух вызовет образование трещин на посуде). Режим стерилизации: 160°С - 60 мин, 180°С - 15 мин, 200° С - 5 мин. Жидкости, питательные среды, предметы из резины и синтетических мате­риалов нельзя стерилизовать сухим жаром.

Стерилизации паром под давлением подвергают перевязочный материал, операционное белье, хирургические инструменты, питательные среды, лаборатор­ную посуду, инфицированный материал, инъекционные растворы. Материал помещают в ёмкости (биксы). На дно бикса помещают прокладки из ткани, впиты­вающие влагу после стерилизации. Стерильность материала сохраняется 3 суток. Инфицированный материал в чашках и пробирках стерилизуют в металлических бачках с крышкой.

Стерилизацию паром под давлением производят в автоклаве. При однократ­ной обработке погибают как вегетативные, так и споровые формы бактерий. Паром под давлением стерилизуют питательные среды, кроме сред, содержащих нативные белки, жидкости, приборы, имеющие резиновые части.

Простые среды (МПА, МПБ) стерилизуют 20 мин при 120°С (1 атм).

Различные жидкости, приборы, имеющие резиновые шланги, пробки, бактериальные свечи и фильтры стерилизуют при 120 0 С (1 атм.) в течение 20 мин.

Перевязочный материал, белье стерилизуют при 1 атм. 15-20 мин.

Инфицированный материал (в пробирках, чашках) помещают в специальные металлические ведра или баки с отверстиями для проникновения пара и стерилизуют при 134 0 С (2 атм.) в течение 45 мин. Также стерилизуют инструменты после работы со споровыми бактериями.

Существует 2 режима стерилизации:

  1. Текучим паром в автоклаве или в аппарате Коха при не завинченной крышке и открытом выпускном клапане, когда антибактериальное действие пара проявляется в отношении вегетативных форм. Так стерилизуют среды с витаминами и углеводами, мочевиной, молоком, картофелем и желатином. Для полного обеспложивания применяют дробную стерилизацию (при 100 0 С) 20-30 мин 3 дня подряд. Это убивает и споры.
  2. Стерилизация паром под давлением – наиболее эффективный метод обеспложивания.

Факторы внешней среды постоянно влияют на жизнедеятельность микроорганизмов. При благоприятных условиях наблюдаются быстрый рост и размножение микробов. В условиях, неблагоприятных для жизнедеятельности, развитие замедляется, и далее может наступить их гибель. Факторы внешней среды, оказывающие влияние на микроорганизмы, подразделяют на физические, химические и биологические.

Физические факторы. К физическим факторам внешней среды, влияющим на жизнедеятельность микроорганизмов, относятся температура, влажность, свет и др.

Влияние температуры. Микроорганизмы могут переносить значительные колебания температуры. Для нормальной жизнедеятельности микробной клетки необходима определенная температура. Различают три температурные точки: оптимальную, минимальную и максимальную, при которых может проявляться их жизнедеятельность различной интенсивности. Оптимальная температура та, при которой наиболее интенсивно растут и развиваются микроорганизмы. Минимальная температура - это самая низкая, при которой еще возможно развитие микробов. Ниже этой температуры микроорганизмы снижают свою биохимическую активность, но не погибают, а переходят в анабиотическое состояние, т.е. состояние скрытой жизни, напоминающее зимнее оцепенение многих хладнокровных (лягушек, змей, ящериц). Максимальная - это самая высокая температура, при которой еще возможны рост и развитие микроба. Выше максимальной температурной точки микроб погибает.

В зависимости от температуры, к которой микроорганизмы приспособились в процессе длительной эволюции, их подразделяют на психрофилы, мезофилы и термофилы.

Психрофилы (холодолюбивые) способны развиваться при низкой температуре. Оптимальной для них является температура 15-20 °С, минимальной 0-10, максимальной 30-35 °С. К этой группе относятся некоторые представители кокковой микрофлоры, плесневые грибы, железобактерии и др., вызывающие порчу продуктов при хранении в холодильниках.

Мезофилы - группа микроорганизмов, которые развиваются при средних температурах. Оптимальной для них является температура 30-37 °С, минимальной 10, максимальной 43-50°С. К этой группе относятся многие плесневые грибы, дрожжи, гнилостные и все патогенные микроорганизмы.

Термофилы (теплолюбивые) - микробы, развивающиеся при сравнительно высокой температуре. Оптимальной для них является температура 50-60 °С, минимальной 35, максимальной 75-85 °С. Термофилы являются основными возбудителями порчи мясных и мясорастительных консервов, принимают участие в самонагревании силоса, влажного зерна, сена, хлопка, муки и др. Некоторые термофильные микробы (споровые палочки) сохраняют жизнедеятельность при температуре выше 85 °С.

Микроорганизмы весьма устойчивы к охлаждению и замораживанию. Некоторые виды бактерий и плесневых грибов выдерживают температуру жидкого воздуха (- 190 °С) и жидкого водорода (- 253 °С). Очень устойчивыми к низкой температуре являются вирусы. При низкой температуре все же происходит ряд изменений, которые могут привести к гибели микроба. Скорость отмирания микробов при замораживании зависит от вида микроба, температуры замораживания, кратности замораживания и оттаивания, вида и продолжительности хранения продукта в замороженном состоянии и др.

Высокая температура, вызывающая гибель микробной клетки, называется летальной. Губительное действие высокой температуры обусловливается повреждением коллоидного состояния плазмы, денатурацией белка с последующей коагуляцией его, а также нарушением ферментативных систем. Большинство неспоровых микробов погибают во влажной среде при температуре 60-70 °С за 15-30 мин, при температуре 85 °С - за 3-5 и при температуре 100°С - моментально. Весьма устойчивыми к высокой температуре являются споры бацилл. Споры некоторых микроорганизмов выдерживают кипячение от нескольких минут до нескольких часов.

Влияние влажности. Минимальная влажность, необходимая для жизнедеятельности бактерий, 30 %, для плесневых грибов - 15 %. Различные виды микроорганизмов не в одинаковой степени чувствительны к высушиванию, при котором происходит потеря воды, в результате чего наступает гибель клетки. Наиболее чувствительны к высушиванию неспорообразующие микробы. Споры обладают высокой устойчивостью к высыханию, сохраняясь в высушенном состоянии в течение нескольких лет. Высушивание используют как один из методов сохранения скоропортящихся продуктов. В мясной промышленности метод высушивания нашел широкое применение для консервирования мяса, колбас, мясокостной муки и т.д.

Лиофильная сушка (высушивание при низкой температуре и разрежении) способствует длительному сохранению микроорганизмов. Этот метод используют в промышленности для получения сухих вакцин (живых), консервирования мяса и эндокринного сырья, приготовления органопрепаратов и заквасок для кисломолочных продуктов.

Влияние света. Прямые солнечные лучи, особенно ультрафиолетовые, оказывают бактерицидное действие. Микробная клетка вегетативных форм погибает на солнечном свету через несколько минут. Рассеянный свет не оказывает столь губительного действия на микробов, но при длительном воздействии может постепенно тормозить их рост и развитие.

Ультрафиолетовое облучение применяют на предприятиях мясной промышленности для обеззараживания воздуха, поверхности оборудования и различных предметов с помощью бактерицидных ламп.

Влияние излучений. Микроорганизмы более устойчивы к воздействию рентгеновских и гамма-лучей; смертельная доза для них в сотни и тысячи раз больше, чем для животных. Рентгеновское и гамма-излучение в малых дозах и при непродолжительной экспозиции оказывают стимулирующее действие на рост и размножение микробов. Большие дозы рентгеновских лучей инактивируют ферменты, замедляют рост и предотвращают размножение микробов.

Влияние ультразвуковых волн. Ультразвуковые волны обладают значительной механической энергией, способной инактивировать ферменты, токсины, разрушать микробную клетку. Смертельное воздействие на бактерии и вирусы начинает проявляться при озвучивании среды с частотой колебаний около 100 тыс. Гц. Ультразвук может быть использован для стерилизации и пастеризации продуктов, очистки и дезинфекции оборудования, тары, сточных вод.

Влияние давления. Микроорганизмы устойчивы к высоким давлениям. Микробы обнаружены на дне глубоких морей и океанов, где давление достигает более 90 МПа (900 кгс/см 2), некоторые дрожжи, плесневые грибы выдерживают давление 300 МПа (3000 кгс/см 2).

Химические факторы. Микробная клетка реагирует на самое незначительное количество химического вещества в среде. Так, если в каплю воды, содержащую подвижные бактерии, опустить капилляр, наполненный раствором пептона (питательного для микробов вещества), то через некоторое время можно заметить скопление микроорганизмов у отверстия капилляра. Это так называемый положительный химиотаксис - бактерии движутся навстречу привлекающему их веществу. Если же капилляр будет заполнен щелочью или кислотой, то бактерии уходят от диффундирующего в воду ядовитого для них вещества, т.е. наблюдается отрицательный химиотаксис.

Действие химических веществ на микроорганизмы проявляется не в одинаковой степени. Как правило, малые концентрации не только не вызывают гибели микробов, а даже стимулируют их рост и развитие.

Большие концентрации химических веществ действуют на микроорганизмы бактериостатически или бактерицидно, вызывая их гибель. Химические вещества, вызывающие гибель микроорганизмов, получили название дезинфицирующих. Эффективность действия химических веществ зависит от химической природы этого вещества, его концентрации, температуры, реакции среды, вида микроорганизма и др. Вещества, применяемые для уничтожения микробов, должны быть в растворенном состоянии. Чем легче вещество адсорбируется микробной клеткой, тем сильнее его действие. Химические вещества в зависимости от их действия на микробную клетку можно разделить на следующие группы:

вещества, повреждающие только клеточную стенку, не изменяющие внутренней структуры микроба (мыла, жирные кислоты);

вещества, вызывающие повреждение оболочки и клеточных белков (фенол, крезол и их производные);

вещества, вызывающие денатурацию белков (формальдегид - 40%-ный раствор формалина);

вещества, вызывающие инактивацию ферментов (соли тяжелых металлов - соли ртути, меди, серебра и др.).

Наиболее чувствительными к химическим веществам являются микробы, не образующие спор, вегетативные формы. Споровые формы довольно устойчивы к воздействию различных химических веществ. Для их уничтожения необходимо готовить горячие растворы высокой концентрации химических веществ. Так, споры сибиреязвенной палочки погибают в 5%-ном растворе фенола только за 14 сут, в то время как вегетативные формы этого возбудителя гибнут от такой концентрации за несколько секунд.

При выборе дезинфицирующих веществ для уничтожения микробов необходимо учитывать вид микроорганизма. Например, вирусы очень чувствительны к щелочам, возбудитель сибирской язвы - к хлору и формальдегиду, а возбудители туберкулеза устойчивы к воздействию кислот и щелочей.

Реакция среды (рН - показатель концентрации водородных ионов) оказывает влияние на рост и развитие микроорганизмов. Жизнедеятельность различных видов микробов возможна только при определенном рН. Большинство микроорганизмов развиваются в слабощелочной среде (рН 7,2-7,6), дрожжи и плесневые грибы лучше культивируются при рН 3-6. Меняя реакцию среды, можно регулировать интенсивность развития и биохимическую активность микробов. При снижении рН до 5 гнилостные бактерии не развиваются, в то время как при такой реакции наиболее активно проявляется ферментативная активность дрожжей.

Биологические факторы. В процессе жизнедеятельности микроорганизмы находятся в различных взаимоотношениях между собой и с другими организмами. Эти взаимоотношения в процессе длительной эволюции складывались в соответствии с общебиологическим законом симбиоза (сожительства) живых существ. В природе взаимоотношения между микробами и другими организмами существуют в виде различных форм симбиоза, метабиоза и антагонизма.

Комменсализм - это такая форма симбиоза, при которой один организм живет и развивается за счет другого, не причиняя ему вреда. Например, кишечная палочка, некоторые виды стафилококков, стрептококков и других микробов обитают на поверхности или в полостях человека и животного.

Мутуализм - такое сожительство, когда оба организма получают взаимную выгоду, не причиняя друг другу вреда, например сожительство клубеньковых бактерий с бобовыми растениями.

Метабиоз - такое взаимоотношение между микроорганизмами, при котором в процессе последовательного развития одних микробов создаются благоприятные условия для жизнедеятельности других.

Антагонизм - такое взаимоотношение микробов, при котором совместное существование микробных видов оказывается невозможным, т.е. один вид микроба препятствует росту другого, задерживая его развитие, либо вызывает полную гибель.



Федеральное государственное образовательное учреждение высшего профессионального образования

«Московская государственная академия ветеринарной медицины и биотехнологии имени »

_____________________________________________________

Влияние физических, химических и биологических факторов

на микроорганизмы

Москва – 2011

Грязнева физических, химических и био­логических факторов на микроорганизмы /Лекция.- М.: ФГОУ ВПО МГАВМиБ.- 20с.

Предназначена для студентов высших учебных заве­де­ний по специальностям 111801 - «Ветеринария», 020207 - «Биофизика», 020208 - «Биохимия», 110501 – «Ветсан­экс­пертиза», 080– «Товароведение и экспер­тиза товаров», 111100 – «Зоотехния».

Рецензенты:

доктор ветеринарных наук, профессор

Утверждены учебно-методической и клинической ко­мис­сией факуль­тета ве­теринарной медицины ФГОУ ВПО МГАВМиБ (протокол от 21 марта 2011 г.).

Влияние физических, химических и биологических факторов на микроорганизмы

Введение.

1. Физические факторы, влияющие на микроорганизмы.

2. Химические факторы.

3. Биологические факторы.

4. Стерилизация.

5. Приспособляемость микроорганизмов к неблагоприятным факторам окружающей среды.

Заключение.

Вопросы для самоконтроля

Литература

1. , Бурла-кова Г. И., Шайкова подготовка студентов по дисциплине «Микробиология» с тестовыми заданиями: Учебное пособие.– М.: ФГОУ ВПО МГАВМиБ, 2008.

2. , Родионова //Методи-ческие рекомендации по изучению дисциплины и выполнению самостоятельной работы для студентов факультета ветеринар-ной медицины очного, заочного и очно-заочного обучения.- М.: ФГОУ ВПО МГАВМиБ.- 2008.

3. , Госманов микробио­логия и иммунология : Учебник.- М.: КолосС.- 2006.

4. , Скородумов ­тикум по ветеринарной микробиологии.- М.: КолосС.- 2008.

5. Поздеев микробиология: Учебник для ву­зов.- М.: Геотар-Мед.- 2001.

6. , Банникова морфо­логии популяций патогенных бактерий.- М.: Колос. 2007.

Введение


Жизнь микроорганизмов находится в тесной зависимости от условий окружающей среды, поэтому микроорганизмы должны по­стоянно к ней приспосабливаться.

Как на человека, животных и растения, так и на микроорга­низмы существенное влияние оказывают различные факторы внешней среды. Их можно разделить на три группы: физические, химические и биологические.

Антимикробные факторы окружающей среды

Физические

Химические

Биологические

Результаты действия факторов внешней среды на микроорга­низмы:

1. Благоприятные.

2. Неблагоприятные (бактериостатическое и бактерицидное действие).

3. Изменяющие свойства микроорганизмов.

4. Индифферентные.

Антимикробные факторы окружающей среды используются при стерилизации , дезинфекции, лечении, соблюдении правил асеп­тики и антисептики и др.

1. Физические факторы, влияющие на микроорганизмы

Из физических факторов наибольшее влияние на микроорга­низмы оказывают:

1. Температура.

2. Высушивание (лиофильная сушка).

3. Лучистая энергия (СВЧ-энергия, ультрафиолетовые лучи, ионизирующая радиация).

4. Ультразвук.

5. Давление (атмосферное, гидростатическое, осмотическое).

6. Электричество.

7. Кислотность среды (рН среды).

8. Наличие кислорода.

9. Влажность и вязкость среды обитания.

Температура - один из самых мощных факторов воздействия на микроорганизмы. Они или выживают, или погибают, или при­спосабливаются и растут.

Последствия влияния температуры на бактерии:

1. Способность микроорганизмов к выживанию после длитель­ного нахождения в экстремальных температурных условиях.

2. Способность микроорганизмов к росту в экстремальных тем­пературных условиях.

Жизнедеятельность каждого микроорганизма ограничена оп­ределенными температурными границами.

Эту температурную зависимость обычно выражают тремя точ­ками:

§ минимальная (min) температура - ниже которой размножение прекращается;

§ оптимальная (opt) температура - наилучшая температура для роста и развития микроорганизмов;

§ максимальная (max) температура - температура, при которой рост клеток или замедляется, или прекращается совсем.

Оптимальная температура обычно приравнивается к темпера­туре окружающей среды.

Все микроорганизмы по отношению к температуре условно можно разделить на 3 группы: психрофилы, мезофиллы, термо­филы.

Сапрофиты

Иерсинии

Псевдомонады

Клебсиеллы

Листерии и др.

Оптимальная температура роста и размножения психрофилов

Психрофилы - это холодолюбивые микроорганизмы, растут при низких температурах: min t - 0°С, opt t - от 10-20°С, max t - до 35°С. К таким микроорганизмам относятся обитатели северных морей и водоемов , а также некоторые патогенные бактерии - возбудители иерсиниоза, псевдомоноза, клебсиеллеза, листериоза и др.

К действию низких температур многие микроорганизмы очень устойчивы. Например, листерии, холерный вибрион, некоторые виды синегнойной палочки (Pseudomonas аtrobacter) долго могут храниться во льду, не утратив при этом своей жизнеспособности.

Некоторые микроорганизмы выдерживают температуру до ми­нус 190°С, а споры бактерий могут выдерживать до минус 250°С. Действие низких температур приостанавливает гнилостные и бро­дильные процессы, поэтому в быту мы пользуемся холодильни­ками.


При низких температурах микроорганизмы впадают в состоя­ние анабиоза, при котором замедляются все процессы жизнедея­тельности, протекающие в клетке. Однако, многие из психрофилов способны быстро вызывать микробиальную порчу пищевых про­дуктов и кормов, хранящихся при 0°С.

Большинство па­тогенных и ус­ловно-патогенных микроорганизмов

Оптимальная температура роста и размножения мезофилов

Мезофилы - это наиболее обширная группа бактерий, в кото­рую входят сапрофиты и почти все патогенные микроорганизмы, так как opt температура для них 37°С (температура тела), min t - 10°С, max t - 50°C.

Термофилы - теплолюбивые бактерии, развиваются при тем­пературе выше 55°С, min t для них - 40°С, max t – до 100°С. Эти микроорганизмы обитают в основном в горячих источниках. Среди термофилов встречается много споровых форм (В. stearothermo-philus. В. aerothermophilus) и анаэробов.

https://pandia.ru/text/78/203/images/image006_13.jpg" width="335 height=140" height="140">

Вегетативные формы Споры

Температурные диапазоны гибели микроорганизмов

Споры бактерий гораздо устойчивей к высоким температурам, чем вегетативные формы бактерий. Например, споры бацилл си­бирской язвы выдерживают кипячение в течение 2 часов.

Все микроорганизмы, включая и споровые, погибают при тем­пературе 165-170°С в течение 1 часа.

Действие высоких температур на микроорганизмы положено в основу стерилизации.

Высушивание . Для нормальной жизнедеятельности микроор­ганизмов нужна вода. Высушивание приводит к обезвоживанию цитоплазмы и нарушается целостность цитоплазматической мем­браны, что ведет к гибели клетки.

Некоторые микроорганизмы (многие виды кокков) под влия­нием высушивания погибают уже через несколько минут.

Более устойчивыми к высушиванию являются возбудители ту­беркулеза, которые могут сохранять свою жизнеспособность до 9 месяцев, а также капсульные формы бактерий.

Особенно устойчивыми к высушиванию являются споры. На­пример, споры возбудителя сибирской язвы могут сохраняться в почве более 100 лет.

Для хранения микроорганизмов в музеях микробных культур и изготовления сухих вакцинных препаратов из бактерий применя­ется метод лиофильной сушки.

Сущность метода состоит в том, что в аппаратах для лиофиль­ной сушки – лиофилизаторах микроорганизмы сначала заморажи­вают, а потом высушивают при положительной температуре в ус­ловиях вакуума . При этом цитоплазма бактерий замерзает и пре­вращается в лед, а потом этот лед испаряется и клетка остается жива (переход воды из замороженного состояния в газообразное, минуя жидкую фазу - сублимация ).

Замороженные бактерии (I этап лиофильного высушивания)

Образование внеклеточного (а) и внутриклеточного (б) льда при лиофильном высушивании бактерий

Лиофильно высушенные диплококки

При правильном лиофильном высушивании микробные клетки переходят в состояние анабиоза и сохраняют свои биологические свойства в течение нескольких лет.

Лифильно высушенные живая (а) и погибшая (б) бактерии

Если режим лиофильного высушивания не соблюдался (а для разных видов бактерий он различен), то клеточная стенка у бакте­рий разрывается и они гибнут.

Лучистая энергия . Существуют разные формы лучистой энер­гии, характеризующиеся различными свойствами, силой и харак­тером действия на микроорганизмы.

В природе бактериальные клетки постоянно подвергаются воз­действию солнечной радиации.

Прямые солнечные лучи губительно действуют на микроорга­низмы. Это относится к ультрафиолетовому спектру солнечного света (УФ-лучи).

Растения

Фотосинтез

Фототропизм

Фотопериодизм

Бактерии

Фототаксис

Мутации

Бактерицидное

действие

Животные и человек

Фотоэритема

Фотодинамика

Вследствие присущей УФ-лучам высокой химической и биоло­гической активности, они вызывают у микроорганизмов инактива­цию ферментов, коагуляцию белков, разрушают ДНК в результате чего наступает гибель клетки. При этом обеззараживается только поверхность облученных объектов из-за низкой проникающей спо­собности этих лучей.

Патогенные бактерии более чувствительны к действию УФ-лу­чей, чем сапрофиты, поэтому в бактериологической лаборатории микроорганизмы выращивают и хранят в темноте.

Опыт Бухнера показывает, насколько УФ-лучи губительно дей­ствуют на бактерии: чашку Петри с плотной средой засевают сплошным газоном. Часть посева накрывают бумагой, и ставят чашку Петри на солнце, а затем через некоторое время (15-30 мин) ее ставят в термостат.

Прорастают только те микроорганизмы, которые находились под бумагой. Поэтому значение солнечного света для обеззараживания ок­ружающей среды очень велико.

Используемые для этих целей приборы, испускающие ультра­звук, называют ультразвуковыми дезинтеграторами (УЗД).

Высокое давление . К высокому атмосферному или гидроста­тическому давлению бактерии, а особенно споры, очень устой­чивы (барофильные микроорганизмы). В природе встречаются бактерии, которые живут в морях и океанах на глубине м под давлением от 100 до 900 атм. Эти бактерии являются са­профитными и относятся к археям.

Бактерии переносят давление атм, а споры бакте­рий - до 20000 атм. При таком высоком давлении снижается ак­тивность бактериальных ферментов и токсинов.

Сочетанное действие повышенных температур и повышенного давления используется в паровых стерилизаторах (автоклавах) для стерилизации паром под давлением.

Важным фактором является внутриклеточное осмотическое давление у различных микроорганизмов.

Влияние осмотического давления на микробную клетку:

1. Плазмолиз (потеря воды и гибель клетки) происходит с мик­роорганизмами, если их помещают в среду с более высоким осмо­тическим давлением.

2. Плазмоптиз (поступление воды в клетку и разрыв клеточной стенки) – происходит с микроорганизмами при перемещении их в среду с низким осмотическим давлением.

https://pandia.ru/text/78/203/images/image034.jpg" width="219" height="142">Водород" href="/text/category/vodorod/" rel="bookmark">водородных ионов.

Для ацидофилов оптимальная для жизни рН -6,0-7,0; для алка­лофилов - 9,0-10,0; для нейтралофилов - 7,5.

Значение рН оказывает существенное влияние на синтез того или иного метаболита.

В ряде случаев оптимум для роста культуры и образования продукта неодинаков. С увеличением температуры культивирова­ния диапозон переносимых значений рН сужается.

Вязкость среды определяет диффузию питательных веществ из объема среды к поверхности клетки.

2. Химические факторы

Известно, что изменение состава и концентрации питательных элементов питательной среды может затормозить, прекратить или стимулировать процессы роста и размножения бактериальной по­пуляции. Следовательно, химические факторы способны влиять на жизнедеятельность микроорганизмов.

Степень воздействия химического агента на микроорганизм может быть различной. Она зависит от химического соединения, его концентрации, продолжительности воздействия, а так же от индивидуальных свойств микроорганизма.

Бактериостатическое действие регистрируется в том случае, если химическое вещество подавляет размножение бактерий, а после его удаления процесс размножения восстанавливается.

Бактерицидное действие вызывает необратимую гибель мик­роорганизмов.

Некоторые химические вещества безразличны для бактерий, другие могут стимулировать процессы их развития или являться питанием для бактерий. Например, соль NaCl в малых количест­вах добавляют в питательные среды.

Химические вещества, способные оказывать бактерицидное действие на разные группы микроорганизмов, используют для де­зинфекции.

Дезинфекция (уничтожение инфекции, обеззараживание объ­ектов окружающей среды) – это комплекс мероприятий, направ­ленный на уничтожение возбудителей инфекционных болезней в окружающей среде.

Другими словами, дезинфекция – это уничтожение патогенных микроорганизмов во внешней среде с помощью химических ве­ществ, обладающих антимикробным действием.

К химическим веществам, действующим на микроорганизмы относятся:

1. Окислители.

2. Поверхностно-активные вещества.

3. Галогены.

4. Соли тяжелых металлов.

5. Кислоты.

6. Щелочи.

7. Спирты.

8. Фенолы, крезолы и их производные.

9. Альдегиды (формальдегид, формалин).

10. Красители.

По механизму противомикробного действия все химические вещества подразделяются на 5 классов :

1. Денатурирующие белки – коагулируют и свертывают белки.

2. Омыляющие белки – приводят к набуханию и растворению белков.

3. Окисляющие белки - повреждают сульфгидрильные группы активных белков.

4. Реагирующие с фосфатнокислыми группами нуклеиновых кислот.

5. Поверхностно активные вещества - вызывают повреждения клеточной стенки.

Денатурирующие вещества :

§ фенол, крезол и их производные - бактерицидное действие связано с повреждением клеточной стенки и денатурацией белков цитоплазмы;

§ формальдегид - бактерицидное действие обусловлено дегид­ратацией поверхностных слоев и денатурацией белка;

§ спирты - бактерицидное действие обусловлено способностью отнимать воду и свертывать белки;

§ соли тяжелых металлов (сулема, мертиолат, соли ртути, се­ребра, цинка, свинца, меди) - положительно заряженные ионы ме­таллов адсорбируются на отрицательно заряженной поверхности бактерий и изменяют проницаемость их цитоплазматической мем­браны, при этом изменяется структура дыхательных ферментов и разобщаются процессы окисления и фосфорилирования в мито­хондриях.

Омыляющие белки – щелочи, гашеная известь.

Окисляющие белки (хлор, бром, йодосодержащие, перекись водорода, перманганат калия) - выделяют активный атомарный кислород, вызывая цепную реакцию свободнорадикального пере­кисного окисления липидов, что ведет к деструкции мембран и белков микроорганизмов.

Поверхностно-активные вещества (жирные кислоты, мыла, моющие средства , детергенты) - изменяют энергетическое соот­ношение поверхности микробной клетки (заряд с отрицательного меняется на положительный), что нарушает проницаемость и ос­мотическое равновесие.

Галогены (хлорсодержащие: хлорная известь, хлорамин Б, ди­хлор-1, сульфохлорантин, хлорцин и др.; йодосодержащие: спир­товый раствор йода, йодинол, йодоформ, раствор Люголя и др.) – разрушают ферментативные структуры бактериальной клетки, уг­нетают гидролитическую и дегидрогеназную активность бактерий, инактивируют такие ферменты, как амилазы и протеазы, денату­рируют белки цитоплазмы, а также выделяют атомарный кисло­род, оказывающий окисляющее действие на микроорганизмы.

Красители (бриллиантовый зеленый, риванол, трипофлавин, метиленовая синь) - обладают сродством к фосфорно-кислым гру-ппам нуклеиновых кислот и нарушают процесс деления бактерий. Многие красители используются в составе антисептиков.

Бактерицидный эффект кислот (салициловая, борная) и ще­лочей (едкий натр) на микроорганизмы обуславливается:

§ дегидратацией микроорганизмов;

§ изменением рН среды;

§ образованием кислотных и щелочных альбуминатов .

Новое поколение дезинфицирующих средств – четвертичные аммонийные соединения (ЧАС) и их соли.

Одним из наиболее эффективных дезинфицирующих средств на сегодняшний день является Велтолен - жидкий концентрат на основе уникальной отечественной, запатентованной субстанции «Велтон» (клатрат ЧАС с карбамидом).

Велтолен оказывает бактерицидное, фунгицидное, спорули­цидное и вирулицидное действие в невысоких концентрациях, безвреден для животных и человека, экологически безопасен.


Механизмы противомикробного действия Велтолена

Антимикробное действие 0,5%-ного раствора Велтолена на возбудителя сибирской язвы B. аnthracis при экспозиция 5 мин. вы­зывает вакуолизацию цитоплазмы бактерий и отслоение клеточ­ной стенки.

на B nthracis при экспозиция 5 мин.

Антимикробное действие 0,5% раствора Велтолена на возбу­дителя сибирской при экспозиция 15 мин. вызывает отслоение клеточной стенки, ее разрыв и вакуолизацию цитоплазмы.

Антимикробное действие 0,5% раствора Велтолена

на B nthracis при экспозиция 15 мин.

Антимикробное действие 0,5% раствора Велтолена на возбу­дителя сибирской при экспозиция 60 мин. вызывает разрушение большей части бактериальных клеток с потерей клеточной стенки и выхода наружу клеточного детрита. Часть спор под действием Велтолена формирует миелиновые фигуры.

Антимикробное действие 0,5% раствора Велтолена

на B nthracis при экспозиция 60 мин.

Активность различных дезинфицирующих веществ не одина­кова и зависит от времени экспозиции, концентрации, темпера­туры дезинфицирующих растворов и окружающей среды.

Дезинфекция с помощью химических веществ в качестве со­ставляющей входит в совокупность мер, направленных на уничто­жение микроорганизмов не только в окружающей среде, но и в макроорганизме, например, в ране и является основой асептики и антисептики.

Асептика - это комплекс профилактических мероприятий, на­правленных на предупреждение попадания микроорганизмов в рану или организм человека и животного.

Антисептика - это комплекс мероприятий, направленных на уничтожение микроорганизмов в ране или в организме в целом, на предупреждение и ликвидацию воспалительного процесса.

Антисептики - это противомикробные вещества, которые ис­пользуются для обеззараживания биологических поверхностей.

К антисептическим химическим веществам относятся краси­тели (метиленовый синий, бриллиантовый зеленый) - обладают денатурирующим и литическим эффектом, и производные 8-окси-хинолина (хинозол, нитроксалин, хинолон) и нитрофурана (фура­цилин, фуразолидон), которые нарушают биосинтетические и ферментативные процессы в бактериальной клетке.

3. Биологические факторы

К биологическим факторам , негативно воздействующим на микроорганизмы, можно отнести:

§ микроорганизмы-антагонисты;

§ пробиотики;

§ бактериофаги;

§ защитные факторы организма (клеточные и гуморальные).

Во внешней среде и в организме человека и животных обитает огромное количество разных видов микроорганизмов, которые по - разному взаимодействуют между собой.

Молочнокислые бактерии

Хищничество – нападение одного вида бактерии на другой с целью использование другого вида в качестве пищи.

https://pandia.ru/text/78/203/images/image049.jpg" width="302" height="201">

Bdellovibrio bacteriovorus проникает в сальмонеллу

Нейтрализм – микроорганизмы не оказывают друг на друга ни­какого влия­ния.

Наибольший интерес для науки и практики представляют раз­личные биологически активные вещества, образующиеся в про­цессе жизнедеятельности микроорганизмов, и одними их них яв­ляется антибиотики.

Антибиотики - продукты метаболизма живых организмов или их аналоги, получаемые синтетическим путем, способные избира­тельно подавлять рост микроорганизмов.

Термин "антибиотик" был предложен В. Вюименом в 1889 г., чтобы обозначить действующий агент процесса "антибиоза", т. е. сопротивления, оказываемого одним живым организмом другому.

В 1929 году А. Флемингом был открыт пенициллин, который в 1940 году удалось выделить в кристаллическом виде.

Механизм действия антибиотиков на бактерии

Классификация антибиотиков

По биологичес-кому

происхождению

По механизму биологического действия

По спектру биологичес-

кого действия

По химическому строению

Эубактерии

Род Pseudomo-nas : пиоцианин,

вискозин.

Ингибирует син­тез клеточной стенки (пеницил­лины, цефало-спорины)

Узкого спек­тра (пеницил-лины, цефа­лоспорины)

Ациклические соединения (микозамин, пирозамин)

Актиномицеты

Род Streptomy ces : тетрациклины, стрептомицины, эритромицин.

Род Мicromono-spora : гентами­цины, сизомицин.

Нарушает фун-кцию мембран

(нистатин, кан­дицидин)

Широкого спектра (тет­рациклины, хлорамфени­кол, гентами­цин, тобра­мицин)

Алициклические соединения (ак­тидион, туевая кислота).

Тетрациклины

Цианобактерии

(малинголид)

Подавляет син­тез РНК (канами-цин, неомицин) и синтез ДНК (ак­тидион, эдеин)

Противоту­беркулезные

(стрептоми­цин, канами­цин)

Ароматические соединения (гал­ловая кислота, хлорамфеникол).

Грибы

(пенициллины)

Ингибиторы син­теза пуринов и пиримидинов (азасерин)

Противо­грибные (нистатин, кандицин)

Кислородсоде-ржащие гетеро­циклические соединения (пе­ницилловая ки­слота, карлина­оксид)

Лишайники, растения, водо­росли (усниновая кислота, хлорел­лин)

Подавляет син­тез белка (кана­мицин, тетра­циклины, эрит­ромицин, хло­рамфеникол)

Противоопу­холевые

(адриамицин)

Макролиды

(эритромицин)

Животного происхождения

(интерферон, эк­молин)

Ингибиторы ды­хания (усниновая кислота, пиоциа­нин). Ингибиторы окислительного фосфорилирова­ния (валиноми­цин, олигомицин)

Противо­амебные (фумагиллин)

Аминоглико­зиды (тобрами­цин, гентами­цин, стрептоми­цины).

Полипептиды

(грамицидины)

«Феномен жемчужного ожерелья» у возбуди­теля сибирской язвы при выращивании его на пи­тательной среде с пени­циллином

В результате дейст­вия на B. аnthracis пени-циллина, у возбудителя разрушается клеточная стенка, образуются ша­ровидные протопласты, соединенные между собой в виде нитки бус.

Пенициллин способен вызвать разрушение клеточной стенки у многих видов бактерий. До недавнего времени к нему были осо­бенно чувствительны стафилококки и стрептококки.

У большинства грамотрицательных бактерий к пенициллину выработалась устойчивость, связанная с их способностью синте­зировать фермент пенициллиназу, разрушающий пенициллин.

https://pandia.ru/text/78/203/images/image055.jpg" width="204" height="169">.jpg" width="224" height="168">DIV_ADBLOCK169">

Возможные механизмы действия пробиотиков:

1. Подавление живых патогенных и условно-патогенных мик­роорганизмов.

а) продукция антибактериальных веществ - бактериоцинов;

б) конкуренция за источники питания;

в) конкуренция за рецепторы адгезии.

2. Влияние на микробный антагонизм.

а) уменьшение ферментативной активности;

б) увеличение ферментативной активности.

3. Стимуляция иммунитета.

б) увеличение активности макрофагов.

Пробиотические препараты, выпускаемые в странах –

членах ЕС и используемые в них виды микроорганизмов

Препарат

Вид микроорганизмов

Жидкое ацидофильное мо­локо, продукты класса йогур­тов (повсеместно)

L. acidophilus, B. bifidum, B. longum

Биоград, Бифийогурт Йога-Лайн, Лактоприв, Эугалин, Витацидофилюс, Омнифлора Мутафлор, Коливит, Симби­офлор, Лактана-Б (Германия)

L. acidophilus, S. thermophilus, B. longum, B. bifidum, E. coli

Гефилак, Бактолак (Финлян­дия)

L. rhamnosum, L. casei, S. faecium

Йокульт, Бифидер, Тойоцерин, Лакрис, Грауген, Кальспорин, Миаризан, Королак, Биофер­мин, Балантол, Лактофед (Япония)

L. rhamnosum, L. casei, E. coli, B. cereus, L. sporo-genes, B. subtilis, B. thermophilus, C. butyricum, B. pseudolongum, S. faecalis, L. acidophilus, B. toyo

Биокос (Чехия)

B. bifidum, L. acidophilus, P. acidilactis

Синелак, Ортобактер, Бифи­диген, Лиобифидус, Пробио­мин, Нормофлор, Биолакталь (Франция)

L. bulgaricus, L. acidophilus, B. longum E. coli, S. thermophilus, B. bifidum

Инфлоран (Швейцария)

S. thermophilus, L. bulgaricus, L. acidophilus

Пионер (Испания)

Комплекс кишечной микро­флоры

Вентракс оцидо (Швеция)

L. acidophilus, S. faecium, S. thermophilus

Гастрофарм, Нормофлор (Болгария)

L. acidophilus, L. bulgaricus

Био-Плюс2 (Германия, Дания)

B. subtilis, B. licheniformis

Протексин, Припалак (Голлан­дия)

Бактисубтил (Югославия)

Эсид-Пак-4-Уэй, Лакто-Сак (США)

S. thermophilus, L. acidophilus

Кроме перечисленных видов бактерий, в ряде стран в составе пробиотиков для животных используют Saccaharomyces cerevisiae, Candida pintolopesii, Aspergillus niger и Aspergillus ory­sae.

К молочнокислым бактериям, широко используемым для про­изводства пробиотиков, относятся молочнокислые стрептококки (S. lactis и S. cremoris) и лактобактерии (L. acidophilum, L. casei, L. plantarum, L. bulgaricum).

Метаболиты молочнокислых бактерий и их регуляторные функции

Механизм действия

Биологический эффект

Молочная кислота

Синергизм сочетания с уксусной, пропионовой, масляной кисло­тами. Синтез внутри - и внеклеточ­ного лактоферрина.

Ингибиция роста патогенных микро­организмов. Снижение синтеза ток­синов у плесневых грибов корма.

Углекислый газ

Поддержание анаэробных условий и высокого парциального давления.

Снижение дыхательного потен­циала у аэробных кишечных бакте­рий.

Перекись водорода

Образование гипотиоцината в бак­териях. Истощение ферментной системы у каталазозависящих мик­роорганизмов. Инактивация клеточ­ных энзимов.

Токсическое действие на каталазо­положительную микрофлору. Сни­жение синтеза белков, ограничение передачи генетической информа­ции, снижение факторов адгезии у грамотрицательных бактерий.

Связывание антилизоцимного фактора у энтеропатогенных бак­терий. Лизис клеточных стенок бактерий.

Повышение фагоцитарной актив­ности макрофагов. Снижение коло­низационной активности у грамот­рицательных бактерий. Неспеци­фическая стимуляция макрофагов.

Бактериоцины

Ограничение синтеза белков. На­рушение процессов транспорта через клеточную мембрану, сниже­ние синтеза ДНК, уплотнение ядерного материала, изменение рибосом и лизосом.

Бактерицидное и бактериостатиче­ское действие. Сдерживание про­цессов деления бактерий, наруше­ние передачи наследственной ин­формации. Деструкция рецептор­ных связей.

В России чистые культуры молочнокислых бактерий стали применять с 1890 года. Большой вклад в разработку способов при­готовления чистых культур, сохранения их в сухом виде и исполь­зования в производстве кисломолочных продуктов внёсли и.

Сухожаровая стерилизация - проводится в печах Пастера (су­хожаровой шкаф). Это шкаф с двойными стенками, изготовленный из металла и асбеста, нагревающийся с помощью электричества и снабженный термометром. Сухим жаром стерилизуют, в основном, лабораторную посуду. Обеззараживание материала в нем проис­ходит при 160°С в течение 1 часа.

В бактериологических лабораториях используется такой вид стерилизации, как прокаливание над огнем (фломбирование) . Этот способ применяют для обеззараживания бактериологических пе­тель, шпателей, пипеток. Для прокаливания над огнем используют спиртовки или газовые горелки.

К физическим способам стерилизации относятся также УФ-лучи и рентгеновское излучение . Такую стерилизацию проводят в тех случаях, когда стерилизуемые предметы не выдерживают вы­сокой температуры.

Тиндализация (двухступенчатая стерилизация) используется для обеззараживания материала, обсемененного спорами бакте­рий. При этом используется два режима нагревания материала – первый режим является оптимальным для прорастания спор и пе­рехода споровой формы бактерий в вегетативную, а второй режим направлен на уничтожение вегетативных клеток микроорганизмов.

Механическая стерилизация (фильтрующая стерилизация) - проводится при помощи фильтров (керамических, стеклянных, ас­бестовых) и особенно мембранных ультрафильтров из коллоид­ных растворов нитроцеллюлозы.

Морфология" href="/text/category/morfologiya/" rel="bookmark">морфология (округление, удлинение клетки), куль­туральные свойства (стафилококки не образуют пигмент при не­достатке кислорода), биохимические или ферментативные свой­ства (выработка адаптивных ферментов у эшерихий - фермент лактаза на среде с лактозой). При фенотипической изменчивости кАк правило, через определенное время происходит возврат к ис­ходному состоянию («новый фенотип» утрачивается).

2. Генотипическая изменчивость (наследуемая) - возникает в результате мутаций и генетических рекомбинаций. При этом смена фенотипа связана с изменением генотипа и передается по на­следству. Нет возврата к исходному фенотипу.

Мутации (от лат. mutatio - изменять) - это стойко передаваемые по наследству структурные изменения генов, связанные с реорга­низацией нуклеотидов в молекуле ДНК. При мутациях изменяются участки геномов (т. е. наследственного аппарата).

Бактериальные мутации могут быть спонтанными (самопроиз­вольными) и индуцированными (направленными), т. е. появляются в результате обработки микроорганизмов специальными мутаге­нами (химическими веществами, температурой, излучением и т. д.).

В результате бактериальных мутаций могут отмечаться:

§ изменение морфологических свойств микроорганизмов;

§ изменение культуральных свойств;

§ возникновение у микроорганизмов устойчивости к лекарствен­ным препаратам;

§ ослабление патогенных свойств и др.

К генетическим рекомбинациям относятся рекомбинации ге­нов, которые происходят вследствие трансформации, трансдукции и конъюгации.

Трансформация -передача генетического материала от бак­терии-донора бактерии-реципиенту при помощи изолированной ДНК другой клетки.

Бактерии, способные воспринимать ДНК другой клетки, назы­ваются компетентными.

Состояние компетентности часто совпадает с логарифмиче­ской фазой роста.

Для трансформации необходимо создавать особые условия, например, при добавлении в питательную среду неорганических фосфатов частота трансформации повышается.

Трансдукция - это перенос наследственного материала от бактерии-донора к бактерии-реципиенту бактериофагом.

Например, с помощью бактериофага можно воспроизвести трансдукцию жгутиков, ферментативные свойства, резистентность к антибиотикам, токсигенность и другие признаки.

Конъюгация - передача генетического материала от одной бактерии другой путем непосредственного контакта. Причем про­исходит односторонний перенос генетического материала - от до­нора реципиенту . Необходимым условием для конъюгации явля­ется наличие у донора цитоплазматической кольцевой молекулы ДНК - плазмиды и специфического фактора плодовитости F. У грамотрицательных бактерий обнаружены половые F-волоски, че­рез которые происходит перенос генетического материала. Клетки, играющие роль донора, обозначают F+, а реципиенты – F–-.

3. Промежуточная изменчивость - диссоциация. В однородной популяции бактерий появляются различные по биологическим свойствам клетки, образующие две формы колоний – R (шерохо­ватые, с рваными краями, часто связанные с приобретением бак­териями патогенных свойств) и S (круглые, гладкие, блестящие).

Заключение

На микроорганизмы во внешней среде воздействует огромное количество разнообразных неблагоприятных факторов, что за­ставляет их постоянно совершенствоваться, приспосабливаться и эволюционировать.

Именно неблагоприятные факторы внешней среды являются для микроорганизмов движущей силой видообразования.

Вопросы для самоконтроля

1. Результаты действия факторов внешней среды на микроорганизмы.

2. Какие физические факторы оказывают наибольшее влияние на микроорганизмы?

3. Каков температурный диапазон выращивания разных видов микроорганизмов?

4. В чем сущность лиофильного высушивания микроорганизмов?

5. Опишите опыт Бухнера.

6. Значение осмотического давления для бактерий.

7. На какие группы классифицируют микроорганизмы по отношению к концентрации водородных ионов в среде?

8. Что такое дезинфекция и дезинфектанты?

9. Классификация химических веществ по механизму противомикробного действия.

10. Какие средства называют антисептиками?

11. Перечислите биологические факторы, негативно воздействующие на микроорганизмы.

12. Какие взаимоотношения между бактериями обуславливает антагонистический симбиоз?

13. Каков механизм действия антибиотиков на бактерии?

14. Назовите возможные механизмы действия пробиотиков.

15. На какие группы подразделяют бактериофаги?

16. Что такое фильтрующая стерилизация?

17. Назовите отличия между фенотипической и генотипической изменчивостью бактерий.