Смотреть что такое "Площадь фигуры" в других словарях. Вычисление площадей фигур, ограниченных заданными линиями Как правильно найти площадь фигуры

Теорема 1.

Площадь квадрата равна квадрату его стороны.

Докажем что площадь S квадрата со стороной a равна a 2 . Возьмем квадрат со стороной 1 и разобьем его на n равных квадратов так, как показано на рисунке 1. геометрия площадь фигура теорема

Рисунок 1.

Так как сторона квадрата равна 1, то площадь каждого маленького квадрата равна. Сторона каждого маленького квадрата равна, т.е. равна а. Из этого следует, что. Теорема доказана.

Теорема 2.

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне (рис.2.):

S = a * h.

Пусть ABCD - данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности угол A острый (рис.2.).


Рисунок 2.

Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE * AD. Отрезок AE - высота параллелограмма, опущенная к стороне AD , и, следовательно, S = a * h. Теорема доказана.

Теорема 3

Площадь треугольника равна половине произведения его стороны на проведенную к ней высоту (рис.3.):


Рисунок 3.

Доказательство.

Пусть ABC - данный треугольник. Дополним его до параллелограмма ABCD, как показано на рисунке (рис.3.1.).


Рисунок 3.1.

Площадь параллелограмма равна сумме площадей треугольников ABC и CDA. Так как эти треугольники равны, то площадь параллелограмма равна удвоенной площади треугольника ABC. Высота параллелограмма, соответствующая стороне CB, равна высоте треугольника, проведенной к стороне CB. Отсюда следует утверждение теоремы, Теорема доказана.

Теорема 3.1.

Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (рис 3.2.).


Рисунок 3.2.

Доказательство.

Введем систему координат с началом в точке С так, чтобы B лежала на положительной полуоси C x , а точка А имела положительную ординату. Площадь данного треугольника можно вычислить по формуле, где h - высота треугольника. Но h равна ординате точки А, т.е. h=b sin C. Следовательно, . Теорема доказана.

Теорема 4.

Площадь трапеции равна произведению полусуммы его оснований на высоту (рис.4.).


Рисунок 4.

Доказательство.

Пусть ABCD - данная трапеция (рис.4.1.).

Рисунок 4.1.

Диагональ AC трапеции разбивает ее на два треугольника: ABC и CDA.

Следовательно, площадь трапеции равна сумме площадей этих треугольников.

Площадь треугольника ACD равна площадь треугольника ABC равна. Высоты AF и CE этих треугольников равна расстоянию h между параллельными прямыми BC и AD, т.е. высоте трапеции. Следовательно, . Теорема доказана.

Площади фигур имеют огромное значение в геометрии, как в науке. Ведь площадь это одна из важнейших величин в геометрии. Без знания площадей невозможно решить множество геометрических задач, доказать теоремы, обосновать аксиомы. Площади фигур имели огромное значение много веков назад, но не утратили своего значения в современном мире. Понятия площадей используются во многих профессиях. Они применяются в строительстве, проектирование и во многих других видах деятельности человека. Из этого можно сделать вывод,что без развития геометрии, в частности понятий о площадях, человечество не смогло бы такой большой прорыв в области наук и технике.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Площадь: Площадь величина, измеряющая размер поверхности. В математике Площадь фигуры геометрическое понятие, размер плоской фигуры. Площадь поверхности числовая характеристика поверхности. Площадь в архитектуре, открытое… … Википедия

Площадь - У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Площадь треугольника - Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

Площадь Ленина (Петрозаводск) - Площадь Ленина Петрозаводск … Википедия

Площадь (в геометрии) - Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

ПЛОЩАДЬ - одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких примыкающих друг к… … Большой Энциклопедический словарь

ПЛОЩАДЬ (в геометрии) - ПЛОЩАДЬ, одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких… … Энциклопедический словарь

ПЛОЩАДЬ - ПЛОЩАДЬ, площади, пред. о площади и (устар.) на площади, мн. и площадей, жен. (книжн.). 1. Часть плоскости, ограниченная ломаной или кривой линией (геом.). Площадь прямоугольника. Площадь криволинейной фигуры. 2. только ед. Пространство,… … Толковый словарь Ушакова

Площадь (архитект.) - Площадь, открытое, архитектурно организованное, обрамленное какими либо зданиями, сооружениями или зелёными насаждениями пространство, входящее в систему других городских пространств. Предшественниками городских П. были парадные дворы дворцовых и … Большая советская энциклопедия

Площадь Памяти (Тюмень) - Площадь Памяти Тюмень Общая информация … Википедия

Книги

  • Фигуры в математике, физике и природе. Квадраты, треугольники и круги , Шелдрик-Росс Кэтрин. О книге Фишки книги Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру В книге максимально подробно описаны главные фигуры: квадраты, круги и… Купить за 1206 руб
  • Фигуры в математике физике и природе Квадраты треугольники и круги , Шелдрик-Росс К.. Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру. В книге максимально подробно описаны главные фигуры: квадраты, кругии треугольники. Книга научит…

Формула площади необходима для определения площадь фигуры, которая является вещественнозначной функцией, определённой на некотором классе фигур евклидовой плоскости и удовлетворяющая 4м условиям:

  1. Положительность — Площадь не может быть меньше нуля;
  2. Нормировка — квадрат со стороной единица имеет площадь 1;
  3. Конгруэнтность — конгруэнтные фигуры имеют равную площадь;
  4. Аддитивность — площадь объединения 2х фигур без общих внутренних точек равна сумме площадей этих фигур.
Формулы площади геометрических фигур.
Геометрическая фигура Формула Чертеж

Результат сложения расстояний между серединами противоположных сторон выпуклого четырехугольника будут равна его полупериметру.

Сектор круга.

Площадь сектора круга равна произведению его дуги на половину радиуса.

Сегмент круга.

Чтобы получить площадь сегмента ASB, достаточно из площади сектора AOB вычесть площадь треугольника AOB.

S = 1 / 2 R(s - AС)

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

Эллипс .

Еще один вариант как вычислить площадь эллипса - через два его радиуса.

Треугольник. Через основание и высоту.

Формула площади круга через его радиус и диаметр.

Квадрат . Через его сторону.

Площадь квадрата равна квадрату длины его стороны.

Квадрат. Через его диагонали .

Площадь квадрата равна половине квадрата длины его диагонали.

Правильный многоугольник .

Для определения площади правильного многоугольника необходимо разбить его на равные треугольники, которые бы имели общую вершину в центре вписанной окружности.

S= r·p = 1/2 r·n·a

Определенный интеграл. Как вычислить площадь фигуры

Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу – как с помощью определенного интеграла вычислить площадь плоской фигуры . Наконец-то ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.

Для успешного освоения материала, необходимо:

1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Не .

2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений .

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, параболу и гиперболу. Сделать это можно (многим – нужно) с помощью методического материала и статьи о геометрических преобразованиях графиков .

Собственно, с задачей нахождения площади с помощью определенного интеграла все знакомы еще со школы, и мы мало уйдем вперед от школьной программы. Этой статьи вообще могло бы и не быть, но дело в том, что задача встречается в 99 случаев из 100, когда студент мучается от ненавистной вышки с увлечением осваивает курс высшей математики.

Материалы данного практикума изложены просто, подробно и с минимумом теории .

Начнем с криволинейной трапеции.

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры . Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно , с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций . Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):


Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке график функции расположен над осью , поэтому:

Ответ:

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений .

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 2

Вычислить площадь фигуры, ограниченной линиями , , и осью

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью ?

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:

Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:
В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .
Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справке Графики и свойства элементарных функций . Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось задается уравнением , а график функции расположен не выше оси , то

А сейчас пара примеров для самостоятельного решения

Пример 5

Пример 6

Найти площадь фигуры, ограниченной линиями , .

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры , именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:

Пример 7

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

…Эх, чертеж хреновенький вышел, но вроде всё разборчиво.

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:

Переходим еще к одному содержательному заданию.

Пример 8

Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде , и выполним поточечный чертеж:

Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое? Может быть ? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что . Или корень. А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения прямой и параболы .
Для этого решаем уравнение:


,

Действительно, .

Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.

На отрезке , по соответствующей формуле:

Ответ:

Ну, и в заключение урока, рассмотрим два задания сложнее.

Пример 9

Вычислить площадь фигуры, ограниченной линиями , ,

Решение : Изобразим данную фигуру на чертеже.

Блин, забыл график подписать, а переделывать картинку, простите, не хотца. Не чертёжный, короче, сегодня день =)

Для поточечного построения необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций ), а также некоторые значения синуса, их можно найти в тригонометрической таблице . В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке график функции расположен над осью , поэтому: