Кто первым получил нобелевскую премию. Нобелевские лауреаты в области физики Кто получил первую нобелевскую по физике

В средствах массовой информации в преддверии оглашения лауреатов-2017 обсуждались различные кандидатуры, и те, кто в итоге получил премию, входили в число фаворитов.

Барри Бариш, является ведущим экспертом по гравитационным волнам и одним из руководителей лазерно-интерферометрической гравитационно-волновой обсерватории LIGO (Laser Interferometer Gravitational-Wave Observatory, расположена в США).

А Райнер Вайсс и Кип Торн стояли у истоков этого проекта и продолжают работу в LIGO.

Сильным кандидатом СМИ считали и британку Николу Спалдин (Nicola Spaldin), долгое время проработавшую исследователем материальной теории в Швейцарском федеральном институте технологии в Цюрихе. Ей ставят в заслугу открытие мультиферроиков, материала с уникальным сочетанием электрических и магнитных свойств, которые сосуществуют одновременно. Это делает материалы идеальными для создания быстродействующих и энергосберегающих компьютеров.

В этом году среди возможных кандидатов на получение Нобелевской премии зарубежные СМИ называли и российских ученых.

В частности, в прессе прозвучало имя астрофизика академика РАН Рашида Сюняева, являющегося директором Института астрофизики общества Макса Планка в Гархинге (Германия).

Как известно, ряд отечественных ученых ранее стали лауреатами Нобелевской премии по физике. В 1958 г. ее получили трое советских ученых – Павел Черенков, Илья Франк и Игорь Тамм; в 1962 г. – Лев Ландау, а в 1964 году – Николай Басов и Александр Прохоров. В 1978 г. лауреатом Нобелевской премии по физике стал Петр Капица. В 2000 г. награду присудили российскому ученому Жоресу Алферову, а в 2003 г. – Алексею Абрикосову и Виталию Гинзбургу. В 2010 г. награда досталась работающим на Западе Андрею Гейму и Константину Новосёлову.

Всего с 1901 по 2016 год Нобелевская премия по физике присуждалась 110 раз, при этом только в 47 случаях награда доставалась единственному лауреату, в других же случаях ее делили между несколькими учеными. Таким образом за прошедшие 115 лет премию получили 203 человека – в том числе американский ученый Джон Бардин, который стал нобелевским лауреатом по физике дважды – единственный в истории награды. Первый раз он получил премию совместно с Уильямом Брэдфордом Шокли и Уолтером Браттейном в 1956 году. А в 1972 г. Бардин был награжден второй раз – за основополагающую теорию обычных сверхпроводников вместе с Леоном Нилом Купером и Джоном Робертом Шриффером.

Среди двух сотен лауреатов нобелевской награды по физике были только две женщины. Одна из них, Мари Кюри получила помимо физической премии в 1903 году еще и Нобелевскую награду по химии в 1911-м. Другой была Мария Гёпперт-Майер, ставшая лауреатом в 1963 г. совместно с Хансом Йенсеном «за открытия касающиеся оболочечной структуры ядра».

Чаще всего Нобелевская премия вручалась исследователям в области физики элементарных частиц.

Средний возраст лауреатов Нобелевской премии по физике – 55 лет. Самым молодым лауреатом в этой номинации остается 25-летний Лоуренс Брэгг из Австралии: он получил премию в 1915 году вместе со своим отцом Уильямом Генри Брэггом за заслуги в исследовании кристаллов с помощью рентгеновских лучей. Самым же пожилым остается 88-летний Раймонд Дэвис-младший, отмеченный в 2002 году премией «за создание нейтринной астрономии». К слову, Нобелевскую награду по физике делили не только отец и сын Брэгги, а также муж и жена Мари и Поль Кюри. В разное время лауреатами становились отцы и дети – Нильс Бор (1922 г.) и его сын Оге Бор (1975), Манне Сигбан (1924 г.) и Кай M. Сигбан (1981 г.), Дж Дж. Томсон (1906 г.) и Джордж Пейджет Томсон (1937 г.).

, Нобелевская премия мира и Нобелевская премия по физиологии и медицине . Первая Нобелевская премия по физике была присуждена немецкому физику Вильгельму Конраду Рентгену «в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей , названных впоследствии в его честь». Эта награда находится в ведении Нобелевского фонда и по праву считается самой престижной наградой, которую может получить физик. Она вручается в Стокгольме на ежегодной церемонии 10 декабря, в годовщину смерти Нобеля.

Назначение и выбор

На Нобелевскую премию по физике можно выбрать не более трёх лауреатов. По сравнению с некоторыми другими Нобелевскими премиями, выдвижение и отбор на премию по физике - процесс длинный и строгий. Именно поэтому премия становилась всё авторитетнее на протяжении многих лет и в итоге стала важнейшей премией по физике в мире.

Нобелевские лауреаты выбираются Нобелевским комитетом по физике , который состоит из пяти членов, избираемых Шведской королевской академией наук . На первом этапе несколько тысяч людей предлагают кандидатов. Эти имена изучаются и обсуждаются экспертами до окончательного выбора.

Формы направляются приблизительно трём тысячам человек с предложением представить свои кандидатуры. Имена номинаторов не объявляются публично в течение пятидесяти лет, и также не сообщаются номинантам. Списки номинантов и представивших их номинаторов хранятся в запечатанном виде в течение пятидесяти лет. Впрочем, на практике некоторые кандидаты становятся известными ранее.

Заявки проверяются комиссией, и список, содержащий около двухсот предварительных кандидатов, направляется к выбранным экспертами в этих областях. Они урезают список до примерно пятнадцати имен. Комитет представляет доклад с рекомендациями соответствующим учреждениям. В то время как посмертная номинация не допускается, награду можно получить, если человек умер в течение нескольких месяцев между решением комитета премии (обычно в октябре) и церемонией в декабре. До 1974 года посмертные награды были разрешены, если получатель умер после того, как они были назначены.

Правила Нобелевской премии по физике требуют, чтобы значение достижения было «проверено временем». На практике это означает, что разрыв между открытием и премией, как правило, порядка 20 лет, а может быть гораздо больше. Например, половина Нобелевской премии по физике в 1983 году была присуждена С. Чандрасекару за его работу по строению и эволюции звёзд, что была сделана в 1930 году. Недостаток этого подхода в том, что не все учёные живут достаточно долго, чтобы их работы были признаны. За некоторые важные научные открытия эта премия никогда не присуждалась, так как первооткрыватели умерли к тому времени, когда влияние их работ оценили .

Награды

Лауреат Нобелевской премии по физике получает золотую медаль, диплом с формулировкой награждения и денежную сумму. Денежная сумма зависит от доходов Нобелевского фонда в текущем году. Если премия присуждается более чем одному лауреату, деньги делятся поровну между ними; в случае трёх лауреатов деньги также могут разделить на половину и две четверти.

Медали

Медали Нобелевской премии, отчеканенные Myntverket в Швеции и Монетным двором Норвегии с 1902 года, являются зарегистрированными торговыми марками Нобелевского фонда. Каждая медаль имеет изображение левого профиля Альфреда Нобеля на лицевой стороне. Медаль Нобелевской премии по физике, химии, физиологии или медицины, литературе имеют одинаковую лицевую сторону, показывающую изображение Альфреда Нобеля и годы его рождения и смерти (1833-1896). Портрет Нобеля также появляется на лицевой стороне медали Нобелевской премии мира и медали премии в области экономики, но с несколько иным дизайном. Изображение на оборотной стороне медали варьируется в зависимости от учреждения, присуждающего награду. На оборотной стороне медали Нобелевской премии по химии и физике один и тот же дизайн.

Дипломы

Нобелевские лауреаты получают диплом из рук короля Швеции. Каждый диплом имеет уникальный дизайн, разработанный награждающим учреждением для лауреата. Диплом содержит изображение и текст, в котором содержится имя лауреата и, как правило, цитата о том, почему они получили премию.

Премиальные

Лауреатам также даётся денежная сумма, когда они получают Нобелевскую премию в виде документа, подтверждающего сумму награды; в 2009 году денежная премия составляла 10 миллионов шведских крон (1,4 млн долл. США). Суммы могут отличаться в зависимости от того, сколько денег Нобелевский фонд может присудить в этом году. Если есть два победителя в той или иной категории, грант делится поровну между получателями. Если есть три лауреата, то награждающий комитет имеет возможность поделить грант на равные части или вручить половину суммы одному получателю и по одной четверти двум другим.

Церемония

Комитет и учреждения, выступающие в качестве отборочной комиссии для премии, обычно объявляют имена лауреатов в октябре. Премия вручается затем на официальной церемонии, которая проводится ежегодно в мэрии Стокгольма 10 декабря, в годовщину смерти Нобеля. Лауреаты получают диплом, медаль и документ, подтверждающий денежный приз.

Лауреаты

Примечания

  1. «What the Nobel Laureates Receive» . Retrieved November 1, 2007. Архивная копия от 30 октября 2007 на Wayback Machine
  2. «The Nobel Prize Selection Process» , Encyclopædia Britannica , accessed November 5, 2007 (Flowchart).
  3. FAQ nobelprize.org
  4. Finn Kydland and Edward Prescott’s Contribution to Dynamic Macroeconomics: The Time Consistency of Economic Policy and the Driving Forces Behind Business Cycles (неопр.) (PDF). Официальный сайт Нобелевской премии (11 октября 2004). Дата обращения 17 декабря 2012. Архивировано 28 декабря 2012 года.
  5. Gingras, Yves . Wallace, Matthew L. Why it has become more difficult to predict Nobel Prize winners: A bibliometric analysis of nominees and winners of the chemistry and physics prizes (1901–2007) // Scientometrics. - 2009. - № 2 . - С. 401 . - DOI :10.1007/s11192-009-0035-9 .
  6. A noble prize (англ.) // Nature Chemistry : journal. - DOI :10.1038/nchem.372 . - Bibcode : 2009NatCh...1..509. .
  7. Tom Rivers. 2009 Nobel Laureates Receive Their Honors | Europe| English (неопр.) . .voanews.com (10 декабря 2009). Дата обращения 15 января 2010. Архивировано 14 декабря 2012 года.
  8. The Nobel Prize Amounts (неопр.) . Nobelprize.org. Дата обращения 15 января 2010. Архивировано 3 июля 2006 года.
  9. «Nobel Prize - Prizes» (2007), in Encyclopædia Britannica , accessed 15 January 2009, from Encyclopædia Britannica Online :
  10. Medalj – ett traditionellt hantverk (швед.) . Myntverket. Дата обращения 15 декабря 2007. Архивировано 18 декабря 2007 года.
  11. «The Nobel Prize for Peace» Архивная копия от 16 сентября 2009 на Wayback Machine , «Linus Pauling: Awards, Honors, and Medals», Linus Pauling and The Nature of the Chemical Bond: A Documentary History , the Valley Library, Oregon State University. Retrieved 7 December 2007.

С формулировкой «за теоретические открытия топологических фазовых переходов и топологических фаз материи ». За этой несколько размытой и малопонятной широкой публике фразой стоит целый мир нетривиальных и удивительных даже для самих физиков эффектов, в теоретическом открытии которых лауреаты сыграли ключевую роль в 1970–1980-е годы. Они, конечно, были не единственными, кто осознал тогда важность топологии в физике. Так, советский физик Вадим Березинский за год до Костерлица и Таулесса сделал, по сути, первый важный шаг к топологическим фазовым переходам. Рядом с именем Холдейна тоже можно поставить много других имен. Но как бы то ни было, все три лауреата безусловно являются знаковыми фигурами в этом разделе физики.

Лирическое введение в физику конденсированных сред

Объяснить доступными словами суть и важность работ, за которые был присужден физический Нобель-2016, - задача не из простых. Мало того, что сами явления сложные и вдобавок квантовые, так они еще и разнообразные. Премия была присуждена не за одно конкретное открытие, а за целый список пионерских работ, которые в 1970–1980-е годы стимулировали развитие нового направления в физике конденсированных сред. В этой новости я попробую достичь более скромной цели: объяснить на паре примеров суть того, что такое топологический фазовый переход, и передать ощущение, что это действительно красивый и важный физический эффект. Рассказ будет лишь про одну половину премии, ту, в которой проявили себя Костерлиц и Таулесс. Работы Холдейна столь же завораживающие, но они еще менее наглядные, и для их объяснения потребовался бы совсем уж длинный рассказ.

Начнем с блиц-введения в самый богатый на явления раздел физики - физику конденсированных сред.

Конденсированная среда - это, на житейском языке, когда много однотипных частиц собрались вместе и сильно воздействуют друг на друга. Почти каждое слово здесь - ключевое. Сами частицы и закон взаимодействия между ними - должны быть однотипными. Можно взять несколько разных атомов, пожалуйста, но главное, что дальше этот фиксированный набор повторяется снова и снова. Частиц должно быть очень много; десяток-другой - это еще не конденсированная среда. И, наконец, влиять они друг на друга должны сильно: толкать, тянуть, мешать друг другу, может быть обмениваться друг с другом чем-то. Разреженный газ конденсированной средой не считается.

Главное откровение физики конденсированных сред: при таких очень простых «правилах игры» в ней обнаружилось нескончаемое богатство явлений и эффектов. Такое многообразие явлений возникает вовсе не из-за пестрого состава - частицы-то однотипные, - а самопроизвольно, динамически, как результат коллективных эффектов . В самом деле, раз взаимодействие сильное, нет смысла смотреть на движение каждого отдельного атома или электрона, ведь оно тут же сказывается на поведении всех ближайших соседей, а может быть, даже и далеких частиц. Когда вы читаете книгу, она «говорит» с вами не россыпью отдельных букв, а набором связанных друг с другом слов, она передает вам мысль в форме «коллективного эффекта» букв. Так же и конденсированная среда «говорит» на языке синхронных коллективных движений, а вовсе не отдельных частиц. И вот этих коллективных движений, оказывается, огромное разнообразие.

Нынешняя Нобелевская премия отмечает работы теоретиков по расшифровке еще одного «языка», на котором могут «разговаривать» конденсированные среды, - языка топологически нетривиальных возбуждений (что это такое - чуть ниже). Конкретных физических систем, в которых возникают такие возбуждения, найдено уже немало, и ко многим из них приложили руку лауреаты. Но самое существенное здесь - не конкретные примеры, а сам факт того, что такое в природе тоже бывает.

Многие топологические явления в конденсированных средах были вначале выдуманы теоретиками и казались просто математической шалостью, не относящейся к нашему миру. Но потом экспериментаторы обнаруживали реальные среды, в которых эти явления наблюдаются, - и математическая шалость вдруг порождала новый класс материалов с экзотическими свойствами. Экспериментальная сторона этого раздела физики сейчас на подъеме, и это бурное развитие будет продолжаться и в будущем, обещая нам новые материалы с запрограммированными свойствами и устройства на их основе.

Топологические возбуждения

Сначала поясним слово «топологический». Не пугайтесь, что объяснение будет звучать как голая математика; связь с физикой проявится по ходу дела.

Есть такой раздел математики - геометрия, наука о фигурах. Если форму фигуры плавно деформировать, то, с точки зрения обычной геометрии, сама фигура меняется. Но у фигур бывают общие характеристики, которые при плавной деформации, без разрывов и склеек, остаются неизменными. Это и есть топологическая характеристика фигуры. Самый известный пример топологической характеристики - это количество дырок у трехмерного тела. Чайная кружка и бублик - топологически эквивалентны, они оба имеют ровно одну дырку, и потому плавной деформацией одну фигуру можно превратить в другую. Кружка и стакан - топологически различаются, потому что у стакана дырок нет. Для закрепления материала предлагаю ознакомиться с прекрасной топологической классификацией женских купальников .

Итак, вывод: всё то, что можно свести друг к другу плавной деформацией, считается топологически эквивалентным. Две фигуры, которые никакими плавными изменениями друг в друга не превратишь, считаются топологически разными.

Второе слово для объяснение - «возбуждение». В физике конденсированных сред возбуждение - это любое коллективное отклонение от «мертвого» неподвижного состояния, то есть от состояния с наименьшей энергией. Например, по кристаллу ударили, по нему побежала звуковая волна - это колебательное возбуждение кристаллической решетки. Возбуждения не обязательно вызывать насильно, они могут спонтанно возникать из-за ненулевой температуры. Обычное тепловое дрожание кристаллической решетки - это, по сути, много наложившихся друг на друга колебательных возбуждений (фононов) с разными длинами волн. Когда концентрация фононов велика, происходит фазовый переход, кристалл плавится. В общем, как только мы поймем, в терминах каких возбуждений следует описывать данную конденсированную среду, мы получим ключ к ее термодинамическим и прочим свойствам.

Теперь соединим два слова. Звуковая волна - это пример топологически тривиального возбуждения. Это звучит умно, но по своей физической сути это просто означает, что звук можно сделать сколь угодно тихим, вплоть до полного исчезновения. Громкий звук - колебания атомов сильные, тихий звук - слабые. Амплитуду колебаний можно плавно уменьшать до нуля (точнее, до квантового предела, но это тут несущественно), и это всё еще будет звуковое возбуждение, фонон. Обратите внимание на ключевой математический факт: существует операция плавного изменения колебаний до нуля - это просто уменьшение амплитуды. Именно это и означает, что фонон - топологически тривиальное возмущение.

А сейчас включается богатство конденсированных сред. В некоторых системах бывают возбуждения, которые нельзя плавно уменьшить до нуля . Не физически нельзя, а принципиально - форма не позволяет. Просто не существует такой повсюду плавной операции, которая переводит систему с возбуждением в систему с наименьшей энергией. Возбуждение по своей форме топологически отличается от тех же фононов.

Смотрите, как это получается. Рассмотрим простую систему (она называется XY-модель) - обычную квадратную решетку, в узлах которой есть частицы со своим спином, который может быть ориентирован как угодно в этой плоскости. Мы будем изображать спины стрелочками; ориентация стрелочки произвольная, но длина фиксирована. Мы будем также считать, что спины соседних частиц взаимодействуют друг с другом таким образом, что наиболее энергетически выгодная конфигурация - это когда все спины во всех узлах смотрят в одну сторону, как в ферромагнетике. Эта конфигурация показа на рис. 2, слева. По ней могут бежать спиновые волны - небольшие волнообразные отклонения спинов от строгой упорядоченности (рис. 2, справа). Но это всё обычные, топологически тривиальные возбуждения.

А вот теперь взгляните на рис. 3. Здесь показаны два возмущения необычной формы: вихрь и антивихрь. Выберите мысленно точку на картинке и пройдите взглядом по круговому пути против часовой стрелки вокруг центра, обращая внимание на то, что происходит со стрелочками. Вы увидите, что у вихря стрелочка поворачивается в ту же сторону, против часовой стрелки, а у антивихря - в противоположную, по часовой стрелке. Проделайте теперь тоже в основном состоянии системы (стрелочка вообще неподвижна) и в состоянии со спиновой волной (там стрелочка слегка колышется около среднего значения). Вы можете также представить себе и деформированные варианты этих картинок, скажем спиновая волна в нагрузку к вихрю: там стрелочка тоже будет делать полный оборот, слегка вихляя.

После этих упражнений становится ясно, что все возможные возбуждения разбиваются на принципиально различающиеся классы : делает ли стрелочка полный оборот при обходе вокруг центра или нет, и если делает, то в какую сторону. Эти ситуации имеют разную топологию. Никакие плавные изменения не могут превратить вихрь в обычную волну: если уж поворачивать стрелочки, то скачком, сразу на всей решетке и сразу на большой угол. Вихрь, равно как и антивихрь, топологически защищены : они, в отличие от звуковой волны, не могут просто так рассосаться.

Последний важный момент. Вихрь топологически отличается от простой волны и от антивихря только в том случае, если стрелочки лежат строго в плоскости рисунка. Если же нам разрешается выводить их в третье измерение, то тогда вихрь можно плавно устранить. Топологическая классификация возбуждений кардинально зависит от размерности системы!

Топологические фазовые переходы

Эти чисто геометрические рассуждения имеют вполне осязаемое физическое следствие. Энергия обычного колебания, того же фонона, может быть сколь угодно малой. Поэтому при любой сколь угодно низкой температуре эти колебания спонтанно возникают и влияют на термодинамические свойства среды. Энергия же топологически защищенного возбуждения, вихря, не может быть ниже некоторого предела. Поэтому при низких температурах отдельные вихри не возникают, а значит, не влияют на термодинамические свойства системы - по крайней мере, так считалось до начала 1970-х годов.

Между тем, в 1960-е годы усилиями многих теоретиков вскрылась проблема с пониманием того, что происходит в XY-модели с физической точки зрения. В обычном трехмерном случае всё просто и интуитивно понятно. При низких температурах система выглядит упорядоченно, как на рис. 2. Если взять два произвольных узла решетки, пусть даже и очень далеких, то спины в них будут слегка колебаться около одинакового направления. Это, условно говоря, спиновый кристалл. При высоких температурах происходит «плавление» спинов: два далеких узла решетки уже никак друг с другом не скоррелированы. Есть четкая температура фазового перехода между двумя состояниями. Если установить температуру ровно на это значение, то система будет находиться в особом критическом состоянии, когда корреляции еще есть, но плавно, степенным образом уменьшаются с расстоянием.

В двумерной решетке при высоких температурах тоже есть неупорядоченное состояние. А вот при низких температурах всё выглядело очень и очень странно. Была доказана строгая теорема (см. Теорема Мермина - Вагнера) о том, что в двухмерном варианте кристаллической упорядоченности нет. Аккуратные расчеты показали, что ее не то чтобы совсем нет, она просто уменьшается с расстоянием по степенному закону - ровно как в критическом состоянии. Но если в трехмерном случае критическое состояние было только при одной температуре, то тут критическое состояние занимает всю низкотемпературную область. Получается, в двумерном случае в игру вступают какие-то другие возбуждения, которых не существует в трехмерном варианте (рис. 4)!

Сопроводительные материалы Нобелевского комитета рассказывают о нескольких примерах топологических явлений в различных квантовых системах, а также о недавних экспериментальных работах по их реализации и о перспективах на будущее. Заканчивается этот рассказ цитатой из статьи Холдейна 1988 года. В ней он, словно оправдываясь, говорит: «Хотя представленная здесь конкретная модель вряд ли физически реализуема, тем не менее ...». 25 лет спустя журнал Nature публикует , в которой сообщается об экспериментальной реализации модели Холдейна. Пожалуй, топологически нетривиальные явления в конденсированных средах - это одно из самых ярких подтверждений негласного девиза физики конденсированных сред: в подходящей системе мы воплотим любую самосогласованную теоретическую идею, какой бы экзотической она ни казалась.

История. Альфред Нобель родился в 1833 г. в Стокгольме. Он был химиком, инженером, изобретателем. Большую часть дохода он получил от своих 355 изобретений, среди которых самое известное – динамит. Задумавшись над тем, как его будет помнить человечество, Нобель в ноябре 1895 г. составил завещание: «Всё моё движимое и недвижимое имущество должно быть обращено в ликвидные ценности, а собранный капитал помещён в надёжный банк. Доходы от вложений должны принадлежать фонду, который будет ежегодно распределять их в виде премий тем, кто в течение предыдущего года принёс наибольшую пользу человечеству… Моё особое желание заключается в том, что бы при присуждении премий не принималась во внимание национальность кандидатов.»


В завещании Нобеля предусматривалось выделение средств на награды представителям только пяти направлений: Физика Химия Литература Физиология и медицина Премия мира ЭКОНОМИКЕ. По инициативе шведского банка с 1969 года присуждается премия его имени по ЭКОНОМИКЕ. Кто получает Нобелевскую премию?




Процедура награждения происходит ежегодно 10 декабря в столицах двух стран – в Стокгольме (Швеция) и в Осло (Норвегия). Стокгольм – концертный залОсло – городская ратуша Вручаются премии в области физики, химии, физиологии и медицины, литературы, экономики. Вручаются премии в области защиты мира Процедура вручения Нобелевской премии






Первый лауреат Нобелевской премии по физике Вильгельм Конрад Рентген – великий немецкий физик. Родился 27 марта 1845 г. Его научные исследования относятся к электромагнетизму, физике кристаллов, оптике, молекулярной физике. В 1895 г. Рентген открыл излучение более коротковолновое, чем ультрафиолетовое излучение. В дальнейшем это излучение было названо его именем – рентгеновское. Он исследовал удивительные свойства этих лучей проникать вглубь вещества. С помощью этих лучей можно «увидеть» кости и внутренние органы. Сейчас мы не представляем себе медицину без рентгеновского исследования. За открытие этих лучей Рентгену в 1901 году первому среди физиков была присуждена Нобелевская премия.


Женщины – лауреаты Нобелевской премии по физике Мария Складовская-Кюри родилась в Варшаве в 1867 г. Дважды лауреат Нобелевской премии: по физике (1903 г.) и по химии (1911 г.) Премию по физике она получила вместе с мужем Пьером Кюри и Анри Беккерелем за исследования в области радиации, а по химии за открытие ряда новых радиоактивных химических элементов. Мария Гёпперт-Майер родилась в 1906 г. в Германии. Награждена Нобелевской премией совместно с Хансом Йенсеном в 1963 г. за открытие оболочечной структуры ядра атома.


Джон Бардин родился в 1908 г. в США. В 1956 г. совместно с Уильямом Брэдфордом получил Нобелевскую премию за изобретение биполярного транзистора. В 1972 г. совместно с Леоном Нилом Купером и Джоном Робертом Шриффером получил Нобелевскую премию за теорию обычных сверхпроводников. Сейчас эта теория называется теорией Бардина-Купера-Шриффера или просто БКШ – теория. Сверхпроводник – это материал, у которого при определённых условиях (при очень низкой температуре) полностью исчезает сопротивление. В таком проводнике электрический ток может существовать без источника тока. Дважды лауреат Нобелевской премии по физике.


Электричество и магнетизм Хендрик Антон Лоренц – нидерландский физик, лауреат Нобелевской премии 1902 г. За исследование расщепления линий в спектре атома в магнитном поле. Гейке Камерлинг-Оннес – нидерландский физик, лауреат Нобелевской премии 1913 г. За открытие явления сверхпроводимости Нобелевские лауреаты из школьного учебника физики.


Квантовая физика Макс Людвиг Планк – немецкий физик, лауреат Нобелевской премии 1918 г. За открытие квантовой природы теплового излучения Е = hν Альберт Эйнштейн – немецкий физик, лауреат Нобелевской премии 1921 г. За объяснение явления фотоэффекта. Нильс Бор – датский физик, лауреат Нобелевской премии 1922 г. За объяснение излучения и поглощения энергии атомами. Нобелевские лауреаты из школьного учебника физики.


Ядерная физика Чарльз Томсон Вильсон – английский физик, лауреат Нобелевской премии 1927 г. За метод визуального обнаружения траекторий заряженных частиц в специальной камере. Джеймс Чедвик – английский физик, лауреат Нобелевской премии 1935 г. За открытие нейтрона.


Жорж Шарпак – французский физик. Родился в 1924 г. в волынском местечке Дубровица (сейчас это Ровенская область). В 1931 г. семья переехала в Париж. Награждён Нобелевской премией в 1992 году за создание детекторов частиц. Это устройство для обнаружения и измерения параметров элементарных частиц, которые рождаются в ускорителях или при ядерных реакциях. Лев Давидович Ландау – советский физик-теоретик. В 1932 г. Ландау возглавил теоретический отдел Украинского физико-технического института в Харькове. Здесь же ему была присвоена степень доктора физико- математических наук без защиты диссертации. Награждён Нобелевской премией в 1962 г. За работу в области теории конденсированных сред, в особенности жидкого гелия, в котором многие металлы становятся сверхпроводниками. Нобелевские лауреаты по физике, которые родились или работали в Украине.



Райнер Вайсс, Барри Бэриш и Кип Торн

Шведская королевская академия наук объявила лауреатов Нобелевской премии по физике 2017 года. Премия будет вручена Райнеру Вайссу (половина премии), Барри Бэришу и Кипу Торну с формулировкой «за решающий вклад в детектор LIGO и за наблюдение гравитационных волн». Официальное вручение премий и медалей состоится в декабре, после прочтения традиционных лекций. Прямая трансляция объявления победителя велась на сайте Нобелевского комитета.

Вайсс, Торн и Бэриш считались одними из самых вероятных кандидатов на Нобелевскую премию по физике с 2016 года, когда коллаборации LIGO и VIRGO об обнаружении гравитационных волн от слияния двух черных дыр.

Райнер Вайсс сыграл ключевую роль в разработке детектора - огромного интерферометра с чрезвычайно низким уровнем шумов. Соответствующие работы физик начал еще в 1970-х годах, создав небольшие прототипы систем на базе Массачусетского технологического института. Несколькими годами позже прототипы интерферометров были созданы и в Калтехе - под руководством Кипа Торна. Позднее физики объединили свои усилия.


Схема гравитационной обсерватории LIGO

Барри Бэриш превратил небольшую коллаборацию между MIT и Калтехом в огромный международный проект - LIGO. Ученый руководил развитием проекта и созданием детекторов с середины 1990-х годов.

LIGO представляет собой две гравитационные обсерватории, расположенные в 3000 километров друг от друга. Каждый из них представляет собой Г-образный интерферометр Майкельсона. Он состоит из двух 4-километровых вакуумированных оптических плеч. Луч лазера расщепляют на две составляющие, которые проходят по трубам, отражаются от их концов и объединяются вновь. В случае если длина плеча изменилась, изменяется характер интерференции между лучами, что фиксируется детекторами. Большое расстояние между обсерваториями позволяет увидеть разность во времени прибытия гравитационных волн - из предположения о том, что последние распространяются со скоростью света, разница времени прибытия достигает 10 миллисекунд.


Два детектора LIGO

Подробнее о гравитационно-волновой астрономии и ее будущем можно прочитать в нашем материале « ».

В 2017 году размер Нобелевской премии был увеличен на один миллион шведских крон - сразу на 12,5 процентов. Теперь он составляет 9 миллионов крон или 64 миллиона рублей.

Лауреатами Нобелевской премии по физике в 2016 году стали теоретики Дункан Халдейн, Дэвид Таулесс и Майкл Костерлиц . К этим явлениям относится, например, целочисленный эффект Холла: тонкий слой вещества изменяет свое сопротивление ступенчато с ростом индукции приложенного к нему магнитного поля. Кроме того, теория помогает описывать сверхпроводимость, сверхтекучесть и магнитное упорядочение в тонких слоях материалов. Интересно, что основа теории была заложена еще советским физиком Вадимом Березинским, но до вручения премии он, увы, не дожил. Подробнее об этом можно прочитать в нашем материале « ».

Владимир Королёв