Закон сохранения энергии для полной цепи. Законы ома, кирхгофа и закон сохранения энергии. Закон сохранения энергии в электричестве

Современная физика знает много видов энергии, связанных с движением или различным взаимным расположением самых разнообразных материальных тел или частиц, например, всякое движущееся тело обладает кинетической энергией, пропорциональной квадрату его скорости. Эта энергия может изменяться, если скорость тела будет возрастать или убывать. Тело, приподнятое над землей, имеет потенциальную гравитационную энергию, изменяющуюся три изменении высоты тела.

Неподвижные электрические заряды, находящиеся на некотором расстоянии друг от друга, обладают потенциальной электростатической энергией в соответствии с тем, что по закону Кулона заряды либо притягиваются (если они разного знака), либо отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними.

Кинетической и потенциальной энергией обладают и молекулы, и атомы, и частицы, их составляющие - электроны, протоны, нейтроны и т. д. В зависимости от характера движения и природы сил, действующих между этими частицами, изменение энергии в системах таких частиц может проявляться в форме механической работы, в протекании электрического тока, в передаче теплоты, в изменении внутреннего состояния тел, в распространении электромагнитных колебаний и т. п.

Уже более 100 лет назад в физике был установлен фундаментальный закон, в соответствии с которым энергия не может исчезать или возникать из ничего. Она может лишь переходить из одного вида в другой . Этот закон называется законом сохранения энергии .

В трудах А. Эйнштейна этот закон получил существенное развитие. Эйнштейн установил взаимопревращаемость энергии и массы и тем самым расширил толкование закона сохранения энергии, который теперь в общем случае формулируется как закон сохранения энергии и массы .

В соответствии с теорией Эйнштейна всякое изменение энергии тела d Е связано с изменением его массы d m формулой d Е=d mс 2 , где с - скорость света в вакууме, равная 3 х 10 8 м/с.

Из этой формулы, в частности, следует, что если в результате какого-либо процесса масса всех тел, участвующих в процессе, уменьшится на 1 г, то при этом выделится энергия, равная 9х10 13 Дж, что эквивалентно 3000 т условного топлива.

Эти соотношения имеют первостепенное значение при анализе ядерных превращений. В большинстве же макроскопических процессов изменением массы можно пренебречь и говорить лишь о законе сохранения энергии.

Проследим за преобразованиями энергии на каком-нибудь частном примере. Рассмотрим всю цепочку преобразований энергии, необходимую для изготовления какой-либо детали на токарном станке (рис. 1). Пусть исходная энергия 1, количество которой мы примем за 100%, получена за счет полного сжигания некоторого количества природного топлива. Следовательно, для нашего примера 100% исходной энергии содержится в продуктах сгорания топлива, находящихся при высокой (около 2000 К) температуре.

Продукты сгорания в котле электростанции, охлаждаясь, отдают свою внутреннюю энергию в виде теплоты воде и водяному пару. Однако по техническим и экономическим причинам продукты сгорания нельзя охладить до температуры окружающей среды. Они выбрасываются через трубу в атмосферу при температуре около 400 К, унося с собой часть исходной энергии. Поэтому во внутреннюю энергию водяного пара перейдет только 95% исходной энергии.

Полученный водяной пар поступит в паровую турбину, где его внутренняя энергия вначале частично превратится в кинетическую энергию струн пара, которая затем будет отдана в виде механической энергии ротору турбины.

Только часть энергии пара может быть превращена в механическую энергию. Остальная часть отдается охлаждающей воде при конденсации пара в конденсаторе. В нашем примере мы приняли, что энергия, переданная ротору турбины, составит около 38%, что примерно соответствует положению дел на современных электростанциях.

При преобразовании механической энергии в электрическую за счет так называемых джоулевых потерь в обмотках ротора и статора электрогенератора будет потеряно еще около 2% энергии. В результате в электрическую сеть поступит около 36% исходной энергии.

Электродвигатель превратит в механическую энергию вращения токарного станка только часть подведенной к нему электроэнергии. В нашем примере около 9% энергии в виде джоулевой теплоты в обмотках двигателя и теплоты трения в его подшипниках будет отдано в окружающую атмосферу.

Таким образом, к рабочим органам станка окажется подведенным только 27% исходной энергии. Но и на этом злоключения энергии не заканчиваются. Оказывается, что подавляющая часть энергии при механической обработке детали расходуется на трение и в виде теплоты отводится с жидкостью, охлаждающей деталь. Теоретически на то, чтобы из исходной заготовки получить нужную деталь, хватило бы лишь весьма малой доли (в нашем примере условно принято 2%) исходной энергии.


Рис. 1. Схема преобразований энергии при обработке детали на токарном станке: 1 - потеря энергии с уходящими газами, 2 - внутренняя энергия продуктов сгорания, 3 - внутренняя энергия рабочего тела - водяного пара, 4 - теплота, отдаваемая охлаждающей воде в конденсаторе турбины, 5 - механическая энергия ротора турбогенератора, 6 - потери в электрогенераторе, 7 - потерн в электроприводе станка, 8 - механическая энергия вращения станка, 9 - работа трения, превращающаяся в теплоту, отдаваемую жидкости, охлаждающей деталь, 10 - увеличение внутренней энергии детали и стружки после обработки.

Из рассмотренного примера, если его считать достаточно типичным, можно сделать по крайней мере три очень полезных вывода.

Во-первых, на каждой ступеньке преобразования энергии какая-то часть ее теряется . Это утверждение не следует понимать как нарушение закона сохранения энергии. Теряется она для того полезного эффекта, ради которого соответствующее преобразование осуществляется. Полное количество энергии после преобразования остается неизменным.

Если в некоторой машине или аппарате осуществляется процесс преобразования и передачи энергии, то эффективность этого устройства обычно характеризуют коэффициентом полезного действия (к. п. д.) . Схема такого устройства показана на рис. 2.


Рис. 2. Схема для определения к. п. д. устройства, преобразующего энергию.

Пользуясь обозначениями, приведенными на рисунке, к. п. д. можно определить как кпд = Епол/ Епод

Ясно, что при этом на основании закона сохранения энергии должно быть Епод = Епол + Епот

Поэтому к. п. д. можно записать еще и так: кпд = 1 - (Епот/Епол)

Возвращаясь к примеру, изображенному на рис. 1, можно сказать, что к. п. д. котла равен 95%, к. п. д. преобразования внутренней энергии пара в механическую работу - 40%, к. п. д. электрогенератора - 95%, к. п. д. электропривода станка - 75% и к. п. д. собственно процесса обработки детали около 7%.

В прошлом, когда законы превращения энергии еще не были известны, мечтой людей было создание так называемого вечного двигателя - устройства, которое совершало бы полезную работу, не затрачивая никакой энергии. Такой гипотетический двигатель, существование которого нарушало бы закон сохранения энергии, сегодня называют вечным двигателем первого рода в отличие от вечного двигателя второго рода. Сегодня, разумеется, никто не принимает всерьез возможность создания вечного двигателя первого рода.

Во-вторых, все потери энергии в конечном итоге превращаются в теплоту, которая отдается либо атмосферному воздуху, либо воде естественных водоемов.

В-третьих, в конечном счете люди полезно используют лишь малую часть той первичной энергии, которая была затрачена для получения соответствующего полезного эффекта.

Это особенно очевидно при рассмотрении затрат энергии на транспорт. В идеализированной механике, не учитывающей сил трения, перемещение грузов в горизонтальной плоскости не требует затрат энергии.

В реальных условиях вся энергия, потребляемая транспортным средством, затрачивается на преодоление сил трения и сил сопротивления воздуха, т. е. в конечном счете вся энергия, потребляемая на транспорте, превращается в теплоту. В этом отношении любопытны следующие цифры, характеризующие работу перемещения 1 т груза на расстояние 1 км различными видами транспорта: самолет - 7,6 кВт-ч/(т-км), автомобиль - 0,51 кВт-ч/(т-км), поезд - 0,12 кВт-ч/(т-км).

Таким образом, один и тот же полезный эффект может быть достигнут при воздушном транспорте за счет в 60 раз больших затрат энергии, чем при железнодорожном. Конечно, большая затрата энергии дает существенную экономию во времени, но даже и при одинаковой скорости (автомобиль и поезд) затраты энергии различаются в 4 раза.

Этот пример говорит о том, что люди часто поступаются энергетической экономичностью ради достижения иных целей, например комфорта, скорости и т. п. Как правило, сама по себе энергетическая экономичность того или иного процесса нас мало интересует - важны суммарные технико-экономические оценки эффективности процессов. Но по мере удорожания первичных источников энергии энергетическая составляющая в технико-экономических оценках становится все более важной.

Всеобщий закон природы. Следовательно, он применим в том числе, и к электрическим явлениям. Рассмотрим два случая превращения энергии в электрическом поле:

  1. Проводники являются изолированными ($q=const$).
  2. Проводники соединены с источниками тока при этом не изменяются их потенциалы ($U=const$).

Закон сохранения энергии в цепях с постоянными потенциалами

Допустим, что имеется система тел, которая может включать в себя как проводники, так и диэлектрики. Тела системы могут совершать малые квазистатические перемещения. Температура системы поддерживается постоянной ($\to \varepsilon =const$), то есть тепло подводится к системе, или отводится от нее при необходимости. Диэлектрики, входящие в систему будем считать изотропными, плотность их положим постоянной. В этом случае доля внутренней энергии тел, которая не связана с электрическим полем изменяться не будет. Рассмотрим варианты превращений энергии в подобной системе.

На любое тело, которое находится в электрическом поле, действуют пондемоторные силы (силы, действующие на заряды внутри тел). При бесконечно малом перемещении пондемоторные силы выполнят работу $\delta A.\ $Так как тела перемещаются, то изменение энергии dW. Так же при перемещении проводников изменяется их взаимная емкость, следовательно, для сохранение потенциала проводников неизменным, необходимо изменять заряд на них. Значит, каждый из источников тора совершает работу равную $\mathcal E dq=\mathcal E Idt$, где $\mathcal E $ - ЭДС источника тока, $I$ -- сила тока, $dt$ - время перемещения. В нашей системе возникнут электрические токи, и в каждой ее части выделится тепло:

По закону сохранения заряда, работа всех источников тока равна механической работе сил электрического поля плюс изменение энергии электрического поля и тепло Джоуля -- Ленца (1):

В случае если проводники и диэлектрики в системе неподвижны, то $\delta A=dW=0.$ Из (2) следует, что вся работа источников тока превращается в тепло.

Закон сохранения энергии в цепях с постоянными зарядами

В случае $q=const$ источники тока не войдут в рассматриваемую систему, тогда левая часть выражения (2) станет равна нулю. Помимо этого, тепло Джоуля - Ленца возникающее за счет перераспределения зарядов в телах при их перемещении обычно считают несущественным. В таком случае закон сохранения энергии будет иметь вид:

Формула (3) показывает, что механическая работа сил электрического поля равна уменьшению энергии электрического поля.

Применение закона сохранения энергии

Используя закон сохранения энергии в большом количестве случаев можно рассчитать механические силы, которые действуют в электрическом поле, при чем сделать это порой существенно проще, чем, если рассматривать непосредственное действие поля на отдельные части тел системы. При этом действуют по следующей схеме. Допустим необходимо найти силу $\overrightarrow{F}$, которая действует на тело в поле. Полагают, что тело перемещается (малое перемещение тела $\overrightarrow{dr}$). Работа искомой силы равна:

Пример 1

Задание: Вычислите силу притяжения, которая действует между пластинами плоского конденсатора, который помещен в однородный изотропный жидкий диэлектрик с диэлектрической проницаемостью $\varepsilon $. Площадь пластин S. Напряжённость поля в конденсаторе E. Пластины отключены от источника. Сравните силы, которые действуют на пластины при наличии диэлектрика и в вакууме.

Так как сила может быть только перпендикулярна пластинам, то перемещение выберем по нормали к поверхности пластин. Обозначим через dx перемещение пластин, то механическая работа будет равна:

\[\delta A=Fdx\ \left(1.1\right).\]

Изменение энергии поля при этом составит:

Следуя уравнению:

\[\delta A+dW=0\left(1.4\right)\]

Если между пластинами находится вакуум, то сила равна:

При заполнении конденсатора, который отключен от источника, диэлектриком напряженность поля внутри диэлектрика уменьшается в $\varepsilon $ раз, следовательно, уменьшается и сила притяжения пластин во столько же раз. Уменьшение сил взаимодействия между пластинами объясняется наличием сил электрострикции в жидких и газообразных диэлектриках, которые расталкивают пластины конденсатора.

Ответ: $F=\frac{\varepsilon {\varepsilon }_0E^2}{2}S,\ F"=\frac{\varepsilon_0E^2}{2}S.$

Пример 2

Задание: Плоский конденсатор частично погружен в жидкий диэлектрик (рис.1). При зарядке конденсатора жидкость втягивается в конденсатор. Вычислить силу f, с которой поле действует на единицу горизонтальной поверхности жидкости. Считать, что пластины соединены с источником напряжения (U=const).

Обозначим через h- высоту столба жидкости, dh - изменение (увеличение) столба жидкости. Работа искомой силы при этом будет равна:

где S -- площадь горизонтального сечения конденсатора. Изменение электрического поля равно:

На пластины перейдет дополнительный заряд dq, равный:

где $a$ -- ширина пластин, учтем, что $E=\frac{U}{d}$ тогда работа источника тока равна:

\[\mathcal E dq=Udq=U\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)adh=E\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)d\cdot a\cdot dh=\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh\left(2.4\right).\]

Если считать, что сопротивление проводов мало, то $\mathcal E $=U. Используем закон сохранения энергии для систем с постоянным током при условии постоянства разности потенциалов :

\[\sum{\mathcal E Idt=\delta A+dW+\sum{RI^2dt\ \left(2.5\right).}}\]

\[\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh=Sfdh+\left(\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\right)Sdh\to f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\ .\]

Ответ: $f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}.$

Закон сохранения энергии в конденсаторных схемах Задача 1  A  Q 0 W A  kмех  ист Вариант 1 При разомкнутом ключе К2 ключ К1 замыкают и после окончания переходных процессов размыкают. После этого замыкают ключ К2. Решение. По закону сохранения энергии изменение энергии в конденсаторе определяется соотношением мехA  ­ работа механических сил равна нулю, так как нет перемещений внутри конденсаторов. истA  ­ работа источника тока равна нулю, так как при замыкании ключа К2 ключ К1 разомкнут, источник тока отключен. Q  количество теплоты, которое выделяется при движении зарядов. W W кн Начальная и конечная энергии конденсаторов соответствуют соответственно разомкнутому и замкнутому ключу К2. Для начального состояния (конденсаторы заряжаются от источника тока): Q Q W W кк       0 кн кк Для конечного состояния (в схеме остаются только конденсатор С2 и параллельный ему конденсатор С3.). Заряды конденсаторов сохраняются., так как цепь разомкнута. q 23  2 Ec W кк   2 q 23 2 C 23  2 2 E c 4   2 (c 2) c  2 3 2 E c Подставляем энергии конденсаторов в соотношение для Q и получим ответ. 2 Q E c   Вариант 2. 2 3 2 E c  1 3 2 E c  2 c C o  q o  W кн  2) c 2 c Ec 2 1    () C C C 6 (c c 3     c C C C c 6 3 2 1      q q q 2 E C 1 3  2 С U 2 с E о 2 2 cE 2 2 о   2 o кн  ист Q A kk  ист   kkкн  При разомкнутом ключе К2 ключ К1 замыкают и после окончания переходных процессов замыкают ключ К2. Решение. В этом случае ключ К2 замыкают под напряжением, источник тока остается подключенным постоянно, участвует в перезарядке конденсаторов, поэтому совершает работу. Закон сохранения энергии в этом случае принимает вид:  W W Q W W A Начальное состояние схемы такое же, как в варианте 1, поэтому начальные заряды и энергия конденсаторов соответствуют рассчитанным. В конечном состоянии после замыкания ключа К2 оставшиеся параллельно соединенные конденсаторы С2 и С3 будут заряжаться (дозаряжаться) от источника тока. C q ok     c C C 3 2 ok    3 Ec E C ok 2 2 C E 3 E c ok 2 2 Работа источника тока: E q E q A (ист ok Подставляем энергии конденсаторов в соотношение для Q и получим ответ.       E (3 Ec  2 Ec)  q oн)  2 E c 2 c  3 c W kk   2 Q E c   2 2 E c E c   2 E c 3 2 1 3 Одинаковый ответ в первом и втором варианте – это не закономерность, а случайность. Задача 2 В исходном состоянии для схемы рис.2 С1=2С, С2=3С, э.д.с. источника тока равна E. В плоском воздушном конденсаторе С1 с помощью внешней силы пластины очень быстро раздвинули, увеличив расстояние между пластинами в 2 раза. Какое количество теплоты выделится в схеме в последующем переходном процессе? Решение. При быстром движении пластины против силы Кулона заряд пластин сохраняется, сила Кулона совершает отрицательную работу, а внешняя сила – положительную работу. Вторая пластина двигается в поле первой пластины, электроемкость первого конденсатора уменьшается в 2 раза. A мех  F k   dЕ q 1 2 q   d q н 1  2 S 0  2 н d 2 q d   1 н  2 S 0 2 q  1 н 2 C н Для начального состояния (до начала движения) : C 0 н  1 н  С C 2  C C 2 1 н  q 0 н  q 1 н  q 2 н   2 3 c c  3 2 c c Ec 6 5   6 5 c A мех  2 2 36 E c  25 2  0,72 2 E c W кн  2 6 сE  5 2  0,6 2 E c Так как электроемкость С1 уменьшилась быстро, то при последующем переходном процессе напряжение на нем должно увеличиваться, поэтому для того чтобы сумма напряжений на С1 и С2 оставалась равна E, заряд будет уходить в источник тока, значит, источник тока будет совершать отрицательную работу. Для конечного состояния:  3 c c  3 c c  C C 2  C C 1 3 4 C 0    c 1 k 2 k k k н 0 2 2 ()       E q 0 W кк A ист (E q 0 3 cE  2 4 C E k 2 3 4 3 8 Закон сохранения энергии W W Q Q W W AА Задача 3  kkкн    мех  kkкн  ист  мех   ист AА cE Ec  6 5 Ec)   9 20 2 E c   0, 45 2 E c 2  0,375 cE 2   (0,375 0,6 0,72 0, 45) E c    2  0, 495 E c 2 В исходном состоянии для схемы рис.3 С1= С2=С, э.д.с. источника тока равна E. В плоском воздушном конденсаторе С1 с помощью внешней силы пластины очень быстро cдвинули, уменьшив расстояние между пластинами в 2 раза. Какое количество теплоты выделится в схеме в последующем переходном процессе? Решение. Для начального состояния:    с с  2 CС oн с 2 qЕ С он   сЕ W он  2   кн 2  С 1 н 2 сE  сЕ 2 2 При быстром перемещении пластин конденсатора все заряды сохраняются, а электроемкость первого конденсатора увеличивается в 2 раза. При этом для постоянства разности потенциалов на источнике тока необходим больший заряд, поэтому в последующем переходном процессе заряд потечет от источника тока, и источник тока будет совершать положительную работу. 2 c сЕ)     qсЕ c ок  3 c 2 3 C oк  сЕ    2 C c 1 к  2 (3 AЕ сЕ ист 2 3 сЕ 2 W кк  A мех   2 q 1 н  2 S oн d  н 2 2 q   1 н 4 Cс 1   2 2 Е с 4 2   сЕ 4 Так как сила Кулона совершает отрицательную работу, то внешняя сила – положительную работу при перемещении на расстояние   Q W WА кк кн Задача 4  А ист   сЕ мех 2 нd 1 2  cЕ 1,5 .  2 сЕ 2  0,25 cЕ 2  0,25 cЕ 2 1 01 02 0   Решение. Данная задача с ненулевыми начальными условиями и особенность ее в том, что при замыкании ключа К суммарный заряд правой пластины конденсатора C1 и левой пластины конденсатора С2 неравен нулю:  ­ для согласного включения конденсаторов q U C U C 0 2 (полярности так, как на рисунке 4). Этот заряд будет сохраняться (по закону сохранения электрического заряда) при любых последующих переходных процессах. Так как схема подключена к источнику тока, то при замыкании ключа К заряды конденсаторов (правых пластин) изменятся и будут равны после переходного процесса q1 и q2 , а напряжения U1 и U2. Эти заряды и напряжения должны соответствовать закону сохранения заряда и соотношению напряжений при последовательном согласном включении. Получаем систему двух уравнений. Если бы конденсатор С2 был включен встречно (по полярности), то знаки и q2, и U2 изменились бы на противоположные. 1 U U q q 2 1    2  E  q 0  q q 1 2 C C 1 q q 1  2 2  E  q 0 q C 1 2  (q 1  q C EC C 0 2)  1 1          Находим заряды конденсаторов. q 1  q 2  EС С q C 1 0 EС С U C U C C 2 02 1 2   EС С q C 2 0 EС С U C U C C 2 01 2  1  1 2  C C 2  1 2  C C 2 1 1 1  2  01  2 1 C C 2 2 01  C C q p , то есть 0 1 1 2 1  q p или 0 Из соотношений ясно, что возможны ситуации, когда конденсаторы в результате переходного процесса могут перезарядиться на противоположные полярности. Работа источника тока (для положительного полюса) : истAЕ q   2 1 2   q 2 q 2  q 02  Можно показать, что EC C U C U C C 1 01 1 2   2 02 2  C C 1    q q 2 1 2 2  U C 2 02  EC C U C C U C C 1 01 1 2   02 2 C C 1 1  2 2 Энергия конденсаторов для начального состояния: W W W н 1 н   н  2 2 01 С U 1 2  2 02 С U 2 2 Для конечного состояния: W k  2 q 2 2 C 2  2 q 1 2 C 1  2 C U об 2 об Следует отметить, что W k  , так как при ненулевых начальных условиях общий заряд неравен зарядам последовательно соединенных конденсаторов. Определим значение выделившейся теплоты при следующих численных значениях: C1=c, С2=3с, E= 8 в, U01 =4 в, U02 =2 в. q 0 q 1   q  4 8       2 3 2 c c c     3 2 c 11 c c c     3 c 2 c      4 c 3 3 c c c 4 c 14    2 c  3 c q 2 8 c   8 c   3 c 4 c  c 2 3 c   15 2 c 3 2 c Wс н W k  2 с   16 2 11 (2   8 1,5 c   c)  3 4 с 2  2 c  12 c  A ист Q W W Aс ист н к Задача 5. 15 c (2 2)  2 3 c  121 c 8  75 c 8  24,5 c  14  c 24,5 c  12 c  1,5 2 1    E U U , поэтому заряды ни от источника, ни к источнику не потекут Решение. 1. Теплота выделяется только в том случае, когда происходит перераспределение зарядов, т.е. течет ток. При размыкании ключа это может произойти только от источника тока. Разность потенциалов между точками А и В при этом не изменяется так как АВU (заряды могут перетекать, если потенциал положительного полюса источника тока неравен потенциалу т.В, а потенциал отрицательного полюса источника неравен потенциалу т.А). Значит, заряды конденсаторов не изменятся, работа источника тока равна нулю, поэтому теплота при размыкании ключа выделяться не будет. 2. Неизменность зарядов конденсаторов можно доказать, используя закон сохранения заряда для средней точки схемы.  Для начального состояния:     2 q 1 н q 23 C он q он  С С С) 1 3  С С С 1 3 ( 2 EC 1   C C C 3 1 2 2)  (EС С С 3 1   С С С 1 3 EC C 3    C C C 3 1 1 2 2 q 23  (C C U    U ) 23 23 2 3   q 3 н C U 3 23 Так как при размыкании ключа отключается левая пластина конденсатора С3 от средней точки, то с ней уходит и ее отрицательный заряд q3н. Поэтому по закону сохранения заряда для средней точки получим: q 1  q 2  q 3 н  1 EC C 3   C C C 3 1 2 Решая это уравнение совместно с уравнением для напряжений при последовательном соединении U U  1 2    E q q 2 1 C C 1 2  E , можно определить q1 и q2 ­ установившиеся после переходного процесса заряды конденсаторов. Получим q 1 )  EС С С 3  С С С 1 3 (1  2 2 , значение которого равно q1н, что означает, что перераспределения зарядов при размыкании ключа происходить не будет.

Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется.

Закон сохранения энергии - фундаментальный закон природы, заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Закон сохранения энергии

В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойтинга.

Изменение электромагнитной энергии, заключенной в неком объеме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объем, и количеству тепловой энергии, выделившейся в данном объеме, взятой с обратным знаком.

$ \frac{d}{dt}\int_{V}\omega_{em}dV=-\oint_{\partial V}\vec{S}d\vec{\sigma}-\int_V \vec{j}\cdot \vec{E}dV $

Электромагнитное поле обладает энергией, которая распределяется в пространстве, занятом полем. При изменении характеристик поля меняется и распределение энергии. Она перетекает из одной области пространства в другую, переходя, возможно, в другие формы. Закон сохранения энергии для электромагнитного поля является следствием полевых уравнений.

Внутри некоторой замкнутой поверхности S, ограничивающей объем пространства V , занятого полем, содержится энергия W — энергия электромагнитного поля:

W = Σ(εε 0 E i 2 / 2 + μμ 0 H i 2 / 2) ΔV i .

Если в этом объеме имеются токи, то электрическое поле производит над движущимися зарядами работу, за единицу времени равную

N = Σ i j̅ i ×E̅ i . ΔV i .

Это величина энергии поля, которая переходит в другие формы. Из уравнений Максвелла следует, что

ΔW + NΔt = -Δt S S̅ × n̅ . dA,

где ΔW — изменение энергии электромагнитного поля в рассматриваемом объеме за время Δt, а вектор = × называется вектором Пойнтинга .

Это закон сохранения энергии в электродинамике .

Через малую площадку величиной ΔA с единичным вектором нормали за единицу времени в направлении вектора протекает энергия × n̅ . ΔA, где — значение вектора Пойнтинга в пределах площадки. Сумма этих величин по всем элементам замкнутой поверхности (обозначена знаком интеграла), стоящая в правой части равенства , представляет собой энергию, вытекающую из объема, ограниченного поверхностью, за единицу времени (если эта величина отрицательна, то энергия втекает в объем). Вектор Пойнтинга определяет поток энергии электромагнитного поля через площадку, он отличен от нуля всюду, где векторное произведение векторов напряженности электрического и магнитного полей отлично от нуля.

Можно выделить три главных направления практического применения электричества: передача и преобразование информации (радио, телевидение, компьютеры), передача импульса и момента импульса (электродвигатели), преобразование и передача энергии (электрогенераторы и линии электропередачи). И импульс, и энергия переносятся полем через пустое пространство, наличие среды приводит лишь к потерям. Энергия не передается по проводам! Провода с током нужны для формирования электрического и магнитного полей такой конфигурации, чтобы поток энергии, определяемый векторами Пойнтинга во всех точках пространства, был направлен от источника энергии к потребителю. Энергия может передаваться и без проводов, тогда ее переносят электромагнитные волны. (Внутренняя энергия Солнца убывает, уносится электромагнитными волнами, в основном светом. Благодаря части этой энергии поддерживается жизнь на Земле.)

Закон сохранения энергии

В механике закон сохранения энергии утверждает, что в замкнутой системе частиц, полная энергия, которая является суммой кинетической и потенциальной энергии и не зависит от времени, то есть является интегралом движения. Закон сохранения энергии справедлив только для замкнутых систем, то есть при отсутствии внешних полей или взаимодействий.

Силы взаимодействия между телами, для которых выполняется закон сохранения механической энергии называются консервативными силами. Закон сохранения механической энергии не выполняется для сил трения, поскольку при наличии сил трения происходит преобразование механической энергии в тепловую.

Математическая формулировка

Эволюция механической системы материальных точек с массами \(m_i\) по второму закону Ньютона удовлетворяет системе уравнений

\[ m_i\dot{\mathbf{v}_i} = \mathbf{F}_i \]

где
\(\mathbf{v}_i \) — скорости материальных точек, а \(\mathbf{F}_i \) — силы, действующие на эти точки.

Если подать силы, как сумму потенциальных сил \(\mathbf{F}_i^p \) и непотенциальных сил \(\mathbf{F}_i^d \) , а потенциальные силы записать в виде

\[ \mathbf{F}_i^p = - \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

то, домножив все уравнения на \(\mathbf{v}_i \) можно получить

\[ \frac{d}{dt} \sum_i \frac{mv_i^2}{2} = - \sum_i \frac{d\mathbf{r}_i}{dt}\cdot \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_i^d \]

Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

\[ E = \sum_i \frac{mv_i^2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

и назвать эту величину механической энергией , то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

\[ E(t) - E(0) = \int_L \mathbf{F}_i^d \cdot d\mathbf{r}_i \]

где интегрирование проводится вдоль траекторий движения материальных точек.

Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.