Анализ описание классификация моделирование синтез. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания – анализ и синтез, аналогия и сравнение, моделирование. Анализ и синтез

Анализ. Под анализом понимают разделение объекта (мыслен­но или реально) на составные части с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, при­знаки, отношения и т. п. Анализ - необходимый этап в познании объекта.

В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т. п.) изу­чаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает про­стого механического соединения разъединенных элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность, т. е. позволяет понять подлин­ное диалектическое единство изучаемого объекта.

Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т. е. в теоретиче­ском познании, Но и здесь, как и на эмпирическом уров­не познания, анализ и синтез - это не две оторванные друг от друга операции.

Аналогия – метод познания, позволяющий на основе сходства объектов по одним признакам сделать вывод об их сходстве по другим. Аналогию называют выводом от единичного к единичному или от частного к частному.

Близким к аналогии является метод сравнения , позволяющий установить не только сходство, но и различие предметов и явлений. Аналогия и сравнение не обладают большими объяснительными ресурсами, однако помогают установить дополнительные связи и отношения объекта. Аналогия и сравнение позволяют выдвигать новые гипотезы и тем самым способствуют развитию научного знания.

Моделирование – это оперирование объектом, который является аналогом другого, по каким-то причинам недоступного для манипуляций. Благодаря моделированию можно проникнуть в недоступные свойства объекта, используя его аналог. На основе знания, полученного с помощью модели, делают вывод о свойствах оригинала. В основе моделирования лежит прием аналогии.

Этические принципы научных исследований:

Самоценность истины

Исходный критицизм

Свобода научного творчества

Новизна научного знания

Равенство ученых перед лицом истины

Общедоступность истины

Биоэтика – направление на границе науки и системы человеческих ценностей. Изучает комплекс проблем, связанных с любым вмешательством в жизнедеятельность живых систем (трансплантация, генная инженерия, реаниматология, новые репродуктивные технологии, статус человеческого эмбриона, проблема человеческой смерти, в т.ч. эвтаназия)

Псевдонаучная деятельность (алхимия, астрология и т. п.) предшествовала науке и в дальнейшем шла рядом с наукой. Современная псевдонаука, как и настоящая наука, весьма неоднородна по составу. Сюда входят различные эзотерические, мистические учения, практическая деятельность колдунов, магов, экстрасенсов. Эти учения, которые можно назвать паранаучными (от греч. para- «около»), на самом деле не нуждаются в научном обосновании. Научный статус, к которому они стремятся, нужен


только для повышения их рейтинга, авторитета. К таким псевдонаукам относятся парапсихология, биоэнергетика, учение о биополе, астрология и т. п. Псевдонаучные идеи возникают и в недрах настоящей науки, когда ученые «забывают» о научных методах, научной этике, пытаясь совершить научную революцию на пустом месте. Объектами изучения таких псевдоученых являются неопознанные летающие объекты (уфология), торсионные и информационные поля, лазерно-голографические свойства биологических объектов и другие проблемы так называемой девиантной науки .

Для СРС этапы становления – история развития КСЕ

Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через частности – основная проблема моделирования.

В основе общей методологии – сочетание методов анализа и синтеза. Синтез заключается в создании описания объекта, анализ – в определении свойств объекта по его описанию, т.е. при синтезе формируются, а при анализе оцениваются проекты объектов.

Единство анализа и синтеза относится ко всем отраслям знаний, в т.ч. к моделированию. Алгоритмов «анализа – синтеза» как известно, нет – определена только общая методология (как выполняются операции анализа и синтеза).

Взаимодействие элементов системы характеризуется прямыми и обратными связями. Сущность анализа системы состоит в том, чтобы выявить эти связи и установить их влияние на поведение всей системы в целом.

Анализ (от гр. analysis - разложение, расчленение) предполагает изучение поведения и свойств системы заданной структуры при взаимодействии с внешней средой (объект существует, необходимо исследовать его свойства - системный анализ, спектральный анализ, анализ крови и т.п.).

Цель исследований – качественная и количественная оценка свойств системы, различных стратегий управления процессами, характеристик элементов и их совокупностей. Основной процедурой анализа является построение обобщенной модели, адекватно отображающей интересующие исследователя свойства реальной системы и ее взаимосвязи. Характеристики процессов определяются как функции параметров системы.

Чтобы разобраться в системе, изучить, исследовать её (задача анализа), надо описать систему, зафиксировать ее свойства, поведение, структуру и параметры, то есть построить одну или несколько моделей.

Для этого надо ответить на три основные вопроса :

- что делает система (узнать поведение, функцию системы);

- как устроена система (выяснить структуру системы);

- каково качество системы (насколько хорошо она выполняет свои функции).

Описание объекта как системы

Между различными видами параметров, существует некоторая зависимость: выходные параметры объекта (а, значит, и его качество), зависят от входных воздействий, параметров внешней среды и от качества составляющих объект элементов (Х -параметров).

Такая зависимость представляется в аналитической форме и называется глобальной (интегративной) функцией объекта.

Существование глобальной функции ещё не означает, что она известна исследователю или проектировщику объекта - необходимо отыскать эту функцию.

Если глобальную функцию не удается представить в аналитической форме, для сложных объектов приводится алгоритмическое описание объекта (в виде поведенческой имитационной модели).

Основная операция анализа (неформальная) – декомпозиция (разделение целого на части). Применительно к построению структуры модели – определение состава модели (компонентов).

Компонент – любая часть предметной области, которая может быть выделена как некоторая самостоятельная сущность. Это и система (модель) в целом, и любая часть системы (модели) – подсистема, элемент.

Основная сложность декомпозиции – определение базовых (неделимых) моделей компонентов, соотношение моделей микро- и макроподхода. В основе декомпозиции – достижение компромисса между полнотой набора формальных моделей рассматриваемой системы и простотой – он может быть достигнут, если в модель включаются только модели компонентов, существенных по отношению к цели моделирования.

Примеры методов анализа - часто применяемые в математике аналитические методы: разложение функций в ряды, спектральный анализ, дифференциальное и интегральной исчисление и др.; в физике – методы молекулярной динамики; на производстве – конвейерная технология изготовления.

Основные положения технологии анализа

В системном анализе одними из наиболее важных критериев эффективности декомпозиции являются критерии полноты декомпозиции и ее простоты, которые прямо связаны с полнотой модели системы, взятой в качестве исходной при декомпозиции и целями ее построения.

Основная операция при анализе – разделение целого на части, т.е. декомпозиция – метод разложения системы на отдельные элементы, который может последовательно выполняться несколько раз.

При декомпозиции должен быть принят некий компромисс межу полнотой и простотой, достигаемый если в структурную модель включаются только элементы, существенные по отношению к цели анализа.

Укрупненный алгоритм декомпозиции

Число уровней декомпозиции (уровней древовидной структуры) определяется следующим образом.

Декомпозиция по каждой из ветвей древовидной структуры ведется до тех пор, пока не приведет к получению элементов системы, не требующих дальнейшего разложения. Такие составляющие называются элементарными.

Для определения элементарности используются как формализованные, так и не формализованные (экспертные) критерии.

Часть системы, которую нельзя считать элементарной на основании выбранных критериев, подлежит дальнейшей декомпозиции. Если исследователь не достиг элементарности на какой-либо ветви древовидной структуры, то вводятся новые элементы в модель, взятую в качестве основания, и декомпозиция продолжается по ним.

Процесс синтеза модели на основе системного подхода включает следующие этапы :

1. Формирование требований к модели системы исходя из цели исследований (определяется вопросами, на которые исследователь хочет получить ответы с помощью модели) на основе исходных данных, включающих назначение модели, условия работы системы, внешнюю среду для системы и накладываемые ограничения.

2.Определение подсистем модели исходя из действий системы, необходимых для выполнения назначения системы.

3.Подбор элементов подсистем модели на основе данных для их реализации.

4.Выбор составляющих элементов будущей модели.

Получившаяся таким образом модель является интегрированным целым.

Синтез предполагает создание структуры и характеристик системы, обеспечивающих заданные ей свойства .

Синтез системы включает :

Определение всех необходимых функций, позволяющих решить поставленную задачу;

Нахождение способов выполнения каждой функции (формирование подсистем);

Определение такой схемы взаимодействия подсистем, которая позволила бы выполнить поставленные задачи наилучшим образом.

Составленные в результате синтеза альтернативные варианты структурно-функциональных схем исследуются в процессе анализа – исследуются свойства предварительно разработанных вариантов проекта и эффективность каждого варианта.

Выходные параметры объекта (а, значит, и его качество), зависят от входных воздействий, параметров внешней среды и от качества составляющих объект элементов.

Основные положения технологии синтеза

Многообразие сфер применения сложных систем, возможных структур и стратегий управления процессами порождает огромное множество вариантов их построения, что приводит к невозможности решения задачи синтеза в общей постановке.

Полученная в результате декомпозиции (анализа) совокупность элементов кроме внешней целостности (т.е. определенной обособленности от окружающей среды, хорошо описываемой моделью «черного ящика») должна обладать внутренней целостностью.

Внутренняя целостность связана с моделью структуры системы, т.е. установлением отношений между элементами, выполнение которой называется операцией агрегирования – объединение нескольких элементов в единое целое. Результатом агрегирования (синтеза) является система, называемая агрегатом.

Свойства компонента не являются только совокупностью свойств его отдельных элементов. Компонент может обладать такими свойствами, которых нет ни одного из его элементов, взятых в отдельности, т.е. у компонента появляется новое качество, которое не могло появиться без этого объединения.

Примеры сложных систем

Космическая система наблюдения Земли как сложная техническая система

Задачи космической системы наблюдения Земли

Сейчас обостряются проблемы общемирового масштаба: сокращение запасов критически важных природных ресурсов, нарастание загрязнения и деградация среды обитания, увеличение количества природных и техногенных катастроф, глобальное потепление клиимата, рост терроризма и наркоторговли. Информационное обеспечение этих проблем – на основе оперативного сбора, обработки и предоставления пользователям необходимой информации - предоставляется космической системой глобального мониторинга Земли.

Сегодня в мире насчитывается десятки стран, участвующих в реализации программ космических наблюдений - уровень информатизации становится все более важным критерием оценки могущества и безопасности любого государства и важным средством выработки внутренней и внешней стратегии.

Современные задачи, решаемые космической системой наблюдения Земли :

Метеонаблюдения и анализ изменения климата на планете;

Поиск полезных ископаемых, нефтяных и газовых месторождений;

Анализ крупномасштабной динамики растительного покрова;

Мониторинг водных биологических ресурсов, наблюдение и контроль за деятельностью промысловых судов;

Анализ ледовой обстановки;

Контроль технического состояния промышленных комплексов;

Учет и мониторинг застройки города (контроль над земельными ресурсами и недвижимостью);

Оперативный прогноз и контроль чрезвычайных ситуаций природного и техногенного характера (мониторинг предвестников землетрясений, экологический обстановки, лесных пожаров).

Эти задачи определяют требования к средствам спутникового наблюдения: оперативное наблюдение, повышение разрешающей способности изображений, увеличение полосы съемки, освоение всех информативных диапазонов спектра электромагнитных излучений.

Основные современные тенденции развития спутникового наблюдения – переход на цифровые данные представления пространственной информации, а также на цифровые базы пространственных данных как основы для аналитической работы, связанной с моделированием объектов или процессов.

Возрастает важность военного аспекта – все больше стран хотят иметь цифровые карты все большей разрешающей способности (решение задач разведки и целеуказаний) и постоянно их обновлять.

Пространственные данные, привязанные к местности с помощью современных навигационных систем, выступают как основа для различной информации, и процесс ее обновления бесконечен.

Совместная европейская и американская система спутниковой навигации (Galileo и GPS) даст возможность определять координаты с точностью до 2-3 м в обычном режиме и до миллиметров в дифференциальном - с помощью дифференциальной станции(точно привязанный к местности приемник навигационных сигналов, который на определенной территории выдает поправку другим приемникам спутниковой навигации ).

Появились новые возможности - малые приемные станции и программные продукты, которые позволяют в режиме реального времени самостоятельно принимать сырые данные съемки и сразу их обрабатывать (что намного дешевле, чем приобретать обработанные снимки). Это особенно важно для некоторых оперативных задач, например при чрезвычайных ситуациях, при экологическом мониторинге или оперативном мониторинге производства (контроль технического состояния).

Большое развитие получают малые КА (массой до 150 кг), на основе которых в перспективе могут быть сформированы самостоятельные экономически эффективные многоспутниковые системы для сверхоперативного глобального наблюдения за наиболее быстро развивающимися природными и техногенными чрезвычайными ситуациями. Орбитальные системы на основе малых КА смогут обеспечить сочетание высоких характеристик информации с высокой оперативностью. Это стимулирует рост спроса на космическую информацию, что обеспечит высокий инвестиционный потенциал подобных проектов.

Система наблюдения Земли представляет собой сложную многофункциональную техническую систему - совокупность большого числа разнотипных элементов и разнородных связей между ними, объединенных для выполнения комплексных задач.

Система имеет цель, взаимосвязанные составные части образуют многоуровневую структуру и выполняют функции, направленные на достижение цели, имеет управление, благодаря которому все компоненты функционируют согласованно и целенаправленно.

Состав и структура космической системы наблюдения Земли

Космическая система наблюдения Земли может являться частью более обширной системы исследования природных ресурсов (в зависимости от задач системы), включающей космические, авиационные наземные, морские системы наблюдения.

Выделение конкретной системы из внешней среды является субъективным фактором и определяется целями проектирования.

Качество решения задач определяется параметрами системы и характеристиками входящих в космическую систему компонентов.

Космическая система наблюдения Земли – это совокупность функционально взаимосвязанных космических аппаратов и наземных технических средств, предназначенных для решения целевых задач. Структура системы представлена на рисунке 1.1, информационные потоки – на рисунке 1.2.

Основной функциональный элемент космической системы наблюдения Земли – космический аппарат (КА).

Космический аппарат как сложная техническая система имеет цель функционирования (наблюдение Земли и передача на Землю информации о результатах наблюдения), состоит из взаимосвязанных элементов, обеспечивающих выполнение цели системы, является элементом системы более высокого уровня (космической системы наблюдения Земли).

Внешней средой КА являются природное окружение (космическое пространство) и другие компоненты системы наблюдения Земли.

Структурно космический аппарат состоит из двух основных подсистем - полезной нагрузки – целевой аппаратуры (аппаратное и программное обеспечение, необходимые для получения требуемой информации) и платформы, обеспечивающей функционирование полезной нагрузки и передачу полученной информации на Землю (обслуживающая подсистема).

Состав целевой аппаратуры определяется задачами, возлагаемыми на космическую систему наблюдения Земли, и характеристиками объекта наблюдения (внешней средой).

Для получения данных о различных природно-хозяйственных объектах используются как пассивные (фотографические, оптико-механические и оптико-электронные, радиометрические, спектрометрические), так и активные (радиолокационные) системы в ультрафиолетовой (УФ), видимой (В), инфракрасной (ИК) и микроволновой (СВЧ, т.е. сверхвысокочастотной) областях спектра.

Платформа КА обеспечивает условия нормального функционирования полезной нагрузки: поддержание заданных параметров орбиты и ориентации КА, обеспечение требуемых условий функционирования аппаратуры (электропитание, тепловой режим), выдачу полезной нагрузке команд управления, сбор целевой и телеметрической информации и передача ее на Землю, обеспечение конструктивной целостности и жесткости.

Основные подсистемы платформы:

Система управления;

Система ориентации и стабилизации;

Система электроснабжения;

Командно-измерительная система;

Аппаратура спутниковой навигации;

Система ориентации солнечных батарей;

Корректирующая двигательная установка;

Конструкция (включая бортовую кабельную сеть, антенны, систему отделения и терморегулирования).

Общие требования к конструкции:

Минимальный собственный вес;

Обеспечение требуемых углов обзора датчиков информационной аппаратуры и системы ориентации;

Система раскрытия панелей солнечной батареи должна отвечать требованиям безопасности и надежности, а компоновка этих панелей – обеспечивать минимально возможный момент инерции на валу привода СОСБ для снижения массы и энергопотребления последнего;

Обеспечение минимальных возмущающих моментов от светового и аэродинамического давления;

Конструкция должна обеспечивать удобство проведения монтажных, испытательных и отладочных наземных работ, не затрудняя доступ к приборам и кабельной сети;

При размещении аппаратуры должно быть учтено условие минимизации протяженности кабельных связей для сокращения энергопотерь в проводах и обеспечения электромагнитной совместимости аппаратуры.

Наземная система (наземный сегмент) обеспечивает слежение за КА и управление ним, передачу команд приема и обработки информации полезной нагрузки и телеметрической информации, выдачу информации потребителям. Типовые компоненты наземного сегмента: комплекс управления, комплекс приема, обработки и распространения информации, центр планирования съемок, их архивации.

Если в состав системы наблюдения входит не один космический аппарат, то их совокупность образуют отдельную подсистему – орбитальную группировку. КА в этом случае создается на базе унифицированной космической платформы.

В состав космической системы наблюдения Земли могут входить и ракетно-космические комплексы для создания и поддержания орбитальной группировки системы.


Рисунок 1 Структура космической системы наблюдения Земли



Рисунок 2 Информационные потоки космической системы наблюдения Земли


Космическая система есть единый сложный многокомпонентный многофункциональный распределенный в практически неограниченном по объему трехмерном пространстве. Отдельные компоненты космических систем могут одновременно являться компонентами других систем.

Как кибернетическая система космическая система обладает следующими специфическими чертами:

Является распределенной;

обладает высокой степенью автоматизации, имеет высокий удельный вес информационной составляющей, техническое и технологическое разнообразие;

обладает высокой устойчивостью функционирования;

подсистемы функционируют в условиях неопределенности относительно внешней среды;

является перманентно развивающейся системой;

носит ярко выраженный инновационный характер.

С точки зрения теории систем орбитальная группировка является именно системой, а не просто совокупностью КА: задачи КА и орбитальной группировки принципиально различны. Один КА не способен обеспечить выполнение целевой задачи - выполнение целевой задачи космической системой может быть достигнуто только в результате совокупного функционирования КА.

Расположение элементов в пространстве не является случайным, задачи между КА строго распределены, функционирование отдельного КА в данный момент времени зависит от функционирования остальных КА и состояния всей системы, целевая информация от каждого отдельного КА включается в общий поток.

КА в орбитальной группировке находятся друг с другом в различных отношениях: по расположению в пространстве, по функциональным задачам и др. Орбитальная группировка представляет собой распределенный в пространстве искусственный многокомпонентный космический объект. Этот объект выполняет роль большой космической станции в космической системе.
Сложная социально-экономическая система.

Под экономической системой понимается любая система, в которой действуют стоимостные или натуральные товарные переменные.

В качестве экономической системы может выступать отдельная фирма; техническая или технологическая система, учитывающая стоимость технических средств или продукции; отрасль промышленности; экономика государства.

Экономическая система, в которой действуют социальные факторы, называется социально-экономической. В частности, любая макроэкономическая система государства или региона не может не включать социальный сектор и поэтому является социально-экономической 1 .

Международный стандарт ИСО 9000:2000 определяет организацию как группу работников и необходимых средств с распределением ответственности, полномочий и взаимоотношений.

Можно дать и другое определение: организация - это систематизированное, сознательное объединение действий людей, преследующих достижение конкретных целей.

Понятие «организация» раскрывает приведенная на рис. 1 модель технических терминов.

Рис. 1. Виды организаций, представленные с помощью модели технических терминов

Рис. 2. Связи системы-организации с внешней средой.

Создаваемая модель должна давать ответ на следующие вопросы:

Кто из сотрудников организации должен выполнять конкретные функции?

При каких условиях нужно выполнять функцию?

Что должен сделать сотрудник в рамках данной функции?

Каким образом следует ее выполнять?

Какие ресурсы при этом необходимы?

Каковы результаты выполнения функции?

Какие информационные средства нужны?

Каким образом все это согласовать?

Как все это можно осуществить наиболее эффективно?

Как можно изменить или построить бизнес-процесс?

Как снизить риск и повысить эффективность изменений?

2 ПОСТРОЕНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения

Никакое определение не может в полном объеме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты.

Желательно найти такое определение математической модели, которое давало бы возможность классифицировать (охватывать) все существующие и вновь создаваемые модели. Остановимся на формулировке математической модели, которая отражает ее целевую сущность исходя из понятия математического моделирования как процесса построения модели и исследований с ее помощью.

Термин «математическое моделирование» охватывает методологически малосвязанные разработку модели и ее использование. Иногда моделированием называется каждый из этих двух этапов в отдельности.

Математическое моделирование - это способ исследования различных процессов путем изучения явлений, имеющих различное физическое содержание, но описываемых одинаковыми математическими соотношениями.

Один из аспектов математического моделирования как способа познания - изучение системы, явления с помощью вычислительного эксперимента (в таком понимании термин "вычислительный эксперимент" может быть синонимом термина "математическое моделирование").

Многие задачи исследования систем трудно достаточно хорошо формализовать и свести к математическим моделям, позволяющим ставить и решать поставленные задачи. Непонимание (или неумение четко поставить задачу) часто приводит к «победе математики над разумом». Системный исследователь должен уметь формализовать в математических терминах конкретную задачу исследований - разработать математическую модель.

Практически математическое моделирование как метод исследований не имеет ограничений, так как:

Моделирующая система может одновременно содержать описания элементов непрерывного и дискретного действия,

Быть подверженной влиянию многочисленных случайных факторов сложной природы;

Допустимо описание системы соотношения большой размерности; обеспечивается простота перехода от одной задачи к другой введением переменных параметров, возмущений и различных начальных условий.

Математическая модель как средство познания, исследования реального мира формируется на основании общей методологии системных исследований .

Среди многих подходов к построению систем можно выделить два основных (подходы «снизу» и «сверху») – стремление изучить реально существующие системы и на основании этого сделать выводы о наблюдаемых закономерностях (подход Л. Берталанфи), и рассматривать множество всех мыслимых систем, сокращая его до рациональных пределов (подход У. Эшби).

Математическое моделирование как один из видов знакового моделирования представляет собой формальное описание объекта на языке математики, и исследование модели с помощью математических методов.

Математическое моделирование - процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта.

Математические модели относятся к знаковым моделям.

Математическая модель – описание в виде математических соотношений (например, формул, уравнений, неравенств, логических условий, операторов) состояния, изменения, протекания процессов в системе или явлении (в том числе функционирования системы), в зависимости от параметров системы, входных сигналов, начальных условий и времени.

Математическая модель - это „эквивалент“ объекта, отражающий в математической форме важнейшие его свойства - законы, которым он подчиняется, связи, присущие составляющим его частям.

Математическая модель - абстрактное математическое представление процесса, устройства или теоретической идеи; оно использует набор переменных, чтобы представлять входы, выходы и внутренние состояния, а также множества уравнений и неравенств для описания их взаимодействия. (Определение основано на идеализации «вход - выход - состояние», заимствованной из теории автоматов).

Наконец, наиболее лаконичное определение математической модели: уравнение, выражающее идею.

Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, требуемой достоверности и точности решения этой задачи. Математическая модель отражает именно те особенности, которые необходимо исследовать для решения поставленной задачи.

Обычно математическая модель только приближенно описывает поведение реальной системы, являясь ее абстракцией, так как знания о реальной системе никогда не бывают абсолютными, а гипотезы часто вынужденно или намеренно не учитывают некоторые факторы.

Для поддержки математического моделирования разработаны компьютерные системы моделирования , например, Matlab, Matcad и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Основное качество математических моделей - "вариантность ". Одним знаковым описанием кодируются физически различные системы, явления. На одной и той же модели могут быть изучены большое число вариантов её поведения (путем изменения параметров).

Универсальность моделей : принципиально разные реальные явления могут описываться одной и той же математической моделью. Например, колебательные процессы, имеющие совершенно разную природу описываются одинаковой математической моделью - мы изучаем сразу целый класс описываемых ею явлений.

Основная задача математического моделирования : по заданным входным параметрам найти значения выходных параметров системы (отобразить некоторое заданное множество X значений входных параметров x на множество Y значений выходных параметров y).

Модель - закономерность, преобразующая входные значения в выходные: Y = M (X ). Под этим можно понимать таблицу, график, выражение из формул, закон (уравнение) и т. д. Это вопрос способа записи закономерности. Y - некоторый интересующий исследователя показатель.

На этом основании при определении понятия "математическая модель" используется широкое понятие оператора – функция, алгоритм, совокупность правил, обеспечивающие установление выходных параметров по заданным входным параметрам.

Математическую модель можно рассматривать как некоторый математический оператор и сформулировать понятие математической модели следующим образом.

Математическая модель – любой оператор (правило) А , позволяющий по значениям входных параметров x установить соответствующие выходные значения параметров y системы:

А: x → y, x ÎX, y ÎY.

Такое широкое определение включает в себя не только все многообразие математических моделей, но и информационные модели – процедуру поиска данных в базе данных можно представить в виде некоторого оператора. В таком контексте информационная модель – специфическая форма математической модели.

Основные понятия в моделировании систем определяются из соответствия аналогичным понятиям системы: элемент системы, связь, внешняя среда.

Моделирование как метод исследования имеет следующую структуру: постановка задачи, создание модели, исследование модели, перенос знания с модели на оригинал.

Математика – наука, изучающая схемы моделей безотносительно к их конкретному воплощению и методы (способы) использования моделей для решения конкретных задач. Требования обеспечения математической строгости в системных исследованиях нереальны (претензии на абсолютную истину), основа системных исследований – неформальное упрощение задачи, адекватное поставленным целям.

Из этого следует множественность моделей одного объекта : для каждой цели требуется своя модель одного и того же объекта (множественность моделей одного объекта, пример – модели самолета для исследований аэродинамики, прочности).

Модель может быть сосредоточена на функциях системы (функциональная модель) или на ее объектах (модели данных).

Функциональные модели выделяют события в системе, представляют с требуемой степенью детализации систему функций, которые в свою очередь отражают свои взаимоотношения через объекты системы.

Модели данных выделяют объекты системы, которые связывают функции между собой и с их окружением и представляют собой подробное описание объектов системы, связанных системными функциями.

Научные методы теоретического исследования.

1. Теоретический анализ и синтез. Элементный анализ. Анализ по единицам.

2. Методы абстрагирования и конкретизации. Восхождение от абстрактного к конкретному.

3. Метод моделирования.

4. Мысленный эксперимент как вид моделирования.

5. Индукция и дедукция.

6. Формализация.

7. Гипотетико-дедуктивный метод, его сущность.

8. Аксиоматический метод.

Теоретический уровень научного познания отражает явления и процессы со стороны их универсальных внутренних связей и закономерностей, достигается это путем рациональной обработки данных эмпирического уровня знания. Поэтому в нем задействованы все формы мышления - понятия, суждения, умозаключения, общелогические методы, а также методы, связанные с мыслительными операциями абстрагирование, идеализация, формализация и пр.

Назначение теоретического уровня не только в том, чтобы установить факты и вскрыть внешние связи между ними, но и в том, чтобы объяснить, почему они существуют, что их вызвало, в выявлении возможностей их преобразования.

Теоретические методы (и в этом их недостаток) не оказывают непосредственного влияния на многообразие наблюдаемых фактов, однако позволяют обнаружить в фактах скрытые закономерности, общее, необходимое, существенное, понять взаимовлияние определяющих развитие факторов.

Истины, которые выявляются методами теоретического исследования, - это теоретические истины, проверяемые непосредственно не опытным, практическим путем, а доказательством. В обосновании теоретических истин практика принимает участие косвенным образом, через истины, уже до того проверенные. Это обусловлено составом данного метода.

Важнейшее отличие теоретического знания от эмпирического состоит в том, что оно дает возможность переносить выводы, полученные в одних условиях и на основе анализа одних объектов, на другие условия и объекты, в том числе и еще не существующие, проектируемые, созидаемые пока мысленно, в воображении.

Перейдем к характеристике методов теоретического исследования (познания).

Теоретический анализ и синтез. Элементный анализ. Анализ по единицам.

Своеобразие метода теоретического анализа и синтеза в его универсальных возможностях рассматривать явления и процессы действительности в их самых сложных сочетаниях, выделять наиболее существенные признаки и свойства, связи и отношения, устанавливать закономерности их развития.

Анализ (греч. – разложение, расчленение) – разделение объекта на составные части с целью их самостоятельного изучения.

Задача анализа состоит в том, чтобы из различного рода данных, отражающих отдельные явления и факты, составить общую целостную картину процесса, выявить присущие ему закономерности, тенденции .

Особого внимания заслуживает характеристика анализа с позиций диалектики, где он рассматривается как специальный прием исследования явлений и выработки теоретических знаний об этих явлениях. Основная познавательная задача диалектического анализа состоит в том, чтобы из многообразия сторон изучаемого предмета выделить его сущность не путем механического расчленения целого на части, а путем выделения и изучения сторон основного противоречия в предмете, обнаружить основу, связывающую все его стороны в единую целостность, и вывести на этой основе закономерность развивающегося целого.

В социальной работе анализ выступает как метод или способ познания социальной действительности.

Анализ применяется как в реальной (практика), так и в мыслительной деятельности. Различают несколько видов анализа:

Механическое расчленение;

Определение динамического состава;

Выявление форм взаимодействия элементов целого;

Нахождение причин явлений;

Выявление уровней знания и его структуры;

Анализ по элементам (элементарный) и анализ по единицам.

Элементарный анализ – это мысленное выделение отдельных частей, связей на основе декомпозиции, расчленения целого. Скажем, при изучении реальных социальных процессов, явлений, противоречий, совокупностей, которые содержат противоречия и порождают проблемную ситуацию, можно для анализа вычленить отдельно их цели, содержание, внешние условия, технологию, организацию, систему взаимоотношений его субъектов.

Анализ по единицам предполагает расчленение процесса с сохранением целостности его элементарных структурных элементов, каждый из которых удерживает важнейшие признаки целостного процесса. В деятельности клиента специалиста социальной работы это может быть поступок, в социально-педагогическом проектировании – социальная ситуация развития личности.

После выполнения аналитической работы возникает необходимость синтеза, интеграции результатов анализа в общей системе.

Синтез (греч. – соединение, сочетание, составление) – объединение реальное или мысленное различных сторон, частей предмета в единое целое.

В словаре русского языка С.И. Ожегова синтез трактуется как метод исследования какого-нибудь явления в его единстве и взаимной связи частей, обобщение, сведение в единое целое данных, добытых анализом .

Таким образом, синтез следует рассматривать как процесс практического или мысленного воссоединение целого из частей или соединение различных элементов, сторон предмета в единое целое, необходимый этап познания .

Результатом синтеза является совершенно новое образование, свойства которого не есть только внешнее соединение свойств компонентов, но также и результат их внутренней взаимосвязи и взаимозависимости.

Анализ и синтез диалектически взаимосвязаны. Они играют важную роль в познавательном процессе и осуществляются на всех его ступенях.

С методами анализа и синтеза теснейшим образом связаны методы абстрагирования и конкретизации.

2. Абстрагирование (лат. – отвлечение) - мысленное отвлечение какого-либо свойства или признака предмета от других его признаков, свойств, связей ( понятие для исследований в социальной работе).

Это делается для того, чтобы глубже изучить предмет, изолировать его от других предметов и от других свойств, признаков.

Чтобы проникнуть в сущность социальных явлений, выявить инвариантные черты исследуемого процесса, необходимо выделить предмет изучения в «чистом» виде, суметь отмежеваться от всех побочных влияний, абстрагироваться от всех многочисленных связей и отношений, которые мешают увидеть наиболее существенные связи и характеристики, интересующие нас как исследователей.

К примеру, чтобы выявить воспитательный потенциал социума, можно на 1-м этапе отвлечься от условий социально-экономического кризиса, политической борьбы, педагогической несостоятельности многих семей и рассмотреть в «чистом» виде (без помех, тормозящих влияний) воспитательные возможности семьи, школы, учреждений культуры, органов правопорядка, властных и коммерческих структур, общественных организаций.

Существуют различные виды абстракций:

абстракция отождествления , в результате которой выделяются общие свойства и отношения изучаемых методов (от остальных свойств при этом отвлекаются). Здесь образуются соответствующие им классы на основе установления равенства предметов в данных свойствах или отношениях, осуществляется учет тождественного в предметах и происходит абстрагирование от всех различий между ними;

изолирующая абстракция – акты так называемого “чистого отвлечения” при котором выделяются некоторые свойства и отношения, которые начинают рассматриваться как самостоятельные индивидуальные предметы (“абстрактные предметы” – “доброта”, “эмпатия” и т. п.);

абстракция актуальной бесконечности в математике – когда бесконечные множества рассматриваются как конечные. Тут исследователь отвлекается от принципиальной невозможности зафиксировать и описать каждый элемент бесконечного множества, принимая такую задачу как решенную;

абстракция потенциальной осуществимости – основана на том, что может быть осуществлено любое, но конечное число операций в процессе математической деятельности.

Абстракции различаются также по уровням (порядкам). Абстракции от реальных предметов называются абстракциями первого порядка. Абстракциями от абстракций первого уровня называются абстракциями второго порядка и т. д. Самым высоким уровнем абстракции характеризуются философские категории.

Предельным случаем абстракции является идеализация . Идеализация – это мысленное конструирование понятий об объектах, не существующих и не осуществимых в действительности, но таких, для которых имеются прообразы в реальном мире.

В основу абстрагирования при идеализации берутся связи и качества явлений, принципиально существующие или возможные, но абстрагирование проводится настолько последовательно, предмет настолько полно изолируется от сопутствующих условий, что создаются объекты, не существующие в реальном мире.

То есть в процессе идеализации происходит предельное отвлечение от всех реальных свойств предмета и одновременно вводится в содержание образуемых понятий признаки, не реализуемые в действительности. В результате образуется так называемый “идеализированный объект”, которым может оперировать теоретическое мышление при отражении реальных объектов.

Однако именно эти идеализированные объекты служат моделями, позволяющими гораздо глубже и полнее выявить некоторые связи и закономерности, которые проявляются во многих реальных объектах.

Метод конкретизации по своей логической природе противоположен абстрагированию. Он заключается в мысленной реконструкции, воссоздании предмета на основе вычлененных ранее абстракций.

Конкретизация, направленная на воспроизведение развития предмета как целостной системы, становится особым методом исследования. Мышление из выделенных отдельных абстракций концентрирует цельный предмет. В результате получается конкретное, но уже мысленно-конкретное (в отличие от реального конкретного, существующего в действительности).

Конкретным здесь называется единство многообразия, сочетание многих свойств, качеств предмета.

Абстрактным, наоборот, - односторонние, изолированные от других моментов развития свойства или характеристики данного предмета.

Особым методом теоретического познания является метод восхождения от абстрактного к конкретному , направлен на воспроизведение развития и его источников.

Он необходим как для познания сложных процессов, так и для такого изложения результатов познания, которое позволило бы наиболее адекватно воспроизвести развитие и функционирование сложных объектов.

3. Моделирование – метод исследования объектов познания на их моделях. Он предполагает построение и изучение моделей реально существующих предметов и явлений.

Потребность в моделировании возникает тогда, когда исследование самого объекта невозможно, затруднительно, дорого, требует слишком длительного времени и т. д.

Между моделью и оригиналом должно существовать известное сходство (отношение подобия): физических характеристик, функций; поведения изучаемого объекта и его математического описания; структуры и др. Именно это сходство и позволяет переносить информацию, полученную в результате исследования модели, на оригинал.

В зависимости от характера используемых в научном исследовании моделей различаются несколько видов моделирования.

1. Физическое (материальное, предметное): характеризуется физическим подобием между моделью и оригиналом, его цель - воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих в естественных («натуральных») условиях. Пренебрежение результатами такого моделирования может иметь тяжкие последствия. Примером служит история с английским кораблем-броненосцем «Кэптэн», построенным в 1870 г. Ученый-кораблестроитель В. Рид провел исследование модели корабля и выявил серьезные дефекты в его конструкции. Он сообщил об этом Адмиралтейству, но его мнение не было принято во внимание. В результате при выходе в море корабль перевернулся, что повлекло за собой гибель более 500 моряков.

В настоящее время физическое моделирование широко используется для разработки и экспериментального исследования различных сооружений (плотин электростанций, оросительных систем и т.п.), машин и т.п. до их реального построения. Например, аэродинамические качества самолетов исследуются на моделях.

2. Идеальное (мысленное): к этому виду М. относятся самые различные мысленные представления в форме тех или иных воображаемых моделей. Модели выступают в виде схем, графиков, чертежей, формул, системы уравнений и т.д.

Например, модель атома Резерфорда напоминала Солнечную систему: вокруг ядра («Солнца») вращаются электроны («планеты»). Эту же модель можно реализовать материально в виде чувственно воспринимаемых физических моделей.

К идеальному моделированию относят, так называемое “мысленное моделирование”, которое классифицируют на (см. таблицу 1):

1) наглядное моделирование производится на базе представлений исследователя о реальном объекте при помощи создания наглядной модели, отображающей явления и процессы, протекающие в объекте
Гипотетическое - закладывается гипотеза о закономерностях протекания процессов в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта Аналоговое основывается на применении аналогий различного уровня, аналоговая модель отражает несколько или только одну сторону функционирования объекта Макетированное связано с созданием макета реального объекта в определенном масштабе и его изучения
2) символическое моделирование это искусственный процесс создания логического объекта, который замещает реальный и выражает его основные свойства с помощью определенной системы знаков и символов. В зависимости от применяемых семантических единиц его подразделяют на
языковое (описательное) знаковое (графическое)
3) математическое моделирование основано на описании реального объекта с помощью математического аппарата

Сложность, неисчерпаемость, бесконечность объекта исследования в социальной работе заставляет для проникновения в его суть, в его внутреннюю структуру и динамику искать более простые аналоги для исследования. Более простой по структуре и доступный изучению объект становится моделью более сложного объекта, именуемого прототипом (оригиналом). Открывается возможность переноса информации, добытой при использовании модели, по аналогии на прототип. В этом сущность одного из специфических методов теоретического уровня – метода моделирования.

Метод моделирования непрерывно развивается, на смену одним типам моделей по мере прогресса науки приходят другие. В то же время неизменным остается одно: важность, актуальность, а иногда и незаменимость моделирования как метода научного познания.

4. Особым видом моделирования, основанного на абстрагировании, является мысленный эксперимент .

В таком эксперименте исследователь на основе теоретических знаний об объективном мире и эмпирических данных создает идеальные объекты, соотносит их в определенной динамической модели, имитируя мысленно то движение и те ситуации, которые могли бы быть в реальном экспериментировании. При этом идеальные модели и объекты помогают в «чистом» виде выявить наиболее важные для познающего, существенные связи и отношения, проиграть проектируемые ситуации, отсеять неэффективные или слишком рискованные варианты.

5. Индукция (лат. – наведение) – логический метод (прием) исследования, связанный с обобщением результатов наблюдений и экспериментов и движением мысли от единичного к общему.

В И. данные опыта “наводят” на общее, индуцируют его. Поскольку опыт всегда бесконечен и неполон, то индуктивные выводы всегда имеют проблематичный (вероятностный) характер. Индуктивные обобщения обычно рассматривают как опытные истины или эмпирические законы.

В словаре русского языка под индукцией понимается способ рассуждения от частных фактов, положений к общим выводам.

Валерий Павлович Кохановский выделяет следующие виды индуктивных обобщений :

1) Индукция популярная , когда регулярно повторяющиеся свойства, наблюдаемые у некоторых представителей изучаемого множества (класса) и фиксируемые в посылках индуктивного умозаключения, переносятся на всех представителей изучаемого множества (класса) – в том числе и на неисследованные его части.

Итак, то, что верно в “n” наблюдавшихся случаях, верно в следующем или во всех наблюдавшихся случаях, сходных с ними. Однако полученное заключение часто оказывается ложным (например, “все лебеди белые”) вследствие поспешного обобщения. Таким образом, этот вид индуктивного обобщения существует до тех пор, пока не встретится случай, противоречащий ему (например, факт наличия черных лебедей). Популярную индукцию нередко называют индукцией через перечисление случаев.

То есть, когда число случаев не ограничено, практически бесконечно, мы имеем дело с неполной индукцией. Это процедура установления общего предложения на основании нескольких отдельных случаев, в которых наблюдалось определенное свойство, характерное для всех возможных случаев, сходных с наблюдаемым, называется индукцией через простое перечисление.

Главной проблемой полной индукции является вопрос о том, насколько правомерно такое перенесение знания с отдельных известных нам случаев, перечисляемых в отдельных предложениях, на все возможные и даже еще неизвестные нам случаи.

2) Индукция неполная – где делается вывод о том, что всем представителям изучаемого множества принадлежит свойство “n” на том основании, что “n” принадлежит некоторым представителям этого множества.

Например, некоторые металлы имеют свойство электропроводности, значит, все металлы электропроводны.

3) Индукция полная , в которой делается заключение о том, что всем представителям изучаемого множества принадлежит свойство “n” на основании полученной при опытном исследовании информации о том, что каждому представителю изучаемого множества принадлежит свойство “n”.

Т.е. общее предложение устанавливается путем перечисления в форме единичных предложений всех случаев, которые подводимы под него. Если мы смогли перечислить все случаи, а это имеет место, когда число случаев ограничено, то мы имеем дело с полной индукцией.

Рассматривая полную индукцию, необходимо иметь в виду, что она не дает нового знания и не выходит за пределы того, что содержится в ее посылках. Общее заключение, полученное на основе исследования частных случаев, суммирует содержащуюся в них информацию, позволяет обобщить, систематизировать ее.

4) Индукция научная , в которой, кроме формального обоснования полученного индуктивным путем обобщения, дается содержательное дополнительное обоснование его истинности, – в том числе с помощью дедукции (теорий, законов). Научная индукция дает достоверное заключение благодаря тому, что здесь акцент делается на необходимые, закономерные и причинные связи.

В любом научном исследовании часто бывает важно установить причинно -следственные связи между различными предметами и явлениями. Для этого применяются соответствующие методы, базирующиеся на индуктивных умозаключениях.

Рассмотрим основные индуктивные методы установления причинных связей (правила индуктивного исследования Бэкона–Милля).

а) Метод единственного сходства : если наблюдаемые случаи какого-либо явления имеют общим лишь одно обстоятельство, то, очевидно (вероятно), оно и есть причина данного явления.

б) Метод единственного различия : если случаи, при которых явление наступает или не наступает, различаются только в одном предшествующем обстоятельстве, а все другие обстоятельства тождественны, то это одно обстоятельство и есть причина данного явления

в) Объединенный метод сходства и различия образуется как подтверждение результата, полученного с помощью метода единственного сходства, применением к нему метода единственного различия: это комбинация первых двух методов.

г) Метод сопутствующих изменений : если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. При этом остальные предшествующие явления остаются неизменными.

Рассмотренные методы установления причинных связей чаще всего применяются не изолированно, а во взаимосвязи, дополняя друг друга.

Дедукция (лат. – выведение):

– во-первых, переход в процессе познания от общего к единичному (частному), выведение единичного из общего;

- во-вторых, процесс логического вывода, т. е. перехода по тем или иным правилам логики от некоторых данных предложений – посылок к их следствиям (заключениям). Как один из методов (приемов) научного познания тесно связан с индукцией. Это, как бы, диалектически взаимосвязанные способы движения мысли. В.П. Кохановский считает, что великие открытия, скачки научной мысли вперед создаются индукцией, рискованным, но истинно творческим методом. Д. мешает воображению впадать в заблуждение, она позволяет после установления индукцией новых исходных пунктов вывести следствия и сопоставить выводы с фактами. Д. обеспечивает проверку гипотез и служить ценным противоядием не в меру разыгравшейся фантазии.

Термин «дедукция» появился в средние века и введен Боэцием. Но понятие дедукции как доказательства какого-либо предложения посредством силлогизма фигурирует уже у Аристотеля («Первая аналитика»). Примером дедукции как силлогизма будет следующий вывод.

Первая посылка: карась - рыба;

вторая посылка: карась живет в воде;

вывод (умозаключение): рыба живет в воде.

7. Формализация - особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положении и оперировать вместо этого некоторым множеством символов (знаков). Пример Ф.- математическое описание. Для построения любой формальной системы необходимо:

1) задание алфавита, т. е. определенного набора знаков;

2) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»;

3) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

Достоинство Ф. - обеспечивает краткость и четкость записи научной информации. Формализованный язык не столь богат и гибок как естественный, но зато он не многозначен (полисемия), а обладает однозначной семантикой. Т.о., формализованный язык обладает свойством моносемичности.

Язык современной науки существенно отличается от естественного человеческого языка. Он содержит много специальных терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.

7 . В научном познании гипотетико-дедуктивный метод получил развитие в 17-18 вв., когда значительные успехи были достигнуты в области механики земных и небесных тел. Первые попытки использовать этот метод в механике были сделаны Галилеем и Ньютоном. Работу Ньютона «Математические начала натуральной философии» можно рассматривать как гипотетико-дедуктивную систему механики, посылками в которой служат основные законы движения. Созданный Ньютоном метод принципов оказал огромное влияние на развитие точного естествознания.

С логической точки зрения гипотетико-дедуктивная система представляет собой иерархию гипотез, степень абстрактности и общности которых увеличивается по мере удаления их от эмпирического базиса. На самом верху располагаются гипотезы, имеющие наиболее общий характер и поэтому обладающие наибольшей логической силой. Из них как посылок выводятся гипотезы более низкого уровня. На самом низшем уровне системы находятся гипотезы, которые можно сопоставить с эмпирической действительностью.

Разновидностью гипотетико-дедуктивного метода можно считать математическую гипотезу, которая используется как важнейшее эвристическое средство для открытия закономерностей в естествознании Обычно в качестве гипотез здесь выступают некоторые уравнения, представляющие модификацию ранее известных и проверенных соотношений. Изменяя эти соотношения, составляют новое уравнение, выражающее гипотезу, которая относится к неисследованным явлениям. В процессе научного исследования наиболее трудная задача состоит в открытии и формулировании тех принципов и гипотез, которые служат основой для всех дальнейших выводов. Гипотетико-дедуктивный метод играет в этом процессе вспомогательную роль, поскольку с его помощью не выдвигаются новые гипотезы, а только проверяются вытекающие из них следствия, которые тем самым контролируют процесс исследования.

8. Близок к гипотетико-дедуктивному методу аксиоматический метод . Это способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения (суждения) - аксиомы, или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем, посредством доказательства. Построение науки на основе аксиоматического метода обычно называют дедуктивным. Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, образованных из числа ранее введенных понятий. В той или иной мере дедуктивные доказательства, характерные для аксиоматического метода, принимаются во многих науках, однако главной областью его приложения являются математика, логика, а также некоторые разделы физики.

Все описанные выше методы познания в реальном научном исследовании всегда работают во взаимодействии. Их конкретная системная организация определяется особенностями изучаемого объект, а также спецификой того или иного этапа исследования.

Рассматриваются основные понятия моделирования систем, системные типы и свойства моделей, жизненный цикл моделирования (моделируемой системы).

Цель лекции: введение в понятийные основы моделирования систем.

Модель и моделирование - универсальные понятия, атрибуты одного из наиболее мощных методов познания в любой профессиональной области, познания системы, процесса, явления.

Модели и моделирование объединяют специалистов различных областей, работающих над решением межпредметных проблем, независимо от того, где эта модель и результаты моделирования будут применены. Вид модели и методы его исследования больше зависят от информационно-логических связей элементов и подсистем моделируемой системы, ресурсов, связей с окружением, используемых при моделировании , а не от конкретной природы, конкретного наполнения системы.

У моделей , особенно математических, есть и дидактические аспекты - развитие модельного стиля мышления, позволяющего вникать в структуру и внутреннюю логику моделируемой системы.

Построение модели - системная задача, требующая анализа и синтеза исходных данных, гипотез, теорий, знаний специалистов. Системный подход позволяет не только построить модель реальной системы, но и использовать эту модель для оценки (например, эффективности управления, функционирования) системы.

Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системой для лучшего изучения оригинала или воспроизведения каких-либо его свойств. Модель - результат отображения одной структуры (изученной) на другую (малоизученную). Отображая физическую систему (объект) на математическую систему (например, математический аппарат уравнений), получим физико-математическую модель системы или математическую модель физической системы. Любая модель строится и исследуется при определенных допущениях, гипотезах.

Пример. Рассмотрим физическую систему: тело массой m скатывающееся по наклонной плоскости с ускорением a, на которое воздействует сила F. Исследуя такие системы, Ньютон получил математическое соотношение: F=ma. Это физико-математическая модель системы или математическая модель физической системы. При описании этой системы (построении этой модели ) приняты следующие гипотезы: 1) поверхность идеальна (т.е. коэффициент трения равен нулю); 2) тело находится в вакууме (т.е. сопротивление воздуха равно нулю); 3) масса тела неизменна; 4) тело движется с одинаковым постоянным ускорением в любой точке.

Пример. Физиологическая система - система кровообращения человека - подчиняется некоторым законам термодинамики. Описывая эту систему на физическом (термодинамическом) языке балансовых законов, получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, например, выписать соответствующие термодинамические уравнения, то уже получим математическую модель системы кровообращения. Назовем ее физиолого-физико-математической моделью или физико-математической моделью .

Пример. Совокупность предприятий функционирует на рынке, обмениваясь товарами, сырьем, услугами, информацией. Если описать экономические законы, правила их взаимодействия на рынке с помощью математических соотношений, например, системы алгебраических уравнений, где неизвестными будут величины прибыли, получаемые от взаимодействия предприятий, а коэффициентами уравнения будут значения интенсивностей таких взаимодействий, то получим математическую модель экономической системы, т.е. экономико-математическую модель системы предприятий на рынке.

Пример. Если банк выработал стратегию кредитования, смог описать ее с помощью экономико-математических моделей и прогнозирует свою тактику кредитования, то он имеет большую устойчивость и жизнеспособность.

Слово "модель " (лат. modelium) означает "мера", "способ", "сходство с какой-то вещью".

Моделирование базируется на математической теории подобия, согласно которой абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании большинства систем (за исключением, возможно, моделирования одних математических структур другими) абсолютное подобие невозможно, и основная цель моделирования - модель достаточно хорошо должна отображать функционирование моделируемой системы.

Модели , если отвлечься от областей, сфер их применения, бывают трех типов: познавательные , прагматические и инструментальные .

Познавательная модель - форма организации и представления знаний, средство соединения новых и старых знаний. Познавательная модель , как правило, подгоняется под реальность и является теоретической моделью .

Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель . Это, как правило, прикладные модели .

Инструментальная модель - средство построения, исследования и/или использования прагматических и/или познавательных моделей .

Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

По уровню, "глубине" моделирования модели бывают:

  • · эмпирические - на основе эмпирических фактов, зависимостей;
  • · теоретические - на основе математических описаний;
  • · смешанные, полуэмпирические - на основе эмпирических зависимостей и математических описаний.

Проблема моделирования состоит из трех задач:

  • · построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей );
  • · исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей );
  • · использование модели (конструктивная и конкретизируемая задача).

Модель М, описывающая систему S(x 1 , x 2 , ..., x n ; R), имеет вид: М=(z 1 , z 2 , ..., z m ; Q), где z i Z, i=1, 2, ..., n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы, Z - множество описаний, представлений элементов и подмножеств X.

Схема построения модели М системы S с входными сигналами X и выходными сигналами Y изображена на рис. 10.1.

Рис. 10.1.

Если на вход М поступают сигналы из X и на входе появляются сигналы Y, то задан закон, правило f функционирования модели , системы.

Моделирование - это универсальный метод получения, описания и использования знаний. Он используется в любой профессиональной деятельности. В современной науке и технологии роль и значение моделирования усиливается, актуализируется проблемами, успехами других наук. Моделирование реальных и нелинейных систем живой и неживой природы позволяет перекидывать мостики между нашими знаниями и реальными системами, процессами, в том числе и мыслительными.

Классификацию моделей проводят по различным критериям. Мы будем использовать наиболее простую и практически значимую.

Модель называется статической , если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез.

Пример. Закон Ньютона F=am - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой.

Модель динамическая , если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.

Пример. Модель S=gt 2 /2 - динамическая модель пути при свободном падении тела. Динамическая модель типа закона Ньютона: F(t)=a(t)m(t). Еще лучшей формой динамической модели Ньютона является F(t)=s?(t)m(t).

Модель дискретная , если она описывает поведение системы только в дискретные моменты времени.

Пример. Если рассматривать только t=0, 1, 2, :, 10 (сек), то модель S t =gt 2 /2 или числовая последовательность S 0 =0, S 1 =g/2, S 2 =2g, S 3 =9g/2, :, S 10 =50g может служить дискретной моделью движения свободно падающего тела.

Модель непрерывная , если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.

Пример. Модель S=gt 2 /2, 0

Модель имитационная , если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели .

Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, соответственно, в количестве x 1 и x 2 единиц и стоимостью каждой единицы товара a 1 и a 2 на предприятии описана в виде соотношения: a 1 x 1 +a 2 x 2 =S, где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели , по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов производимых товаров.

Модель детерминированная , если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).

Пример. Приведенные выше физические модели - детерминированные. Если в модели S=gt 2 /2, 0стохастическую модель (уже не свободного!) падения.

Модель функциональная , если она представима в виде системы каких- либо функциональных соотношений.

Пример. Непрерывный, детерминированный закон Ньютона и модель производства товаров (см. выше) - функциональные.

Модель теоретико-множественная , если она представима с помощью некоторых множеств и отношений принадлежности им и между ними.

Пример. Пусть заданы множество X={Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} и отношения: Николай - супруг Елены, Екатерина - супруга Петра, Татьяна - дочь Николая и Елены, Михаил - сын Петра и Екатерины, семьи Михаила и Петра дружат друг с другом. Тогда множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружественных семей.

Модель логическая , если она представима предикатами, логическими функциями.

Пример. Совокупность двух логических функций вида: z=xyxy, p=xy может служить математической моделью одноразрядного сумматора.

Модель игровая , если она описывает, реализует некоторую игровую ситуацию между участниками игры (лицами, коалициями).

Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i,jn), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении факта неуплаты игроком 1 и с временной выгодой игрока 2 от сокрытия налогов (в средне- и долгосрочном плане штраф за сокрытие может оказаться намного более ощутимым). Рассмотрим матричную игру с матрицей выигрышей порядка n. Каждый элемент этой матрицы A определяется по правилу a ij =|i-j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая, бескоалиционная (формализуемые в математической теории игр понятия мы пока будем понимать содержательно, интуитивно).

Модель алгоритмическая , если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.

Пример. Моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа x может служить алгоритм вычисления его приближенного сколь угодно точного значения по известной рекуррентной формуле.

Модель структурная , если она представима структурой данных или структурами данных и отношениями между ними.

Пример. Структурной моделью может служить описание (табличное, графовое, функциональное или другое) трофической структуры экосистемы. Постройте такую модель (одна из них была приведена выше).

Модель графовая , если она представима графом или графами и отношениями между ними.

Модель иерархическая (древовидная), если представима некоторой иерархической структурой (деревом).

Пример. Для решения задачи нахождения маршрута в дереве поиска можно построить, например, древовидную модель (рис. 10.2):

Рис. 10.2.

Модель сетевая , если она представима некоторой сетевой структурой.

Пример. Строительство нового дома включает операции, приведенные в нижеследующей таблице.

Таблица работ при строительстве дома

Операция

Время выполнения (дни)

Предшествующие операции

Дуги графа

Расчистка участка

Закладка фундамента

Расчистка участка (1)

Возведение стен

Закладка фундамента (2)

Монтаж электропроводки

Возведение стен (3)

Штукатурные работы

Монтаж электропроводки (4)

Благоустройство территории

Возведение стен (3)

Отделочные работы

Штукатурные работы (5)

Настил крыши

Возведение стен (3)

Сетевая модель (сетевой график) строительства дома дана на рис. 10.3.


Рис. 10.3.

Две работы, соответствующие дуге 4-5, параллельны, их можно либо заменить одной, представляющей совместную операцию (монтаж электропроводки и настил крыши) с новой длительностью 3+5=8, либо ввести на одной дуге фиктивное событие, тогда дуга 4-5 примет вид.

Модель языковая, лингвистическая , если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.

Пример. Правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах. Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных. Языковая модель M словообразования: <=

:=+. При b i - "рыб(а)", s i - "н(ый)", получаем по этой модели p i - "рыбный", z i - "приготовленный из рыбы".

Модель визуальная , если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Пример. На экране компьютера часто пользуются визуальной моделью того или иного объекта, например, клавиатуры в программе-тренажере по обучению работе на клавиатуре.

Модель натурная , если она есть материальная копия объекта моделирования .

Пример. Глобус - натурная географическая модель земного шара.

Модель геометрическая , графическая, если она представима геометрическими образами и объектами.

Пример. Макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает модель окружности. Именно она используется при изображении окружности на экране компьютера. Прямая линия является моделью числовой оси, а плоскость часто изображается как параллелограмм.

Модель клеточно-автоматная , если она представляет систему с помощью клеточного автомата или системы клеточных автоматов. Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д. Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Это "мир" некоторого автомата, исполнителя, структуры. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле. Такие клеточные поля могут быть вещественно-энерго-информационными. Законы эволюции локальны, т.е. динамика системы определяется задаваемым неизменным набором законов или правил, по которым осуществляется вычисление новой клетки эволюции и его материально-энерго-информационной характеристики в зависимости от состояния окружающих ее соседей (правила соседства, как уже сказано, задаются). Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение. В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов.

Клеточные автоматы (поля) могут быть одномерными, двумерными (с ячейками на плоскости), трехмерными (с ячейками в пространстве) или же многомерными (с ячейками в многомерных пространствах).

Пример. Классическая клеточно-автоматная модель - игра "Жизнь" Джона Конвея. Она описана во многих книгах. Мы рассмотрим другую клеточно-автоматную модель загрязнения среды, диффузии загрязненителя в некоторой среде. 2D-клеточный автомат (на плоскости) для моделирования загрязнения среды может быть сгенерирован следующими правилами:

  • · плоскость разбивается на одинаковые клетки: каждая клетка может находиться в одном из двух состояний: состояние 1 - в ней есть диффундирующая частица загрязнителя, и состояние 0 - если ее нет;
  • · клеточное поле разбивается на блоки 2Ч2 двумя способами, которые будем называть четным и нечетным разбиениями (у чётного разбиения в кластере или блоке находится четное число точек или клеток поля, у нечетного блока - их нечетное число);
  • · на очередном шаге эволюции каждый блок четного разбиения поворачивается (по задаваемому правилу распространения загрязнения или генерируемому распределению случайных чисел) на заданный угол (направление поворота выбирается генератором случайных чисел);
  • · аналогичное правило определяется и для блоков нечетного разбиения;
  • · процесс продолжается до некоторого момента или до очищения среды.

Пусть единица времени - шаг клеточного автомата, единица длины - размер его клетки. Если перебрать всевозможные сочетания поворотов блоков четного и нечетного разбиения, то видим, что за один шаг частица может переместиться вдоль каждой из координатных осей на расстояние 0, 1 или 2 (без учета направления смещения) с вероятностями, соответственно, p 0 =1/4, p 1 =1/2, p 2 =1/4. Вероятность попадания частицы в данную точку зависит лишь от ее положения в предыдущий момент времени, поэтому рассматриваем движение частицы вдоль оси х (y) как случайное.

На рис. 10.4 - фрагменты работы программы клеточно-автоматной модели загрязнения клеточной экосреды (размеры клеток увеличены).



Рис. 10.4. Окно справа - состояние клеточного поля (в верхнем - исходное, слабо загрязненное, в нижнем - после 120 циклов загрязнения), в левом верхнем углу - "Микроскоп", увеличивающий кластер поля, в середине слева - график динамики загрязнения, внизу слева - индикаторы загрязнения

Модель фрактальная , если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов. Если физический объект однородный (сплошной), т.е. в нем нет полостей, можно считать, что плотность не зависит от размера. Например, при увеличении R до 2R масса увеличится в R 2 раз (круг) и в R 3 раз (шар), т.е. M(R)~R n (связь массы и длины), n - размерность пространства. Объект, у которого масса и размер связаны этим соотношением, называется "компактным". Плотность его

Если объект (система) удовлетворяет соотношению M(R)~R f(n) , где f(n)

Так как f(n)-n<0, то плотность фрактального объекта уменьшается с увеличением размера, а с(R) является количественной мерой разряженности, ветвистости (структурированности) объекта.

Пример. Пример фрактальной модели - множество Кантора. Рассмотрим . Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, назывемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 10.5)

Рис. 10.5.

Можно показать, что если n - размерность множества Кантора, то n=ln2/ln3?0,63, т.е. этот объект (фрактал) еще не состоит только из изолированных точек, хотя уже и не состоит из отрезка. Фрактальные объекты самоподобны , если они выглядят одинаково в любом пространственном масштабе, масштабно инвариантны, фрагменты структуры повторяются через определенные пространственные промежутки. Поэтому они очень хорошо подходят для моделирования нерегулярностей, так как позволяют описывать (например, дискретными моделями) эволюцию таких систем для любого момента времени и в любом пространственном масштабе.

Самоподобие встречается в самых разных предметах и явлениях.

Пример. Самоподобны ветки деревьев, снежинки, экономические системы (волны Кондратьева), горные системы.

Фрактальная модель применяется обычно тогда, когда реальный объект нельзя представить в виде классической модели , когда имеем дело с нелинейностью (многовариантностью путей развития и необходимостью выбора) и недетерминированностью, хаотичностью и необратимостью эволюционных процессов.

Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений его подсистем и элементов, а не от его физической природы.

Пример. Математические описания (модели ) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны.

Границы между моделями различного типа или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.

Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С: М=.

Основные свойства любой модели :

  • · целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
  • · конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • · упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
  • · приблизительность - действительность отображается моделью грубо или приблизительно;
  • · адекватность - модель должна успешно описывать моделируемую систему;
  • · наглядность, обозримость основных ее свойств и отношений;
  • · доступность и технологичность для исследования или воспроизведения;
  • · информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели ) и должна давать возможность получить новую информацию;
  • · сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
  • · полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования ;
  • · устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
  • · целостность - модель реализует некоторую систему (т.е. целое);
  • · замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
  • · адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
  • · управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
  • · эволюционируемость - возможность развития моделей (предыдущего уровня).

Жизненный цикл моделируемой системы:

  • · сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
  • · проектирование структуры и состава моделей (подмоделей);
  • · построение спецификаций модели , разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей ;
  • · исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования ;
  • · исследование адекватности, устойчивости, чувствительности модели ;
  • · оценка средств моделирования (затраченных ресурсов);
  • · интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
  • · генерация отчетов и проектных (народно-хозяйственных) решений;
  • · уточнение, модификация модели , если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования .

Моделирование - метод системного анализа. Но часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы. Модель , построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.

Наука моделирования состоит в разделении процесса моделирования (системы, модели ) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности. В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний".

Моделирование (в значении "метод", "модельный эксперимент") рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом (это называется простым или обычным экспериментом), а над копией (заместителем) оригинала. Здесь важен изоморфизм систем (оригинальной и модельной) - изоморфизм, как самой копии, так и знаний, с помощью которых она была предложена.

Модели и моделирование применяются по основным направлениям:

  • · обучение (как моделям , моделированию , так и самих моделей );
  • · познание и разработка теории исследуемых систем (с помощью каких-либо моделей , моделирования , результатов моделирования );
  • · прогнозирование (выходных данных, ситуаций, состояний системы);
  • · управление (системой в целом, отдельными подсистемами системы), выработка управленческих решений и стратегий;
  • · автоматизация (системы или отдельных подсистем системы).

Вопросы для самоконтроля

  • 1. Что такое модель , для чего она нужна и как используется? Какая модель называется статической (динамической, дискретной и т.д.)?
  • 2. Каковы основные свойства моделей и насколько они важны?
  • 3. Что такое жизненный цикл моделирования (моделируемой системы)?

Задачи и упражнения

  • 1. В последнее время наиболее актуальной проблемой в экономике стало воздействие уровня налогообложения на хозяйственную деятельность. В ряду прочих принципов взимания налогов важное место занимает вопрос о той предельной норме, превышение которой влечет потери общества и государства, несоизмеримые с текущими доходами бюджета. Определение совокупной величины налоговых сборов таким образом, чтобы она, с одной стороны, максимально соответствовала государственным расходам, а с другой, оказывала минимум отрицательного воздействия на деловую активность, относится к числу главных задач управления государства. Опишите, какие, на ваш взгляд, параметры необходимо учесть в модели налогообложения хозяйственной деятельности, соответствующей указанной цели. Составьте простую (например, рекуррентного вида) модель сбора налогов, исходя из налоговых ставок, изменяемых в указанных диапазонах: налог на доход - 8-12 %, налог на добавленную стоимость - 3-5 %, налог на имущество юридических лиц - 7-10%. Совокупные налоговые отчисления не должны превышать 30-35% прибыли. Укажите в этой модели управляющие параметры. Определите одну стратегию управления с помощью этих параметров.
  • 2. Заданы числовой - x i , i=0, 1, ..., n и символьный - y i , i=0, 1, ..., m массивы X и Y. Составить модель стекового калькулятора, который позволяет осуществлять операции:
  • 1. циклический сдвиг вправо массива X или Y и запись заданного числа в x 0 или символа операции - y 0 (в "верхушку стека" X(Y)) т.е. выполнение операции "вталкивание в стек";
  • 2. считывание "верхушки стека" и последующий циклический сдвиг влево массива X или Y - операция "выталкивания из стека";
  • 3. обмен местами x 0 и x 1 или y 0 и y 1 ;
  • 4. "раздваивание верхушки стека", т.е. получение копии x 0 или y 0 в x 1 или y 1 ;
  • 5. считывание "верхушки стека" Y (знака +, -, * или /), затем расшифровка этой операции, считыавние операндов операций с "верхушки" X, выполнение этой операции и помещение результата в "верхушку" X.
  • 3. Известна классическая динамическая модель В.Вольтерра системы типа "хищник-жертва", являющейся моделью типа "ресурс-потребление". Рассмотрим клеточно-автоматную модель такой системы. Алгоритм поведения клеточного автомата, моделирующего систему типа "хищник-жертва", состоит из следующих этапов:
  • 1. задаются начальные распределения хищников и жертв, случайно или детерминированно;
  • 2. определяются законы "соседства" особей (правила взаимоотношений) клеток, например, "соседями" клетки с индексами (i,j) считаются клетки (i-1,j), (i,j+1), (i+1,j), (i,j-1);
  • 3. задаются законы рождаемости и смертности клеток, например, если у клетки меньше двух (больше трех) соседей, она отмирает "от одиночества" ("от перенаселения").

Цель моделирования : определение эволюции следующего поколения хищников и жертв, т.е., используя заданные законы соседства и динамики дискретного развития (время изменяется дискретно), определяются число новых особей (клеток) и число умерших (погибших) особей; если достигнута заданная конфигурация клеток или развитие привело к исчезновению вида (цикличности), то моделирование заканчивается.

Темы научных исследований и рефератов, интернет-листов

  • 1. Моделирование как метод, методология, технология.
  • 2. Модели в микромире и макромире.
  • 3. Линейность моделей (наших знаний) и нелинейность явлений природы и общества.

Анализ есть разложение на части, рассмотрение всех сторон и способов функционирования, синтез - рассмотрение способа связей и отношений частей. порождают в каждой области специальные методы.

Абстрагирование и идеализация. Общенаучный прием. Это временное мысленное вычленение из множества свойств и аспектов явления интересующих нас отвлечение от других свойств и построение идеального объекта типа точки или прямой. Сложный вопрос, дает ли этот метод и каким способом верное представление о действительности? Как он вообще может работать? Здесь же возникает общее понятие о классе предметов.

В ходе идеализации кроме абстрагирование еще прием введения новых свойств в объект.

Индукция, дедукция, аналогия. Индукция характерна для опытных наук, дает возможность построения гипотез, не дает достоверного знания, наводит на мысль. При этом существуют и отдельные строгие формы индукции как математическая. Дедукция выводит их общих теорем специальные выводы. Дает достоверное знание, если верна посылка. Аналогия - выдвижение гипотез о свойстве объекта на основании его сходства с уже изученным. Требует дальнейшего обоснования.

Моделирование.

Один объект заменяется другим со схожими свойствами, но не полностью схожими. Позволяет получать выводы об оригинале на основании изучения модели. При этом возможно предметное, физическое, математическое, знаковое, компьютерное моделирование в зависимости от вида модели. Наблюдение эксперимент, измерение в ходе их. Во всех формах организации научного знания осуществляется обобщенное описание действительности, на основе которого более глубоко раскрывается сущность явления и тем самым осуществляется поэтапная редукция в направление от наименее обобщенных ко все более обобщенным формам описания действительности. Несмотря на то, что в научном познании происходит постоянное движение ко все большей обобщенности, вместе с тем мы имеем огромное многообразие различных областей наук и ни в одной области науки это движение не привело к исчезновению и устранению многообразия научных теорий и их редукции к единой теоретической схеме. Сегодня наука представляет собой колоссальное многообразие различных методов познания и значительного количества методологических исследовательских программ. например, различные подходы применяются к исследованию одного и того же явления, в одних случаях рассматриваются одни аспекты, в других - другие. При этом может быть, что рассматриваются одни аспекты, но характеризуются разными величинами или используются разные методы. Таким образом, дифференциация науки происходит на основе возникновения новых теорий, что связано с более глубоким проникновением в сущность исследуемого объекта. То, что ранее было одной наукой, с течением времени распочковывается на теории, которые развиваются до отдельной науки. Пример математики и физики, где одни специалисты уже вообще не ориентируются в области, где работают другие. Кроме разделения в результате конкретизации классических наук, есть и разделение в методе изучения, в аспекте изучения.

Кроме того, по мере развития возникают новые явления, в первую очередь в общественной жизни, что приводит к появлению еще большего числа наук, истоки которых уже не приходится искать в прошлом. Примером может служить различная теория систем. Далее, новые науки возникают на стыке традиционных, например, биофизика, биохимия, структурный анализ, математическая лингвистика. Взаимопроникновение наук приводит к их дифференциации, при этом реализуется новый взгляд на явление или предмет изучения, что позволяет более эффективно использовать данные науки.

Интеграция в науке связана прежде всего с унификацией разнообразных методов научного исследования. Разработка методологии науки привела к единому научному стандарту, конечно, эти методы есть уровень абстракции и в каждой конкретной области они имеют собственную объект и фикацию. Кроме того, есть общенаучные методы типа применения математических методов исследования объектов во всех науках без исключения. Интеграция идет и в плане объединения теория и видения их внутренней взаимосвязи на основе открытия основополагающих принципов бытия. это не означает отмены этих наук, а это лишь более глубокий уровень проникновения в сущность исследуемых явлений - создание общих теорий, метатеорий и общих методов доказательства. Происходит объединение наук на принципе нового уровня абстракции, примером чему может опять служить теория систем.

Общая характеристика функций философии: говоря обыденным языком, функции философии - это те обязанности, которые предписаны философии самим предметом философского познания. Иначе, функции философии - это обязанности философии перед человеком, если он в познании полагается на философию: как своеобразный алгоритм познания философия должна обеспечить определенный результат познавательной деятельности, к примеру, дать достоверные представления о мире и месте в нем человека.

Более строго, мы можем определить понятие "функция" следующим образом: это способ действия, способ проявления активности системы философского знания. В этом смысле, Гете (1749-1832) определял понятие "функция" как "существование, мыслимое нами в действии".

Функции философии подразделяются на две группы: мировоззренческие и методологические. Такое деление вытекает из самого определения философии как мировоззрения. Мировоззренческие функции философии:

  • 1. Гуманистическая функция: заключается в преодолении факторов, способствующих духовной деградации личности, которая, в свою очередь, является предпосылкой антропологической катастрофы. В ряду таких факторов отмечаются, в настоящее время, такие как рост специализации во всех отраслях человеческой деятельности, усиление технизации общества, рост анонимного научного знания, что в совокупности складывается в такие черты мировоззрения современного человека как техницизм и сциентизм. Отмеченные черты выражают внутри культурную тенденцию к абсолютизации роли техники и науки в контексте социальной жизни. Отстаивание гуманистического, духовного, собственно человеческого начала как в социальной жизни, в системе культуры, так и в самом человеке, и представляет собственное содержание гуманистической функции философии (А.Швейцер);
  • 2. Социально-аксиологическая функция: представляет систему подфункций, таких как: конструктивно-ценностная - предполагает разработку представлений о ценностях, управляющих как жизнью индивидуума, так и жизнью всего общества (социальный идеал); интерпретаторская - предполагает истолкование социальной действительности; критическая - представляет критику реальных социальных структур, общественных институтов, состояний общества, социальных действий;
  • 3. Культурно-воспитательная функция: предполагает не только воспитание человека в качестве субъекта культурного пространства и, как следствие, таких его качеств как самокритичность, критичность, но и формирование диалектического мышления;
  • 4. Отражательно-информационная функция: выражает основное назначение специализированного теоретического знания - адекватно отражать свой объект, выявлять его содержательные элементы, структурные связи, закономерности функционирования, способствовать углублению знаний, служить источником достоверной информации о мире, которая аккумулируется в философских понятиях, категориях, общих принципах, законах, образующих целостную систему.

Методологические функции философии выражают назначение философии как общеметодологического основания науки:

1. Эвристическая функция: предполагает содействие росту научного знания, создание предпосылок для научных открытий в контексте взаимодействия философского и формально-логического методов, что приводит к интенсивному и экстенсивному изменению философских категорий и, как следствие, к рождению нового знания, имеющего вид прогноза (гипотезы). Необходимо, в этом смысле, отметить, что нет ни одной естественнонаучной теории, создание которой обошлось бы без использования общефилософских представлений о причинности, пространстве, времени и т.п. Доказано, что теории в естественных науках создаются на двойственном базисе - на единстве эмпирического и внеэмпирического. Роль внеэмпирического основания играет философия.

Другими словами, философские представления играют конструирующую роль. Общие философские понятия и принципы проникают в естествознание через такие философские отрасли как онтология, гносеология, а также через регулятивные принципы самих частных наук (к примеру, в физике, это принципы наблюдаемости, простоты, соответствия). Таким образом, гносеологические принципы философии играют важную роль не только в становлении теории, но и выполняют роль регулятивов, определяющих процесс ее дальнейшего функционирования. Интересно, что философия влияет на научные теории не как единое целое, а лишь локально - отдельными идеями, понятиями, принципами. Причем, в актах взаимоопределения философии и науки, положение естествоиспытателя гораздо сложнее, чем положение философа. Ученый, на стадии формирования теории, должен принимать точки зрения, не совместимые в одной системе. Философ, напротив, открыв системосозидающий принцип, далее может пользоваться им, интерпретируя данные естественных наук в интересах собственной системы (А.Эйнштейн).

Таким образом, эвристическая функция философии, предполагающая применение диалектики как общенаучного метода (диалектики как логики) исследований, оказывает значительное влияние на состояние естественнонаучной картины мира;

2. Координирующая функция: предполагает координацию методов исследования в процессе научного поиска. До XX века, в науке отмечалось преобладание аналитического метода. Что привело к необходимости строго соблюдать соотношение: один предмет - один метод. Однако, в XX веке данное соотношение было нарушено. В исследованиях одного предмета используются уже несколько методов и, напротив, в исследовании нескольких предметов - один метод.

Потребность в координации методов исследований вызвана не только усложнением традиционной для аналитического метода картины "метод-предмет", но и возникновением ряда негативных факторов, связанных в частности с растущей специализацией ученых. Необходимо в этой связи отметить, что специализация коснулась и философского знания. Можно считать, что время философских систем прошло. То есть философия как система, построенная от начала и до конца одним философом, есть не возобновляемый факт.

У современных философов с трудом хватает времени, физических сил и философской техники на разработку одной какой-либо проблемы, имеющей отношении к локальной области философских исследований. В контексте координации методов научных исследований становится актуальной задача определения принципа соответствия применяемых методов друг другу и общей цели исследования. Дело в том, что у каждого метода есть свои фиксированные теоретико-познавательные и логические возможности, создание же комплекса методов позволяет расширить возможности конкретных методов. При этом, учитывая то, что все методы имеют различную эффективность, устанавливается их иерархия в контексте научного исследования.

В завершение, необходимо отметить, что философский метод как способ успешного решения научных задач не должен применяться в отрыве от собственной методологии науки, в отрыве от общенаучных и специальных методов;

3. Интегрирующая функция: предполагает осуществление объединяющей роли философского знания, определение и устранение дезинтегрирующих факторов, выявление недостающих звеньев научного знания. Процесс формирования отдельных научных дисциплин происходил путем ограничения предмета конкретной науки от предметов других наук. Однако, это привело к разрушению античной научной парадигмы, основным измерением которой было единство научного знания.

Изоляционизм как основание кризиса единства науки сохранялся вплоть до XIX века. Данная проблема могла быть решена только при посредстве философских принципов - собственно научных принципов организации знания здесь было не достаточно. Интеграция наук была осуществлена при помощи философского принципа единства мира, в соответствии с которым целостность природы обусловливает целостность знаний о природе. Применение философского принципа единства мира с целью интеграции естественнонаучного знания привело к образованию трех типов наук-интеграторов, осуществляющих "интеграцию по методу": это "переходные" науки, обладающие свойствами сразу нескольких научных дисциплин и связывающие только смежные научные дисциплины; "синтезирующие" науки, объединяющие ряд содержательно далеких наук и "проблемные" науки, возникающие для решения конкретной проблемы и представляющие синтез целого ряда наук. Необходимо отметить, что к "интеграции по методу" относятся математический и философский методы, применение которых в контексте научных исследований дает явления, определяемые понятиями "математизация науки" и "философизация науки".

Интегрирующие факторы (частные; общие; наиболее общие), объединяющие научное познание, наиболее общим из которых является философия, можно выстроить в следующий ряд: закон-метод-принцип-теория-идея-метатеория-конкретная наука-метанаука-смежная наука комплексная наука научная картина мира философия. В данном ряду, каждый последующий фактор является интегрирующим для каждого предыдущего; 4. Логико-гносеологическая функция: предполагает разработку самого философского метода, его нормативных принципов; а также, логико-гносеологическое обоснование понятийных и теоретических структур научного познания, к примеру, общенаучных методов: так, философия применяется для развития системного подхода.