Возникновение жизни на земле. Первые живые существа

С появлением надежного механизма воспроизведения генетической информации процесс возникновения жизни завершился. Эра химической эволюции закончилась, наступила эра эволюции биологической. Организмам уже было недостаточно просто выжить - отбор среди клеток шел по способности получать энергию более эффективным путем и обращать ее на свое воспроизводство.

В течение длительного времени все организмы были гетеротрофными. Пищей им служили готовые органические вещества, накопленные в океане, либо другие гетеротрофные организмы.

Первыми организмами были, по всей вероятности, примитивные бактерии, окаменелые остатки и следы жизнедеятельности которых обнаружены в осадочных породах возрастом около 3,5 млрд лет. Судя по окаменелым остаткам, они имели палочковидную форму и напоминали современных бактерий.

При электронно-микроскопическом изучении у них выявлена двухслойная клеточная стенка, подобная клеточной стенке многих современных бактерий. Если найденные в породах остатки действительно принадлежат прокариотам или являются продуктами их жизнедеятельности, это значит, что к этому времени уже были сформированы некоторые типы жизни. Таким образом, можно предположить, что жизнь возникла в промежутке между 3,5 и 4,6 млрд лет тому назад. Единственными живыми существами на Земле в это время были примитивные микроорганизмы.

Запасы абиогенных органических веществ в «первичном бульоне» постепенно уменьшались. В связи с этим дальнейшее существование жизни оказалось под вопросом. Эта проблема разрешилась с развитием у организмов автотрофности, т.е. способности синтезировать питательные вещества из неорганических соединений.

Первые автотрофные организмы возникли около 3 млрд лет назад. Это были анаэробные бактерии, предшественники современных фотосинтезиру-ющих бактерий. Они, вероятно, осуществляли одностадийный фотосинтез, характерный для современных анаэробных серных пурпурных бактерий, которые на свету окисляют сероводород до сульфатов, а высвобождающийся в результате реакции водород используется для восстановления углекислого газа до углеводов. Источником атомов водорода могли быть и органические соединения. Кислород в процессе фотосинтеза такого типа не выделяется.

Следующим шагом эволюции было приобретение фотосинтезирующими организмами способности использовать воду в качестве источника атомов водорода. Автотрофное усвоение углекислого газа такими организмами сопровождалось выделением кислорода. Первыми фотосинтезирующими организмами, осуществляющими двухстадийный фотосинтез с выделением

кислорода, были цианобактерии. Кроме того, цианобактерии способны использовать атмосферный азот, поэтому могли существовать в среде, полностью лишенной органических углеродистых и азотистых соединений.

Кислород, выделяемый цианобактериями, вначале поглощался земной корой, в которой происходили интенсивные процессы окисления. По имеющимся геологическим данным, содержание кислорода в воздухе в то время составляло всего 1 % от его содержания в современной атмосфере. Поскольку цианобактерии возникли в период, когда концентрация кислорода в атмосфере колебалась, вполне допустимо, что они являются промежуточными организмами между анаэробами и аэробами.

Последствия фотосинтезирующей деятельности первичных одноклеточных организмов оказали решающее влияние на всю дальнейшую эволюцию живого. Во-первых, организмы были освобождены от конкуренции за природные запасы абиогенных органических веществ, количество которых в среде значительно сократилось. С развитием автотрофного питания были созданы условия для появления громадного разнообразия автотрофных и гетеротрофных организмов.

Во-вторых, атмосфера насытилась достаточным количеством свободного кислорода. В его присутствии появилась возможность энергетически более выгодного кислородного типа обмена веществ, что способствовало появлению аэробных бактерий.

В-третьих, в верхней части атмосферы образовался озоновый экран, защищающий земную жизнь от губительного ультрафиолетового излучения космоса. В дальнейшем это способствовало выходу живых организмов из водной среды на сушу.

Таким образом, появление в атмосфере свободного кислорода обеспечило развитие многочисленных новых форм живых организмов и более широкое использование ими компонентов окружающей среды.

Следующий важный этап эволюции - появление эукариотических одноклеточных организмов. Предположительно это произошло около 1,5 млрд лет тому назад.

Относительно того, каким образом возникли эукариоты, существует две гипотезы.

Аутогенная гипотеза предполагает, что эукариотическая клетка возникла путем дифференциации исходной прокариотической клетки. Вначале образовалась наружная мембрана, потом из ее впячиваний сформировались отдельные структуры, давшие начало клеточным органеллам.

Другая гипотеза - симбиотическая. Впервые идею симбиогенеза выдвинул русский ученый А.С. Фоминцын, а детально ее разработала американская исследовательница Лин С. Маргулис. Согласно симбиотической гипотезе эукариотическая клетка возникла в результате нескольких последовательных симбиозов. Исходной клеткой была амебовидная гетеротрофная клетка, которая питалась более мелкими клетками, в том числе аэробными бактериями (рис. 5.5). Эти бактерии были способны функционировать и внутри клетки-хозяина, производя энергию. Те крупные амебовидные клетки, в теле которых аэробные бактерии оставались невредимыми, оказались в более выгодном положении, чем клетки, продолжавшие получать энергию анаэробным путем - посредством брожения. В дальнейшем аэробные бактерии превратились в митохондрии. Затем такая симбио-тическая прокариотическая

клетка вступила в симбиоз со спирахетоподобной бактерией, из которой сформировались центриоли, реснички и жгутики. В результате подвижность такого организма и его способность к нахождению пищи резко возросли. Постепенно в цитоплазме происходило обособление ядра (признак эукариот). Ядерная клетка с простейшим набором органелл явилась исходной формой для возникновения одноклеточных жгутиконосцев, которые могли послужить базой для образования царства грибов и животных.

Подвижные эукариоты, вступив в симбиоз с цианобактериями, явились основой для возникновения фотосинтезирующих жгутиконосцев.

Гипотеза Л.С. Маргулис хорошо обоснована, и ее приняли многие ученые. Во-первых, хлоропласты и митохондрии современных эукариотиче-ских организмов имеют собственную ДНК, которая по строению удивительно похожа на ДНК бактерий. Во-вторых, хлоропласты, имплантированные в клетки простейших, остаются в них интактными, т.е. не гидролизу-ются. Кроме того, в течение некоторого времени хлоропласты могут осуществлять фотосинтез.

Дальнейшая эволюция одноклеточных эукариотических организмов привела к возникновению диплоидности и полового процесса. Создание многочисленных комбинаций генов способствовало появлению значительного разнообразия живых организмов, которые быстро размножились на

планете. Однако их возможности в освоении среды обитания ограничены. Одноклеточные организмы не могут расти беспредельно. Объясняется это тем, что кислород для дыхания они потребляют всей поверхностью тела. При увеличении размеров клетки ее поверхность возрастает в квадратичной зависимости, а объем - в кубической. Поэтому в большом одноклеточном организме будет наблюдаться постоянный дефицит кислорода и, как следствие, - недостаток энергии. По другому пути шел эволюционный процесс, связанный с появлением и развитием многоклеточных организмов.

Первые живые организмы на Земле были гетеротрофами. На определенном этапе эволюции часть организмов перешла к фототрофнос-ти. Возникновение процесса фотосинтеза имело огромное влияние на дальнейший ход эволюции. Примерно 1,5 млрд лет тому назад из доядерных организмов возникли ядерные, дальнейшая эволюция которых привела к возникновению диплоидности, полового процесса и многоклеточности.


имеет долгую историю. Все началось, приблизительно, 4 млрд. лет назад. У атмосферы Земли еще нет озонового слоя, концентрация кислорода в воздухе очень низкая и ничего на поверхности планеты не слышно, кроме извергающихся вулканов и шума ветра. Ученые считают, что именно так выглядела наша планета тогда, когда на неё начала появляться жизнь. Подтвердить или опровергнуть это весьма трудно. Горные породы, которые могли бы дать больше информации людям, разрушились очень давно, благодаря геологическим процессам планеты. Итак, основные этапы эволюции жизни на Земле.

Эволюция жизни на Земле. Одноклеточные организмы.

Жизнь получила свое начало с появлением простейших форм жизни – одноклеточных организмов. Первыми одноклеточными организмами были прокариоты. Эти организмы появились первыми после того, как Земля стала пригодной для начала жизни. не позволила бы появиться даже простейшим формам жизни на своей поверхности и в атмосфере. Этим организмом был не обязателен кислород для своего существования. Концентрация кислорода в атмосфере повышалась, что привело к появлению эукариот. Для этих организмов главным для жизни становился кислород, в среде где концентрация кислорода была маленькой, они не выживали.


Первые организмы, способные к фотосинтезу появились через 1 млрд. лет после появления жизни. Этими фотосинтезирующими организмами были анаэробные бактерии . Жизнь постепенно начала развиваться и после того, как содержание азотистых органических соединений упало появились новые живые организмы, способные использовать азот из атмосферы Земли. Такими существами были сине-зеленые водоросли. Эволюция одноклеточных организмов происходила после ужасных событий в жизни планеты и все стадии эволюции была защищена под магнитным полем земли.

Со временем простейшие организмы стали развиваться и улучшать свой генетический аппарат и развивать способы своего размножения. Затем в жизни одноклеточных организмов произошел переход к разделению их генеративных клеток на мужские и женские.

Эволюция жизни на Земле. Многоклеточные организмы.

После возникновения одноклеточных организмов появились более сложные формы жизни – многоклеточные организмы . Эволюция жизни на планете Земля приобрела более сложные организмы, отличающиеся более сложной структурой и сложных переходных стадий жизни.

Первая стадия жизни – Колониальная одноклеточная стадия . Переход от одноклеточных организмов к многоклеточным, усложняется структура организмов и генетический аппарат. Эта стадия считается самой простой в жизни многоклеточных организмов.

Вторая стадия жизни – Первично-дифференцированная стадия . Более сложная стадия и характеризуется началом принципа “разделения труда” между организмами одной колонии. В этой стадии происходила специализация функций организма на тканевом, органном и системноорганном уровнях. Благодаря этому у простых многоклеточных организмов начала образовываться нервная система. Нервного центра у системы еще не было, но центр координации имеется.

Третья стадия жизни – Централизованно-дифференцированная стадия. За время этой стадии у организмов усложняется морфофизиологическая структура. Улучшение этой структуры происходит через усиление тканевой специализации.Усложняется пищевая, выделительная, генеративная и другие системы многоклеточных организмов. У нервных систем появляется хорошо выраженный нервный центр. Улучшается способы размножения – из наружного оплодотворения во внутреннее.

Заключением третей стадии жизни многоклеточных организмов является появление человека.

Растительный мир.

Эволюционное дерево простейших эукариот разделилось на несколько ветвей. Появились многоклеточные растения и грибы. Некоторые из таких растений могли свободно плавать по поверхности воды, а другие прикреплялись ко дну.

Псилофиты – растения, которые впервые освоили сушу. Затем возникли и другие группы наземных растений: папоротники, плауны и другие. Эти растения размножались спорами, но предпочитали водную среду обитания.

Большого разнообразия достигли растения в каменноугольный период. Растения развивались и могли достигать в высоту до 30 метров. В этом периоде появились первые голосемянные растения. Наибольшим распространением могли похвастаться плаунообразные и кордаиты. Кордаиты напоминали формой ствола хвойные растения и имели длинные листья. После этого периода поверхность Земли была разнообразна различными растениям, которые достигали 30 метров в высоту. Спустя большое количество времени наша планета стала похожа на ту, которую мы знаем сейчас. Сейчас на планете существует огромное многообразие животных и растений, появился человек. Человек, как существо разумное, после того как встал “на ноги” посвятил свою жизнь изучению . Загадки и стали интересовать человека, а так же самое главное – откуда появился человек и для чего он существует. Как вы знаете, ответов на эти вопросы до сих пор не существует, есть только теории, которые противоречат друг другу.

Если Вам понравилась эта статья, Вы можете рассказать о ней друзьям в социальных сетях и поддержать проект.

Вполне возможно, что первые живые организмы были не похожи на существующие ныне. Некоторые весьма примитивные красные бактерии заключают в себе молекулы размером с вирус, которые имеют в своем составе нуклеотиды и энзимы. Эти молекулы могут вырабатывать для себя органическую пищу, используя энергию Солнца. Такое обстоятельство дает нам все основания называть их живыми созданиями, однако существовали ли столь малые организмы самостоятельно, неизвестно. Возможно, первыми живыми организмами были бактерии. Это наименьшие и наипростейшие организмы, которые несомненно можно назвать живыми существами, хотя они не принадлежат ни к растительному, ни к животному миру. На пространстве, занимаемом точкой в конце этого предложения, могла бы уместиться не одна тысяча таких бактерий или микробов.

Но, что бы собой ни представляли эти первые организмы, у них не было иного источника пищи, кроме океанического бульона, из которого они сами возникли. Все существующие ныне одноклеточные могут ассимилировать, или «пожирать», ниже организованные органические вещества. Следовательно, именно эта способность и должна была появиться у первых живых организмов прежде всего. Ввиду отсутствия кислорода для них оставался единственный способ расщеплять органическую пищу, чтобы получать энергию для выполнения своих жизненных функций, - ферментация, или брожение. При этом процессе простые молекулы, как, например, молекулы сахара, соединяются с водой и образуют двуокись углерода и некоторые кислоты, такие как алкоголь. Последние заключают в себе меньше энергии, чем первые, и эта-то разница и представляет собой энергию, используемую организмом, осуществляющим ферментацию.

Некоторые существующие ныне бактерии и дрожжи могут жить подобным образом при отсутствии кислорода. Однако ферментация - расточительный и неэффективный процесс, при котором для получения небольшого количества энергии используется значительное количество органического вещества. Отсюда следует, что первые организмы и их потомки стали «пожирать» пищу гораздо быстрее, чем она воссоздавалась неорганическими веществами. Они жили «в кредит».

Однако прежде чем запасы пищи иссякли, некоторые организмы обрели пигментную окраску, а вместе с ней - способность непосредственно использовать энергию Солнца. Сначала эта энергия шла только лишь на то, чтобы быстрее усваивать органические вещества, что еще более усугубляло пищевой дефицит. Но поскольку такая способность давала огромное преимущество перед прочими организмами, пигментированная группа обогнала в своем развитии остальных обитателей океана. Со временем эти организмы обрели новый чудесный пигмент - хлорофилл (что по-гречески означает «зеленый лист»). Это химическое вещество позволило им использовать солнечную энергию для того, чтобы самим изготавливать себе пищу из двуокиси углерода, воды и иных неорганических веществ. Такой процесс называется фотосинтезом, что означает «соединение с помощью света». Без этого процесса жизнь, какой мы ее знаем, была бы невозможна.

Первые организмы, обладающие способностью к фотосинтезу, стали родоначальниками всех видов трав, деревьев и морских водорослей. Лишь зеленые растения способны вырабатывать составные части всего живого - протеины, углеводы и жиры, - используя элементы, находящиеся в воде, почве и воздухе.

Всякое животное обязано своим существованием - прямо или косвенно - именно этим растениям.

Фотосинтез не только избавил живые организмы от необходимости зависеть от пищи, создаваемой океаном, он изменил состав земной атмосферы и дал источник энергии, необходимой для дальнейшей эволюции жизни. Когда растения производят сахар и крахмал путем сочетания углерода, извлеченного из двуокиси углерода, с водородом, находящимся в воде, в качестве отхода выделяется кислород. До возникновения растений на Земле существовало лишь ничтожное количество свободного кислорода, образовавшегося в верхних слоях атмосферы под действием ультрафиолетовых лучей, разлагавших молекулы водяного пара на водород и кислород. С появлением же растений большая часть углекислого газа, находящегося в воздухе, была поглощена и заменена кислородом. По подсчетам ученых, благодаря фотосинтезу весь кислород, находящийся в нашей атмосфере, обновляется каждые 2000 лет. Углекислый же газ, считают они, заменяется каждые 300 лет. Таким образом, весь кислород и углекислый газ, которыми мы дышим, неоднократно поглощались и снова выделялись ранее жившими организмами.

По мере того как количество кислорода в первобытной атмосфере увеличивалось, кислород, находившийся в верхних слоях атмосферы, подвергался воздействию ультрафиолетовых лучей и превращался в особо активный вид кислорода - озон. Со временем появился значительный слой озона, который поглощал ультрафиолетовую радиацию и препятствовал проникновению ультрафиолетовых лучей к поверхности Земли. Таким образом, источника энергии, который бы способствовал дальнейшему образованию органических веществ, более не существовало, но, поскольку живые организмы научились сами производить такие вещества, эта потеря на них не сказалась. Наоборот, факт этот способствовал возникновению более сложных и хрупких форм жизни. Ведь ультрафиолетовые лучи не только способствуют образованию органических соединений, но могут и расщепить их. Если бы мы не имели озонового щита, находящегося на высоте 15 миль над нашими головами, то солнечные лучи убили бы нас и большинство других высших животных. Но даже и те ослабленные ультрафиолетовые лучи, которым удается достичь земной поверхности, могут причинить нам болезненные ожоги.

Хотя фотосинтез позволил растениям самостоятельно вырабатывать себе пищу, но для того, чтобы получать из нее энергию, им по-прежнему приходилось расщеплять ее посредством малоэффективной ферментации. Более экономичным способом оказалось «сжигание» пищи путем соединения ее с кислородом. При таком холодном горении, или «окислении», выделяется в 30 раз больше энергии, чем при ферментации, иначе говоря, почти вся энергия, содержавшаяся в соединении. При наличии кислорода живым организмам оставалось только научиться использовать его, что было лишь вопросом времени. Те организмы, которым удалось это сделать, получили огромное преимущество перед организмами, которые этого не сделали и оттого со временем канули в вечность.

Фотосинтез в сочетании с ферментацией сделали жизнь самоподдерживающимся процессом. Фотосинтез в сочетании с окислением, или дыханием, обеспечил организмы дополнительными запасами энергии, которые стали использоваться для обеспечения новых форм деятельности организмов.

Одной из новых форм поведения живых организмов стала привычка пожирать друг друга. Это избавило ряд организмов от необходимости вырабатывать для себя пищу. Клетки животных могли возникнуть или независимо от растительных клеток, или в результате эволюции таких растений-«каннибалов». И поныне существуют одноклеточные организмы, которые могут получать питание как с помощью фотосинтеза, так и хищнически атакуя другие фотосинтезирующие организмы. Злоупотребляя этим свойством, подобные организмы, возможно, утратили свой хлорофилл и стали жить лишь за счет растений и себе подобных организмов.

Как давно это произошло? По мере накопления сведений и технических знаний возраст жизни все более увеличивается, исчисляясь уже не тысячелетиями и не миллионами, а миллиардами лет. В 1965 году группа ученых из Калифорнийского университета потрясла весь научный мир открытием, что живые организмы населяли Землю почти на миллиард лет ранее, чем до тех пор полагали. В породах, образовавшихся 2,7 миллиарда лет назад, они обнаружили молекулы, входившие в состав живых организмов, а точнее, как полагают исследователи во главе с доктором Мелвиллом Калвином, в состав примитивных хлорофилловых растений - сине-зеленых водорослей. Они нам знакомы: это скользкая зеленоватая плесень, которая в тихих затонах плавает на поверхности воды, покрывает камни и сваи. Эти водоросли - наиболее примитивные растения из всех, что существуют ныне. Они настолько древние, что структуры, находящиеся внутри их клеток, как бы свалены в одну кучу, а не обособлены друг от друга, как у более высоко организованных растений.

Глыбы породы были привезены из северной части штата Миннесота; возраст их был определен путем измерения уровня их радиоактивности. Исследователи использовали самые разнообразные химические и физические методы для того, чтобы обнаружить эти молекулы. Удивительно то, что организмы, обладающие способностью к фотосинтезу, были, вероятно, распространены еще 2,7 миллиарда лет назад. Хотя сине-зеленые водоросли находятся на самой нижней ступени лестницы эволюции, фотосинтез - весьма сложный процесс, для возникновения которого понадобилось, должно быть, чрезвычайно много времени - один, а то и целых два миллиарда лет. В том же 1965 году двое ученых из Гарвардского университета обнаружили следы еще более ранних примитивных живых организмов, сходных с нынешними бактериями-палочками. Они нашли их в Южной Африке - в глыбах, чей возраст насчитывал 3 миллиарда лет. Это может означать, что жизнесозидательные процессы начались вскоре после рождения нашей планеты, около 4,5 миллиарда лет назад [Стр. 16. См. примечание к стр. 3.].

Доктор Калвин и его сотрудники намерены искать следы живых организмов в самых древних на нашей Земле породах - в гранитных валунах в Южной Африке, чей возраст насчитывает 3,3 миллиарда лет. А по словам доктора Бернала, жизнь могла возникнуть даже ранее самых древних пород на земной поверхности. Он допускает возможность возникновения органических молекул в первородном пылевом облаке, из которого образовались планеты.

А вот что пишет в своей замечательной книге «Возникновение жизни на Земле» Опарин: «Современный процесс эволюции живых существ в принципе представляет собой не что иное, как ряд дальнейших звеньев той непрерывной цепи превращений материи, начало которой уходит к наиболее ранним стадиям существования Земли» [А. И. Опарин. «Возникновение жизни на Земле». Изд. АН СССР, М., 1957. (Прим. перев.)].

Самые первые системы, способные эволюционировать под действием естественного отбора , видимо, были устроены иначе, чем современные организмы, и имели иной состав. Ими могли быть кристаллы глины

ПРИ ВСЕМ разнообразии ныне существующих на Земле форм жизни у них есть общее: главные молекулярные механизмы у современных организмов, как было неоднократно показано, одни и те же. Установление этой общности биохимической организации - одно из крупнейших открытий за последние сто лет. Нет никакого сомнения, что оно проливает свет и на историю эволюции. Но, как мне кажется, при рассмотрении самых первых этапов эволюции концепция единства биохимической организации не приносит большой пользы.

Сказанное противоречит наиболее широко распространенной точке зрения относительно зарождения жизни. Принято считать, что до возникновения первых организмов, или, иными словами, до возникновения систем, способных к неопределенно долгой эволюции под действием естественного отбора, происходила иная, химическая эволюция , в ходе которой образовался некий набор молекул, своего рода универсальный конструктор, из которого «собраны» ныне существующие организмы. В этот набор входили аминокислоты , сахара и молекулы других типов.

Такая точка зрения имеет свои корни в исследованиях 20-х годов, когда советский биохимик А.И.Опарин и английский биолог Дж.Холдейн создали концепцию «первичного бульона», содержавшего органические молекулы, которые существовали в океанах до зарождения жизни на Земле. Предполагалось, что «бульон» образовался в результате геохимических процессов и воздействия различных энергетических процессов на атмосферу, которая в чем-то напоминала существующую сегодня на Юпитере - в ней преобладали неокисленные газы метан, аммиак и водород. Этого мнения относительно состава первичной атмосферы придерживался Г.Юри. В его пользу говорили результаты опытов С. Миллера (в ту пору студента в лаборатории Юри), которые он выполнил в начале 50-х годов. Через смесь газов, которые предположительно входили в состав примитивной атмосферы, Миллер пропускал электрические разряды («молнии») и после этого обнаружил в ней водорастворимые молекулы органических веществ. Не менее 15% углерода, входившего первоначально в состав метана, превращалось в относительно небольшое число некрупных молекул, включая четыре из двадцати аминокислот, образующих белки - эффект весьма впечатляющий. Не менее убедительны результаты экспериментов X.Оро, которые он провел в начале 60-х годов. Оро показал, что молекулы синильной кислоты HCN в одностадийной реакции могут конденсироваться с образованием аденина. Ранее Миллер продемонстрировал, что синильная кислота может образовываться в опытах с электрическими разрядами. При этом происходило образование малых молекул еще одного типа - формальдегида СН2О; а уже лет сто известно, что молекулы формальдегида также способны объединяться с образованием Сахаров, таких, как рибоза, являющаяся одним из компонентов РНК .

Думалось, что формирование адекватного «конструктора для начинающих» в таких условиях было лишь вопросом времени. Замечание скептиков, что первичная атмосфера на Земле могла иметь иной состав, чем ныне на Юпитере (а сегодня так считают многие), не казалось существенным, поскольку эксперименты с искусственными атмосферами другого состава и при использовании иных источников энергии давали похожие смеси аминокислот.

ВСЕ ЖЕ первоначальные предположения не нашли подтверждения. Экспериментальный подход, предложенный Миллером, не имел развития. В таких опытах при имитации условий, существовавших на ранних этапах развития Земли, даже простейшие молекулы образуются в очень небольших количествах. Дело осложняется и тем, что эти молекулы составляют обычно лишь малую часть продуктов реакций. Трудно представить себе, как осуществлялись их отделение и очистка в ходе геохимических процессов, в которых обычно смеси органических веществ, напротив, становятся все более беспорядочными. Чем сложнее молекулы, тем более усугубляются эти противоречия. В частности, трудно представить себе чисто геохимическое образование нуклеотидов (мономеров ДНК и РНК). Во всяком случае, в имитационных экспериментах типа тех, что ставил Миллер, образование нуклеотидов до сих пор не наблюдалось.

Остается ли, несмотря на все сказанное, в пределах здравого смысла предположение, что конструктор должен был образоваться в самом начале? Действительно или ложно, что:

  1. самые главные молекулы жизни одинаковы у всех организмов, живущих сегодня на Земле;
  2. по меньшей мере некоторые из этих молекул могли образоваться в условиях, характерных для ранних стадий истории Земли?

Я думаю, что эти утверждения уводят нас в сторону, а то, что их два, еще больше ухудшает дело.

Неправомерность первого из них выявляется при анализе единства биохимии, когда мы вспоминаем, что для всех организмов общим является нечто большее, чем конструктор из малых молекул. Имеется система - общий план организации, который всегда одинаков. Взаимодействие механизмов в такой системе чрезвычайно сложное. Даже единичная молекула белка - это сложное образование, в котором специфически соединены тысячи атомов, а ведь для жизнедеятельности нужны сотни таких должным образом организованных молекул. Одно из звеньев, где потребность в белках выражена наиболее ярко (и где они должны быть наиболее «noдогнаны»), - механизм биосинтеза белка. Этот типичный пример клубка проблем представляет другой аспект единства биохимии - тесную взаимосвязь всех компонентов жизнедеятельности. Наконец, существует и произвольность в наших представлениях относительно некоторых свойств самого комплекса основных механизмов. Так, код для «перевода» текста РНК в последовательность белка, всюду практически одинаков, а набор аминокислот везде один и тот же. Трудно поверить, что был возможен только один работоспособный код или один набор аминокислот или что они были наилучшими для всех организмов при всех обстоятельствах.

Вне сомнения, наиболее правильно заключить из этого детального рассмотрения единства биохимии следующее:

  1. все живое на Земле происходит от общего предка,
  2. на эволюционном древе этот предок располагается достаточно высоко и
  3. главная биохимическая система к этому времени уже сложилась.

Тот факт, что она оставалась без изменений столь долго, определялся, без сомнения, взаимосвязанностью ее компонентов и сложностью. Это сложность того же типа, что и в инженерных разработках высшего уровня, когда многие тщательно отобранные компоненты настолько тесно взаимосвязаны, что ни один из них не может быть изменен. Такая «умная машина» могла быть лишь продуктом эволюции. В то же время далеко не ясно, сложился ли в результате эволюции и набор вошедших в ее состав компонентов. Итак, можно заключить, что единство биохимической организации сложилось не на начальных этапах эволюции, а гораздо позже.

ГЛИНА КРИСТАЛЛИЗУЕТСЯ из слабых растворов, которые образуются при просачивании воды сквозь выветренные породы. Слева кристаллы галойзитовой глины, которые растут в воде, просачивающейся сквозь трещины в граните (электронная микрофотография: увеличение х 3750). Справа кристаллы иллита, растущие в порах песчаника (увеличение х 16 000). Процессы такого рода могли играть главенствующую роль при возникновении жизни.

Второй постулат из вышеприведенной пары можно перефразировать так: «некоторые из важнейших биохимических компонентов живого получить очень легко - и точка». На доказательство и дополнение его новыми данными были нацелены эксперименты, выполненные вслед за экспериментами Миллера. Действительно, оказалось, что ряд веществ, к числу которых принадлежат некоторые простейшие аминокислоты, легко получить в самых разнообразных условиях, а не только сходных с существовавшими на ранних этапах эволюции Земли. Это «и точка» в постулате смазывает историческую перспективу, поскольку, приняв постулат, мы должны будем предполагать, что суть длительного эволюционного процесса заключалась в объединении компонентов, иные из которых было не слишком сложно соединить вместе и которые обладали достаточной стабильностью. Как и в случае первого постулата, все это мало говорит нам о событиях, происходивших у основания эволюционного древа.

На самом деле имеется много оснований для сомнений. Прежде всего вспомним об исключительной сложности и взаимосвязанности основных биохимических процессов. Первые организмы не могли быть устроены таким образом. В них должны были действовать относительно простые «молекулярные машины», которые могли без особого труда вступать во взаимодействие и которые «работали» проще (выражаясь фигурально, это были копья, а не пулеметы). Здесь мы имеем дело с иным подходом к проблеме: он должен привести к мысли, что первые организмы имели другое строение, чем современные, и состояли из других веществ. Это справедливо и для вещей, сделанных человеком: для создания сложных и простых устройств нужны и разные материалы, и разные составные части. Не пытайтесь отыскать хоть одну костяшку от деревянных счетов в карманном компьютере (да и дерево вообще).

ГИПОТЕТИЧЕСКОЕ ЭВОЛЮЦИОННОЕ ДРЕВО: таким оно получилось в результате использования метода, согласно которому разветвление и вымирание отдельных ветвей происходят случайным образом. Оно очень схоже с другими древами такого рода тем, что все ныне существующие виды (показаны наверху стрелками) происходят из предковой точки ветвления, находящейся на некотором расстоянии от корня древа. (По мере роста древа такие точки ветвления могут переходить лишь на более высокий уровень.) Реально эволюция также идет путем ветвления и вымирания, поэтому неудивительно, что все организмы, существующие сегодня на Земле, вероятно, имеют относительно высоко развитого общего предка. Во всех ныне живущих организмах работает сложная молекулярная «машина», но из этого вовсе не следует, что такая же «машина» была характерна и для самых первых организмов.

Можно усомниться поэтому, что аминокислоты, которые замечательно подходят для построения катализаторов, нужных для определенных процессв, были столь же хороши для образования их в самом начале. Зададимся вопросом, действительно ли аминокислоты или другие важнейшие компоненты современного нам живого вещества вообще участвовали в «старте» жизни.

ОЧЕВИДНО, что современные живыe существа на всех уровнях их организации устроены очень сложно. Классическим примером сложного многокомпонентного устройства может служить глаз , который, для того чтобы вообше иметь практическую ценность, должен быть устроен именно так, как он устроен. «Как может такой орган возникнуть за счет малых эволюционных изменений?» - спрашивают антидарвинисты, думая, что попали в цель. Пусть они успокоятся: здесь нет ничего парадоксального. Высокий уровень организации может возникать за счет постепенных эволюционных изменений.

Представьте себе простои аналог «парадоксальной» структуры - каменную арку. Как можно построить арку постепенно, камень за камнем? Ответ: ее нужно собирать на опоре. А для начала нужно собрать эту опору, в которой нет ничего парадоксального, причем собрать по кусочкам - элемент за элементом.



ВОЗНИКНОВЕНИЕ СИСТЕМЫ, использующей принцип кооперативное™ (например, арки из камней), можно представить себе как результат случайных маловероятных событий (слева). Гораздо разумнее ожидать, однако, что система возникла на некой «опоре», которая исчезла в прошлом и не доступна нашим наблюдениям (справа). Неорганические глины могли служить такого рода опорой - каркасом, на котором эволюция построила ныне существующую молекулярную машину.

Я думаю, что именно таким путем и возникла известная нам, еще более удивительная, чем арка, биохимическая организация живого. Части ее, столь тесно пригнанные друг к другу сегодня, на первых порах опирались на что-то другое, устроенное более просто. Быть может, какие-то фрагменты древней опоры существуют и теперь, сама же опора разрушилась.

Зададим иной вопрос: как узнать, каким оружием пользовались люди в древности, если не сохранилось никаких следов их деятельности? Вряд ли первым на ум придет пулемет, сделанный из камней и палок. Скорее вы попытаетесь представить наиболее простой путь, по которому могли пойти древние люди в создании оружия. При этом вы будете руководствоваться тем, что вы знаете о их потребностях, о технологии и доступных им материалах.

Рассуждая подобным образом, мы можем сказать о первых организмах следующее.

  1. Они могли эволюционировать.
  2. Они были просто организованы.
  3. Они состояли из веществ геохимического происхождения.

Эти тезисы кажутся мне куда более правдоподобными, чем ранее рассмотренные, в них больше смысла и их стоит развить.

За тезис 1 можно не беспокоиться, так как я определяю организмы как системы, способные эволюционировать. Однако нужно быть очень внимательным в отношении смысла термина «эволюционировать»; это в конечном счете приводит к весьма точному описанию класса систем, к которым относятся самые первые организмы. Один организм эволюционировать не может: на это способны лишь организмы, некая их последовательность. Но и этого недостаточно. Эволюционировать может то, что объединяет организмы в ряд сменяющихся поколений, что передается от одного их поколения к другому. Этим является не вещество, а генетическая информация, не субстанция, а форма.

Очевидно, что генетическая информация должна храниться в каком-то материальном субстрате, в неких генах. И генетическая информация должна как-то проявляться (т.е. давать фенотип), что способствует ее сохранению и размножению. В этом, вероятно, принимают участие и другие вещества, но единственное, что сохраняется долго, - это сама информация. За время, необходимое для смены сотен поколений, каждый атом из того набора, который имелся у организма-основателя, будет заменен другим, исходное вещество исчезнет. Выживают только формы, измененные или неизмененные. Такой ход вещей, такой способ существования форм во времени путем многократного копирования и составляет сущность эволюции.

Есть и другие условия, определяющие саму возможность эволюции. В генетической информации должны происходить случайные изменения - мутации , и эти изменения должны наследоваться потомками и приводить к появлению измененных фенотипов; поэтому должен иметь место отбор измененной генетической информации. Таким путем за много поколений осуществляется изменение линий развития, и генетическая информация видоизменяется таким образом, что образуются фенотипы, которые особенно приспособлены к определенным условиям среды.

Конечно, мы сказали об эволюции далеко не все, что можно, но уже вправе сделать одно важное заключение: каков бы ни был состав первых, простых организмов, которые мы пытаемся себе представить, они должны были содержать некое подобие генов.

ЧТО ЖЕ еще, кроме генов, нужно было иметь этим первым организмам? Ответ на этот вопрос дал в 1926 г. Г. Мёллер, и звучал он так: «Ничего». Даже то немногое, что уже было известно и использовалось для объяснения свойств генов, оказалось в принципе достаточным для того, чтобы утверждать, что гены могут эволюционировать сами по себе. Мёллер пошел дальше. То, что первые организмы были просто генами, возможно не только теоретически - вероятно, они действительно представляли собой что-то в этом роде.

В первую очередь Мёллер подчеркивал, что иметь ген (или гены) было абсолютно необходимо. Предположим далее, что в первых организмах было и что-то еще. Для того чтобы эти организмы размножались, такие сопутствующие образования должны были либо синтезироваться заново, либо откуда-то поступать. Из чего следует, что для осуществления синтеза или приобретения требовалась дополнительная информация, которая должна была предсуществовать в генах. Конечно, лучше обходиться без «помощи» такого рода, а если уж прибегать к ней, то как можно реже.

Неоднократно высказывалось предположение, что в роли первичного вещества генов выступала РНК, хотя я считаю, что для этого она очень уж сложно устроена. И все же было показано, что молекулы РНК могут эволюционировать даже в пробирке. Важной особенностью РНК является то, что, хотя она, как и ДНК, несет генетическую информацию, способную к репликации, для того чтобы заключенная в РНК информация была эффективной, не обязателен процесс трансляции. Так же как и в случае белков, способ пространственного складывания цепей РНК может определяться содержащейся в ней наследственной информацией. Эти экспериментальные результаты очень интересны, но говорят ли они нам что-нибудь о ранних этапах эволюции? Фермент, который был использован в опытах с РНК, слишком сложно устроен, чтобы его можно было считать продуктом геохимических процессов, проходивших на ранних этапах эволюции Земли. Если бы даже для этой цели оказались пригодными более просто устроенные катализаторы, то на пути встала бы новая сложность: для репликации РНК нужны особые, макроэргические (богатые энергией) формы нуклеотидов.

В любом случае наш второй тезис побуждает мыслить в строго определенном направлении: ясно, что при попытке очертить особенности строения первых организмов вряд ли стоит использовать какие-то усеченные модели современной жизни. Поскольку первые организмы были просто устроены, они должны были быть и иначе устроены, и могли включать в свой состав совсем иные вещества. Возможно, в частности, что строение генетического материала, позволявшее обходиться без вспомогательных структур, отличалось от того его строения, которое стало возможным при возникновении таких сопутствующих структур в ходе эволюции.

Не так уж трудно представить себе эволюционный процесс, в результате которого первичный, геохимический генетический материал был постепенно замещен совсем другим материалом - органохимической природы. Я называю этот процесс генетическим захватом.

Если на ранних этапах эволюции центральной биохимической контролирующей машины действительно происходил генетический захват (или захваты), то вряд ли можно ожидать, что компоненты первичного генетического материала сохранились в современном молекулярном конструкторе. На первый взгляд это соображение подрывает гипотезу генетического захвата. Но у последней есть и достоинства: если следовать такой модели, открывается возможность использовать совершенно новые представления, предлагаемые химией. Наш третий тезис концентрирует внимание на мире минералов; при этом мы не оставляем в стороне основные соображения о том, каковы должны быть самые общие свойства генетического материала.

Вот что говорил Мёллер о природе генетического материала четверть века назад, еще до того, как стала известна роль ДНК: «В роли вещества генов может выступать любое соединение, которое в определенных условиях (в протоплазме или где-то еще) способно самовоспроизводиться с сохранением специфического состава и которое, кроме того, периодически изменяется - мутирует - и тем не менее сохраняет способность к самовоспроизведению во всем разнообразии своих форм».

Вывод о том, что в процессе репликации генов должны фигурировать какие-то матрицы, следует из этого высказывания со всей очевидностью. Трудно не увидеть в «специфическом составе» (генетической информации) некую специфическую пространственную организацию (паттерны), которая копируется за счет специфического расположения и связывания воедино контактирующих с нею мономеров. (Именно так обстоит дело при репликации ДНК и РНК.) Если матричный синтез представляется и не единственно возможным путем репликации сложных, мутабельных структур, то он во всяком случае принадлежит к числу простейших и наиболее прямых.

Теперь нам стоит поразмыслить о генетическом материале, составные части (мономеры) которого устроены проще, чем у ДНК. Нам нужно представить такой тип мономеров, которые могли бы образовываться на Земле с легкостью и постоянно в течение длительного времени. Специфических помощников - ферментов - тогда не было: компоненты первичного генетического материала должны были в той или иной мере обходиться самосборкой.

Теперь мы рассмотрим еще один тезис:

4. Гены должны включать большое число атомов.

На мои взгляд, возражения такого типа скрывают еще два ложных постулата:

3) структуры кристаллов слишком однообразны;

4) для живого лучше всего подходит углерод.

Первый из них не может рассматриваться всерьез, потому что корни его лежат в представлении о существовании идеальных кристаллов, которых на самом деле не бывает. Верно то, что у кристаллов есть основной тип строения, для которого характерна высокая периодичность, но в каждом реальном кристалле эта структура имеет дефекты. Даже сама конечность объекта (то, что он имеет форму и размер) - это уже «дефект», хотя, почти наверняка, найдутся и многие другие такие особенности. Некоторые структурные блоки могут отсутствовать или замещаться другими; образно говоря, большие или меньшие «куски обоев» могут быть смещены относительно друг друга в той или иной степени. Некоторые из таких нарушении могут быть весьма незначительными. Все это делает реальные кристаллы потенциально высоко информационноемкими.



ДЕФЕКТЫ В КРИСТАЛЛАХ могут приводить к образованию множества стабильных альтернативных конфигураций, что является необходимым условием для хранения информации. На рисунке показаны наиболее обычные дефекты кристаллов: незанятые места в решетке (а), замещение отдельных элементов или доменов (Ь), краевые дислокации (с), вращательные дислокации (tf) и зернистые границы между решетками (е). В двойниковых кристаллах (f) по-разному ориентированные их части имеют общую плоскость взаимодействующих составляющих (стрелки). В некоторых кристаллах (g) большие домены имеют один и тот же состав, но различаются упаковкой составляющих их элементов.

Можно ли представить себе какие-либо структуры с дефектами, которые бы реплицировались в процессе роста кристалла? Ответ будет положительным. Это может происходить в кристаллах нескольких типов, обладающих подходящей комбинацией особенностей структуры, закономерностей роста и свойств спайности.

Остается разобраться с последним тезисом. Здесь мы опять-таки имеем дело не с истиной, а с предположением. Можно согласиться, что молекулы органических соединений - это наилучшие вещества для жизни. Но наилучшим, надо думать, является то, к чему эволюция пришла; начиналась же она, как мы вправе предположить, с наиболее доступного. Наиболее же доступная форма самосборки - это спонтанная кристаллизация простых, распространенных мономеров. Все эти рассуждения приводят к глине.

ВОКРУГ нас постоянно происходит процесс кристаллизации минералов глины из слабых растворов кремниевой кислоты и гидратированных ионов металлов, которые образуются при выветривании горных пород. В целом поверхность Земли можно уподобить гигантской фабрике по производству минералов глины.

Движущих сил здесь две. Во-первых, имеется геологический цикл, существующий за счет энергии радиоактивного распада, разогревающей недра. Этот цикл включает целый ряд процессов, в которых происходит захоронение осадочных пород, их преобразование при высоких температурах, погружение в более глубокие горизонты и наконец выход видоизмененных пород обратно на поверхность. В этих условиях они оказываются не полностью стабильными и с легкостью растворяются водой с образованием простейших составляющих - кремниевой кислоты и ионов металлов, которые могут кристаллизоваться, образуя совсем новые вещества - разнообразные минералы глины. В конце концов эти минералы в более или менее измененном состоянии вновь попадают в осадочные породы и опять подвергаются захоронению. За счет второго цикла обеспечивается поступление воды. Этот цикл зависит от Солнца: вода испаряется из морей, возникают облака, идут дожди, образуются грунтовые воды, ручьи и реки, а завершается все опять в морях.

Конечно, условия на Земле во время зарождения на ней жизни были иные. Из того, что мы знаем, впрочем, следует, что эти отличия не так уж велики. Метаморфизированные осадочные породы принадлежат к числу древнейших; это позволяет предположить, что климатический цикл действовал уже 3,8 млрд. лет назад. Вполне вероятно, что жизнь древнее таких пород. Возможно, она возникла в условиях, когда глины еще не могли формироваться, но для этой гипотезы нет особых оснований.

Не менее вероятно, что примитивные гены представляли собой микрокристаллические минералы, отличные от слоистых силикатов, т.е. «глин» в более широком понимании этого слова. Тем не менее я буду рассматривать именно обычные минералы глин.

ОДНО из следствий принятой мною линии рассуждений таково: простейший генетический материал (или что-то подобное ему) должен и сегодня образовываться на Земле. Как приступить к поиску этого материала? Из абстрактных описаний генетических кристаллов разных типов и из того, что мы знаем о минералах глин, мы можем составить представление о том, как они должны выглядеть, и заняться поисками реальных глин, которые соответствуют этим представлениям.

Рассмотрим вначале одномерный ген. Он должен быть обычен для глин, которые, по-разному сочетаясь, могут давать различные слоистые структуры. Возможна ситуация, когда слои одного типа наложены друг на друга различным образом или когда имеется последовательность слоев разных типов. Если вспомнить, что кристаллит глины, даже построенный из нескольких слоев, может быть весьма гибким и что одномерный кристаллический ген способен расти только в стороны, на ум легко придет некая структура, образованная определенным образом свернутыми (а может быть, и разветвленными) мембранами или лентами постоянной толщины. Существует множество глин с нерегулярной упаковкой слоев, которые весьма схожи с этим описанием.



КРИСТАЛЛИЧЕСКИЕ ГЕНЫ должны были обладать правильной комбинацией структурных и ростовых признаков и признаков делимости. Информация могла храниться в одномерных или двумерных кристаллических генах. В случае одномерного гена (вверху) она содержалась в детальной структуре ряда взаимодействующих слоев (выделено цветом), которая сохранялась при репликации генов (а, b). Рост происходил только по окрашенным граням, а разделение шло только в параллельном им направлении. Физические свойства слоев, несущих информацию, могли быть различными (например, это могли быть по-разному уложенные кристаллические структуры); то же касается их химического состава. В двумерных кристаллических генах (внизу) информация могла храниться в форме специфической пространственной организации (в отношении и физических, и химических свойств) на грани кристалла (показано цветом). Эта организация сохранялась при репликации гена (с, d) за счет роста на окрашенной грани и при его расщеплении по плоскости, параллельной этой грани.

Конечно, во всем сказанном содержится лишь намек на истину. (Но как был бы интересен такой ген, способный неограниченно распространять содержащуюся в нем информацию без деления!) Рассмотрим теперь еще одну глину особого строения, которая может быть примером двумерного гена.

С. Бейли и К. Мэнсфилд, сотрудники Висконсинского университета в Мадисоне, провели рентгеноструктурный анализ крупных кристаллов вермиформного (червеобразного) каолинита и обнаружили в них интересные дефекты структуры. Отдельные слои каолинита представляют собой мозаично расположенные небольшие домены, составляющие в целом весьма прихотливый рисунок. В каждом домене все атомы алюминия имеют одну из трех возможных ориентации. В таких структурах может храниться очень много информации, и эта информация может быть реплицирована при условии, что во вновь образующемся слое ориентация атомов алюминия будет зависеть от их ориентации в том слое, на котором он формируется. В идеальных кристаллах каолинита ориентация атомов алюминия в слоях сохраняется, но в реальных кристаллах нередки «ошибки».

Сходный тип организации, видимо, присущ индивидуальным слоям типичных червеобразных кристаллов: для некоторых из них характерна сложная, но неизменная организация поперечного сечения. Как эти особенности строения, так и наличие глубоких борозд на поверхности говорят о доменной структуре (см. рисунок на с, 50).

Сказанное подтверждают результаты экспериментов А. Вепса из Мюнхенского университета, который исследовал рост кристаллов смектита. Вейс указывает, что новые слои, образующиеся в промежутках между предсуществовавшими слоями кристаллов, получают от них информацию: речь идет о распределении плотности отрицательных зарядов, появляющихся при замещении атомов на алюминий в кремний-кислородной сети.

Конечно, нужно проводить новые наблюдения и ставить опыты, чтобы обосновать правомерность главного вопроса: существуют ли минеральные, кристаллические гены? Сегодня на этот вопрос я могу ответить лишь так: «Быть может, существуют» - и перейти к другому вопросу: могли ли такие гены эволюционировать? На этот вопрос, как мне кажется, можно ответить так: «Да; маловероятно, что они не эволюционировали».

РАССМОТРИМ обычные микроусловия формирования глин - пористую структуру песчаника. Растворы, содержащие продукты выветривания, просачиваются сквозь него, и в порах происходит кристаллизация двумерно реплицирующихся глин. Процесс может одновременно происходить в ряде участков, и в каждом из них будут находиться миллионы кристаллов с определенными дефектами структуры. В каких-то из этих участков кристаллы могут иметь такие форму и размеры, что они будут близко прилегать друг к другу и образовывать водонепроницаемый заслон. Движение растворов в таких участках нарушится и кристаллы в них перестанут расти. В других участках небольшие, рыхло расположенные кристаллы не будут мешать протеканию растворов, но при дожде такие структуры будут легко вымываться, так что в этом тоже мало хорошего. Наконец, в участках третьего, типа кристаллы могут иметь такую форму, что они закрепятся в углублениях стенок пор; такие кристаллы и останутся на месте, не препятствуя протеканию питающих растворов. Возможны и участки, где реплицируются относительно длинные кристаллы, которые ввиду ограниченности пространства соединятся друг с другом и образуют довольно рыхлую структуру - это еще один путь сохранения постоянной локализации при поддержании потока питающих растворов.

Даже в таких относительно простых условиях могут проявляться весьма тонко действующие силы отбора - некие факторы, обусловливающие причины преимущественного развития определенных структур с дефектами (в данном случае имеются в виду главным образом их форма и размеры). В результате мутаций появятся варианты таких структур; по этой причине в разных частях растущих участков будут часто находиться кристаллы, несколько отличающиеся дефектами своей структуры. Это может привести к тому, что в одних местах рост пойдет быстрее, чем в других, одни части будут лучше переносить периодические неблагоприятные условия, чем другие.



ГЕНЕТИЧЕСКИЙ ЗАХВАТ, каким он представляется автору, был важнейшим этапом ранней эволюции. Вначале существовали лишь «голые» гены, состоявшие из какого-то не известного нам первичного генетического вещества (черные квадратики слева), которые эволюционировали таким образом, что стали контролировать условия окружающей их среды путем управления образованием все более сложных, окружающих их фенотипов {голубые многоугольники). Возник новый тип генов {красные квадратики), которые могли «работать» только в границах довольно сложно устроенного фенотипа, но были более «работоспособными», чем исходные гены. Новые гены постепенно захватывали контрольные функции при формировании фенотипов, так что в конечном счете начальная форма генов была ими полностью вытеснена.

Давайте теперь рассмотрим несколько более сложные условия. Пусть почвенные растворы из песчаника попадают в быстро текущий поток, который в силу повышенной кислотности и малой концентрации веществ в нем не обеспечивает условий для синтеза глин, но содержит один из компонентов (нужных для образования «генетической» глины), которого недостает в песчанике. С позиции химии идеальным местом для образования такой глины будет в этом случае поверхность раздела между двумя разными средами. С физической точки зрения условия для этого отнюдь не идеальны, так как эта поверхность невелика и подвержена изменениям. Образующиеся кристаллы всегда находятся под угрозой вымы-вания или растворения либо того и другого вместе. Тем не менее поверхность раздела может быть стабилизирована и расширена значительными группами тесно взаимодействующих (реплицирующихся) кристаллов, прикрепленных к песчанику; получится весьма клейкая масса. Мутации , изменяющие форму образующих ее переплетающихся кристаллов, будут изменять ее пористость, что в свою очередь приведет к изменению в ней градиентов кислотности, а также градиентов концентрации различных ионов. Подбор условий, подходящих для синтеза глин в таких массах, может происходить путем естественного отбора. Наибольшие шансы на успех будет иметь такой «комок генов», который окажется и хорошей поддерживающей средой, и подходящим местом для образования глины. Считается, что длинная шея у жирафа возникла под действием естественного отбора; в результате животные этого вида могут поедать листья с макушек деревьев без особых усилий. Можно думать, что и разные формы реплицирующихся глинистых частиц могут в определенных условиях также «приспосабливать» свой размер и форму. Забудем на время о сложностях физиологии. В логике событий здесь действительно есть много общего. Реплицирующиеся, мутирующие структуры оптимизируются одним и тем же путем - в ответ на меняющиеся условия. Они просто не могут вести себя иначе.

ДО СИХ ПОР мы рассматривали самые первые организмы как состоящие из одних только генов. Такие организмы действительно могли существовать, поскольку даже сам набор генов может обладать фенотипом. Иными словами, он характеризуется неким комплексом физико-химических свойств, определяемых имеющейся в генах информацией, от которых зависит его эволюционная судьба. В реальных условиях исходный набор «глиняных» генов постоянно «загрязнялся» бы другими глинами, образовавшимися в условиях, которые возникли под влиянием этих генов. Совместная кристаллизация могла иногда приводить к улучшению свойств агрегатов, например их пористости или способности удерживаться в месте роста. Одновременно могли происходить мутации генов, попадавшие под действие отбора, который способствовал образованию «вторичных» глин. Нетрудно представить себе, каким образом дефектная структура в генетическом кристалле могла самым прямым способом осуществлять контроль над ростом аналогичных образований: это могло происходить за счет эпитаксии, т.е. под влиянием специфических дефектов предсуществовавших структур на кристаллизацию вторичных глин на поверхности генетических глин.



БОЛЬШИНСТВО ГЛИН образовано стопкой слоев. В каолините (а) асимметричные слои скреплены водородными связями. Каждый слой образован сеткой из атомов алюминия и гидроксильных групп, слитой воедино с сетью из атомов кремния и кислорода (b). В других глинах слои симметричны. В них кремний-кислородная сеть с обеих сторон слита с металл-гидроксильной сетью. Эти слои заряжены отрицательно и взаимодействуют при участии положительно заряженных ионов (с). В иллитах (d) большая часть отрицательных зарядов появляется в результате замещения атомов кремния атомами алюминия.

Рассмотрев первые организмы, пойдем теперь дальше. Я попробую в нескольких словах описать взаимосвязи между нами и первыми организмами. Для этого нам не обойтись без молекул органических соединении, а также без вопросов «почему?» и «как?».

Почему вообще на сцену вышли молекулы органических соединений? По ряду причин. Некоторые из малых органических молекул (например, аминокислоты или ди- и трикарбоновые кислоты) могли способствовать солюбилизации ионов металлов, например алюминия. Таким образом, они выступали в роли катализаторов при синтезе глин. Молекулы других типов (например, гетероциклические основания и полифосфаты) обладают повышенным сродством к глинам, что часто приводит к изменению физических свойств геля глины. Органические молекулы способны также сильно влиять на форму и размер неорганических кристаллов, подавляя рост некоторых их граней. Это могло иметь особо большое значение для контролируемой репликации кристаллических генов. Кроме того, влияние на структуры могли иметь и полимерные органические соединения. Они могли удерживать частицы глины рядом друг с другом.

Я думаю, что предшественники РНК, появившиеся в достаточно развитых глиняных организмах, в первую очередь играли структурную роль. (На самом деле РНК и сегодня иногда используется приблизительно для тех же пелей.) РНК-подобный полимер с отрицательно заряженным остовом молекулы должен стремиться связываться с краями частиц глины (они чаще всего заряжены положительно). А гетероциклические основания (молекулы типа аденина) имеют тенденцию проникать между слоями глины. Можно представить себе некий РНК-подобный полимер, который возник специально для взаимодействия с глинами (возможно, даже для «чтения» информации, экспонированной на краях одномерных «глиняных» генов).



ДЛИННЫЕ КРИСТАЛЛЫ ИЛЛИТА, прикрепленные к зерну песчаника. (Увеличение х 10 000; микрофотография сделана при помощи сканирующего электронного микроскопа.) Такая глина - подходящий кандидат на роль одномерного генетического кристалла, но, поскольку она образована небольшим числом слоев, ее информационная емкость невелика.



ВЕРМИФОРМНЫЙ (ЧЕРВЕОБРАЗНЫЙ) КАОЛИНИТ (увеличение х 1350), образовавшийся путем выветривания. Такая глина - возможный кандидат на роль двумерного генетического кристалла.

Генетический захват, который привел к становлению существующих сегодня механизмов биохимического контроля, мог начаться, согласно этой гипотезе, с того момента, когда РНК стала реплицирующейся молекулой. То был новый тип «сотрудничающего» генетического материала, роль которого вначале была невелика. Для того чтобы отойти от основы - глиняного каркаса, - требовалась длительная эволюция. Возможно, это произошло уже после того, как возникла сложная система механизмов белкового синтеза. Об эволюции такой системы можно рассуждать, поскольку она происходила в пределах образовавшегося организма. Сначала она могла эволюционировать как побочная система, но постепенно становилась все более полезной и сложной, а когда каркас исчез, стала совершенно необходимой.

Что было причиной перехода эволюции с неорганического кристаллического уровня на органический молекулярный? Дело, видимо, в том, что органические вещества могут иметь более тонкую структуру (конечно, если есть соответствующие механизмы для ее создания), что позволяет осуществлять более сложный контроль над процессами.

В какой последовательности вступали в действие органические молекулы? Мне кажется, что все началось с фотосинтеза, в котором использовался углекислый газ атмосферы и который на первых порах приводил к образованию молекул типа муравьиной кислоты.

Однако значительно интереснее другой вопрос - о том, каким образом происходило объединение более сложно устроенных молекул до появления ферментов. Как происходило образование нуклеотидов? Для этого должны были сложиться необходимые для их формирования системы, включающие многие химические реакции и другие процессы, например процессы очистки; причем все должно было осуществляться в строго заданной последовательности. Такая система не могла быть результатом случайных процессов: она должна была быть организована. У достаточно развитых организмов, «сделанных» из глины, в роли организующего начала мог выступать естественный отбор . С какими же физическими объектами имел он дело до того, как к работе приступили молекулы белков? Я думаю, что до появления ферментов в организмах действовал какой-то более «старомодный» аппарат, в чем-то схожий с теми, которые имеются в лабораториях химиков-органиков или химических заводов. В них наряду с колбами, пробирками, насосами, ионообменными и адсорбционными колонками широко применяются и весьма малоспецифичные катализаторы.



РАЗНООБРАЗИЕ ФОРМ минералов глины - один из фактов, говорящих о возможной роли глин в построении примитивных организмов. Кожистый галлойзит показан на этом рисунке с разным увеличением: он образован массой нитей, часть которых представляет собой полые трубочки. (Микрофотографии сделаны при помощи электронного микроскопа.) Очень маленький отросток едва заметен при увеличении в 130 раз (слева). При увеличении в 1000 раз на нем выявляется петля (е середине). При увеличении в 26 000 раз видно, что он представляет собой полую трубочку (справа).

С учетом сказанного мы переходим к заключительной части представлений о минералах глин как основных веществах, из которых сформировались первые организмы. Коль скоро нам нужны катализаторы (довольно неспецифические), мы легко обнаружим их среди минералов глин. Точнее, если нам нужен достаточно простой аппарат типа тех, о которых только что шла речь, то существует множество обычных глин, которые могли бы быть использованы для его построения. Как его части объединились и какие силы отбора действовали при этом - неясно.

Скептики могут задать три вопроса:

I. Почему кристаллические гены не являются обычным компонентом окружающей нас природы, если они на самом деле состоят из простых веществ и если их эволюция - это естественный процесс?

Я мог бы предложить четыре ответа на этот вопрос: 1) быть может, кристаллических генов вообще не существует; 2) генетические минеральные вещества встречаются весьма редко; 3) подходящие условия для репликации минеральных генов складываются нечасто; 4) минеральные гены, прошедшие определенный путь в эволюции, встречаются часто, но мы не умеем их различать. Оставляю выбор ответа читателю.

В любом случае я не могу представить себе, что современные организмы на основе глин могут вновь достигнуть такой фазы развития, что станут способны использовать органические молекулы. Слишком большую конкуренцию составляют им ДНК-содержашие микроорганизмы . То же самое можно сказать и о предковых формах: сегодня их также, наверное, не существует.

II. Имеем ли мы право приписывать маленьким кристаллам глин свойства живого?

Первые организмы были, скорее всего, весьма непредставительными и, я бы сказал, неживыми. Организм нужен как предпосылка эволюции, но «жизнь» - это что-то совсем иное, нечто необычное, некая на вид целенаправленная сложность, которая могла. сформироваться в результате эволюции . Но на более поздних стадиях первичные организмы, как мне кажется, должны быть уже живыми с любой точки зрения.

III. Какие эксперименты нужно провести?

Поверхность раздела между глиной и молекулами органических соединений в настоящее время интенсивно изучается. Эта работа в основном ведется в Эймсском центре НАСА, расположенном близ Маунтин-Вью в Калифорнии. Дж. Лоулесс и его коллеги выяснили, каким образом ионы металлов, таких, как медь и цинк, могут способствовать связыванию нуклеотидов с глинами. Они также обнаружили, что ионы глин обладают селективным каталитическим влиянием на аминокислоты. Работая в этом же центре, М. Мортланд из Университета шт. Мичиган обнаружил, что кофермент пиридоксальфосфат может функционировать как фермент, если он находится в комплексе с медьсодержащими монтмориллонитовыми глинами. Н. Лахав из Еврейского университета вместе с Д. Уайтом из Университета в Санта-Клара и Ш. Чангом из Эймсского центра выяснили, каким образом глины, подвергающиеся периодическому смачиванию и высушиванию, могут способствовать соединению молекул аминокислоты глицина. В этом циклическом процессе происходит перенос энергии от окружающей среды к органическим молекулам.

Механизм преобразования энергии должен был быть необходимой составной частью организмов, за исключением самых примитивных. Л. Койн из Калифорнийского университета в Сан-Хосе нашла, что для этой цели вполне могли служить каолинитовые глины. Они могут собирать энергию из окружающей среды, которая выделяется при радиоактивном распаде, сохранять ее и высвобождать в тех случаях, когда структура глины нарушается определенным образом, например при ее смачивании или высушивании.



ИМОГОЛИТ И АЛЛОФАН (увеличение х 500 000; снимок сделан при помощи электронного микроскопа). Длинные тонкие образования - это монолитные трубочки из имоголита, они усеяны полыми «стручками» аллофана.

Пытаясь составить более определенное представление о взаимодействиях на границе раздела глина - органические молекулы, Лоулесс, Чанг и их сотрудники исследовали углеродсодержащие метеориты, столь же древние, как и сама Солнечная система. Они хотели найти ответ на вопрос: какова была органическая химия веществ на ранних этапах эволюции Земли? Интересно, что в таких метеоритах одновременно присутствуют и глины, и органические вещества. Изучение поверхности Марса также поможет нам понять, каковы были условия на начальных стадиях эволюции Земли. Э. Бейнин из Еврейского университета предлагает точку зрения, согласно которой на поверхности Марса встречаются главным образом богатые железом монтмориллонитовые глины. В этой связи объяснимы результаты опытов, выполненных посадочным аппаратом «Викинг», в которых под влиянием ультрафиолета происходило превращение углекислого газа и окиси углерода в молекулы органических соединений (среди которых большую часть составляла, видимо, муравьиная кислота). Дж. Хаббард из Технологического института в Джорджии поставил опыты, которые показали, что железосодержащие минералы, включая глины, дают тот же эффект.

Самая сложная и важная задача исследований сегодня - обнаружить кристаллические гены, и не одного типа, а многих типов, причем не только минеральные. Представьте себе эксперименты с кристаллами, способными к эволюции. Мы могли бы создавать разные формы давления отбора, и смотреть, как они ведут себя в таких условиях. Вне всякого сомнения, это было бы увлекательным занятием независимо от того, из чего состояли бы кристаллы. Мы очень скоро смогли бы решить, возможно ли существование реплицирующихся систем на минеральной основе, хотя в результате, быть может, мы бы и утратили интерес к самым отдаленным нашим предкам, ведь у нас в руках оказались бы совсем иные первичные организмы - первые организмы нашего собственного изобретения.

В МИРЕ НАУКИ. (Scientific American. Издание на русском языке). А.ДЖ.КЕРНС-СМИТ

Возникновение жизни на Земле - сложный вопрос биологии, который интересует человечество с давних времен. Она не только привлекает к себе пристальное внимание ученых разных стран и специальностей, но и интересует вообще всех людей мира.
Сейчас считается общепризнанным, что возникновение жизни на Земле представляло собой закономерный процесс, поддающийся научному исследованию. В основе этого процесса лежала эволюция соединений углерода, которая происходила во Вселенной задолго до возникновения нашей Солнечной системы и лишь продолжалась во время образования планеты Земля - при формировании её коры, гидросферы и атмосферы.
С момента возникновения жизни природа находится в непрерывном развитии. Процесс эволюции длится уже сотни миллионов лет, и его результатом является то разнообразие форм живого, которое во многом до конца ещё не описано и не классифицировано.
Живым организмам свойственны 2 признака: целостность и самовоспроизведение. В ходе индивидуального изменения (онтогенеза) организмы приспосабливаются к внешним условиям, а смена поколений приобретает эволюционно - исторический характер (филогенез), выработали способность к относительной независимости от среды (автономность). Одно из главных свойств всякого живого - обмен веществ. Наряду с ним существенными признаками являются раздражимость, рост, размножение, изменчивость, наследственность.
Всякий живой организм стремится к главному - воспроизведению себе подобных.

1.Что такое жизнь? Отличие живого от неживого
"Жизнь - одна из форм существования материи, закономерно возникающая при определенных условиях в процессе её развития".
Для понимания закономерностей эволюции органического мира на Земле необходимо иметь общие представления об эволюции и основных свойствах живого.
Когда - то считалось, что живое можно отличить от не живого по таким свойствам, как обмен веществ, подвижность, раздражимость, рост, размножение, приспособляемость. Но анализ показал, что порознь все эти свойства встречаются и среди неживой природы, и по этому не могут рассматриваться как специфические свойства живого. В одной из последних и удачных попыток живое характеризуется следующими особенностями, сформулированными
Б. М. Медниковым в виде аксиом теоретической биологии:
· Все живые организмы оказываются единством фенотипа и программы для его построения (генотипа), передающейся по наследству из поколения в поколение (аксиома А. Вейсмана).
· Генетическая программа образуется матричным путём. В качестве матрицы, на которой строится ген будущего поколения используется ген предшествующего поколения (аксиома Н. К. Кольцова).
· В процессе передачи из поколения в поколение генетические программы в результате различных причин изменяются случайно и не направленно, и лишь случайно такие изменения могут оказаться удачными в данной среде (первая аксиома Ч. Дарвина).
· Случайные изменения генетических программ при становлении фенотипа многократно усиливаются (аксиома Н. В. Тимофеева - Ресовского).
· Многократно усиленные изменения генетических программ подвергаются отбору условиями внешней среды (вторая аксиома Ч. Дарвина).
"Дискретность и целостность - два фундаментальных свойства организации жизни на Земле. Живые объекты в природе относительно обособлены друг от друга (особи, популяции, виды).
Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа - из определенных органелл. Органеллы состоят из дискретных высокомолекулярных органических веществ, которые состоят из дискретных атомов и элементарных частиц. В то же время сложная организация немыслима без элементарных частиц. Сложная организация немыслима без взаимодействия её частей и структур - без целостности".
Целостность биологических систем качественно отличается от целостности неживого тем, что целостность живого поддерживается в процессе развития. Живые системы - открытые системы. Они постоянно обмениваются веществами и энергией со средой. Для них характерна отрицательная энтропия (увеличение упорядоченности, увеличивающаяся в процессе органической эволюции). Вероятно, что в живом проявляется способность к саморегуляции материи.
"Среди живых систем нет двух одинаковых особей, популяций и видов. Эта уникальность проявления дискретности и целостности живого, основана на замечательном явлении ковариантной редупликации. Ковариантная редупликация (самовоспроизведение с изменениями), осуществляемая на основе матричного принципа (сумма трёх первых аксиом), - это, видимо, единственное специфическое для жизни (в известной нам форме существования на Земле) свойство. В основе его лежит уникальная способность к самовоспроизведению основных управляющих систем (ДНК, хромосом и генов).
Итак, что такое живое и чем оно отличается от не живого.
Наиболее точное определение жизни дал Ф. Энгельс: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел".
Термин "белок" тогда ещё не был определён вполне точно, и егоотносили к протоплазме в целом. Сознавая неполноту своего определения, Энгельс писал: "Наша дефиниция жизни, разумеется, весьма недостаточна, поскольку она далека от того, чтобы охватить все явления жизни, а, напротив, ограничивается самыми общими и самыми простыми среди них.... Чтобы получить действительно исчерпывающее представление о жизни, нам пришлось бы проследить все формы её проявления, от самой низшей до наивысшей".
Кроме того, есть несколько фундаментальных отличий живого от неживого в вещественном, структурном и функциональном планах.
В вещественном плане в состав живого обязательно входят высокоупорядоченные макромолекулярные органические соединения, называемые биополимерами, - белки и нуклеиновые кислоты (ДНК и РНК).
В структурном плане живое отличается от не живого клеточным строением.
В функциональном плане для живых тел характерно воспроизводство самих себя. Устойчивость и воспроизведение есть и в неживых системах, но в живых телах имеет место процесс самовоспроизведения. Это принципиально новый момент.
Такие живые тела отличаются от неживых наличием обмена веществ, способностью к росту и развитию, активной регуляцией своего состава и функций, способностью к движению, раздражимостью, приспособленностью к среде и т.д.
Свойством живого является деятельность, активность.
"Все живые существа должны или действовать, или погибнуть. Мышь должна находиться в постоянном движении, птица летать, рыба - плавать, а растение расти".
Жизнь возможна при определённых физических и химических условиях (температура, присутствие воды, ряда солей и т.д.).
Однако прекращение жизненных процессов, например, при высушивании семян или глубоком замораживании мелких организмов, не ведет к потере жизнеспособности. Если сохраняется не поврежденной структура, она при возвращении к нормальным условиям обеспечивает восстановление жизненных процессов.
Однако строго научное разграничение живого и неживого встречает определённые трудности. Так, например, вирусы вне клеток другого организма не обладают ни одним из атрибутов живого. У них есть наследственный аппарат, но отсутствуют основные необходимые для обмена веществ ферменты, и поэтому они могут расти и размножаться, лишь проникая в клетки организма - хозяина и используя его ферментные системы в зависимости от того, какой признак мы считаем важным, мы относим вирусы к живым системам или нет.
Итак, "Жизнь - процесс существования биологических систем (например, клетка, организм растения, животного), основу которых составляют сложные органические вещества и способные самовоспроизводиться, поддерживать своё существование в результате обмена энергией, веществом и информацией со средой".

2. Гипотезы происхождения жизни
С глубокой древности и до нашего времени было высказано бессчетное количество гипотез о происхождении жизни на Земле. В настоящее время существует 5 научных концепций возникновения жизни:
1. Возникновение живого из неживого, подчиняясь определенным физическим и химическим закономерностям (абиотическая концепция).
2. Концепция стационарного состояния жизни - жизнь существовала всегда, начала жизни не существует.
3. Внеземное происхождение жизни - жизнь была занесена на Землю из Космоса (концепция панспермии).
4. Религиозная.
В развитии учений о происхождении жизни существенное место занимает теория, утверждающая, что всё живое происходит только от живого - теория биогенеза.
В 1688 г. итальянский биолог Ф. Реди серией опытов с открытыми и закрытыми сосудами доказал, что появляющиеся в мясе белые маленькие черви - это личинки мух и сформулировал принцип: всё живое - из живого.
В 1860 г. Пастер показал, что бактерии могут быть везде и заражать неживые вещества. Для избавления от них необходимо стерилизация, получившая название пастеризации.
Однако как теория происхождения жизни биогенез несостоятелен, поскольку противопоставляет живое не живому, утверждает отвергнутую наукой идею вечности жизни.

Абиотическая концепция
Абиогенез - идея о происхождении живого из неживого - исходная гипотеза современной теории происхождения жизни.
В 1924 г. известный биохимик А. И. Опарин высказал предположение, что при мощных электрических разрядах в земной атмосфере, которая 4 - 4,5 млрд. лет назад состояла из аммиака, метана, углекислого газа и паров воды, могли возникнуть простейшие органические соединения, необходимые для возникновения жизни.
Предсказания академика Опарина оправдались. В 1955 г. американский исследователь С. Миллер, пропуская электрические заряды через смесь газов и паров, получил простейшие жирные кислоты, мочевину, уксусную и муравьиную кислоты и несколько аминокислот.
Таким образом, в середине ХХ в. был экспериментально осуществлен абиогенетический синтез белковоподобных и других органических веществ в условиях, воспроизводящих условия первобытной Земли.
Гипотеза Опарина о возникновении жизни на Земле опирается на представление о постепенном усложнении химической структуры и морфологического облика предшественников жизни (пробионтов) на пути к живым организмам. На стыке моря, суши и воздуха создавались благоприятные условия для образования сложных органических соединений. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки подобно водным растворам желатина. А. И. Опарин назвал эти сгустки коацерватными каплями или коацерватами.
Коацерваты - это обособленные в растворе органические многомолекулярные структуры. Это еще не живые существа. Их возникновение рассматривают как стадию развития преджизни. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот. А белки - ферменты осуществляли процесс создания новых копий нуклеиновых кислот. Так возникло главное свойство, характерное для жизни - способность к воспроизведению подобных себе молекул.
Сильная сторона абиогенетической гипотезы - её эволюционный характер, жизнь - закономерный этап эволюции материи. Возможность экспериментальной проверки основных положений гипотезы.
На коацерватных каплях можно симетировать доклеточные фазы зарождения жизни.
Слабая сторона гипотезы Опарина допускала воспроизводство протоживых структур в отсутствии молекулярных структур генетического кода. Гипотеза Опарина предъявляет особые требования к экспериментальному воспроизведению коацерватных структур: "первичный бульон" с химически сложной структурой, элементы биогенного происхождения (ферменты и коферменты).
Абиогенная гипотеза включает решительный отпор ученых - сторонников идеи вечности и безначальности биологической жизни.
Русский биохимик С. П. Костычев в своей брошюре "О появление жизни на Земле" замечает, что простейшие организмы посложнее всех фабрик и заводов, и случайное возникновение жизни маловероятно, жизнь никогда не создаётся на мёртвой материи".
В отношении самозарождения организмов необходимо отметить, что Французская Академия наук, ещё в 1859 г., назначила специальную премию за попытку осветить по - новому вопрос о самопроизвольном зарождении жизни. Эту премию в 1862 г. получил знаменитый французский ученый Луи Пастер, который своими опытами доказал невозможность самозарождения микроорганизмов.
В настоящее время жизнь на Земле не может возникнуть абиогенным путём. Ещё Дарвин в 1871 г. писал: "Но если бы сейчас... в каком - либо тёплом водоёме, содержащем все необходимые соли аммония и фосфора и доступном воздействию света, тепла, электричества, химически образовался белок, способны к дальнейшим всё более сложным превращениям, то это вещество немедленно было бы разрушено и поглощено, что было невозможно в период возникновения живых существ". Жизнь возникла на Земле абиогенным путем. В настоящее время живое происходит только от живого (биогенное происхождение). Возможность повторного возникновения жизни на Земле исключена.

Теория панспермии
В 1865 г. немецкий врач Г. Рихтер выдвинул гипотезу космозоев
(космических зачатков) в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую.
Сходную гипотезу в 1907 г. выдвинул шведский естествоиспытатель С. Аррениус, предположив, что во Вселенной вечно существуют зародыши жизни - гипотезу панспермии. Он описывал, как с населённых другими существами планет уходят в мировое пространство частички вещества, пылинки и живые споры микроорганизмов. Они сохраняют свою жизнеспособность, летая в пространстве Вселенной за счёт светового давления. Попадая на планету с подходящими условиями для жизни, они начинают новую жизнь на этой планете. Эту гипотезу поддерживали многие, в том числе русские ученые С. П. Костычев, Л. С. Берг и П. П. Лазарев.
Данная гипотеза не предполагает никакого механизма для объяснения первичного возникновения жизни и переносит проблему в другое место Вселенной. Либих считал, что "атмосферы небесных тел, а также вращающихся космических туманностей можно считать, как вековечные хранилища оживленной формы, как вечные плантации органических зародышей", откуда жизнь рассеивается в виде этих зародышей во Вселенной.
Для обоснования панспермии используют наскальные рисунки с изображением предметов, похожих на ракеты или космонавтов, или появления НЛО. Полёты космических аппаратов разрушили веру в существование разумной жизни на планетах Солнечной системы, которая появилась после открытия Скипарелли каналов на Марсе в 1877 г.
Ловелл насчитал на Марсе 700 каналов. Сеть каналов охватывала все материки. В 1924 г. каналы были сфотографированы, и большинство учёных увидели в них доказательство существования разумной жизни. Фотоснимки 500 каналов зафиксировали и сезонные изменения цвета, которые подтвердили идеи советского астронома Г. А. Тихова о растительности на Марсе, поскольку озера и каналы имели зеленый цвет.
Ценная информация о физических условиях на Марсе была получена советским космическим аппаратом "Марс" и американскими посадочными станциями "Викинг - 1" и "Викинг - 2". Так, полярные шапки, испытывающие сезонные изменения, оказались состоящими из водного пара с примесью минеральной пыли и из твёрдой двуокиси углерода сухого льда). Но пока следов жизни на Марсе не найдено.
Изучение поверхности с борта искусственных спутников позволило предположить, что каналы и реки Марса могли возникнуть в результате растапливания под поверхностного водяного льда в зонах повышенной активности или внутреннего тепла планеты, или при периодических изменениях климата.
В конце шестидесятых годов ХХ в. вновь возрос интерес к гипотезам панспермии. При изучении вещества метеоритов и комет были обнаружены "предшественники живого" - органические соединения, синильная кислота, вода, формальдегид, цианогены.
Формальдегид обнаружен в 60 % случаев в 22 исследованных областях, его облака с концентрацией примерно 1000 молекул/см.куб. заполняют обширные пространства.
В 1975 г. предшественники аминокислот найдены в лунном грунте и метеоритах.

Концепция стационарного состояния жизни
По мнению В. И. Вернадского, нужно говорить об извечности жизни и проявлений её организмов, как мы говорим об извечности материального субстрата небесных тел, их тепловых электрических, магнитных свойств и их проявлений. Всё живое произошло от живого (принцип Реди). Отлична от первой гипотезы но имеет одинаковую мативацию.
Примитивные одноклеточные организмы могли возникнуть только в биосфере Земли, а также в биосфере Вселенной. По мнению Вернадского, естественные науки построены на предположении, что жизнь с её особыми качествами не принимает никакого участия в жизни Вселенной. Но биосферу нужно брать как целое, как единый живой космический организм (тогда и отпадает вопрос о начале живого, о скачке от неживого к живому).
Релизиозная - подразумевает создание всего живого во вселей, руками верховной небесной силой, но данная теория не расматривается в науке так как противоречит всем её законам.

3. Как появилась жизнь на Земле
Современная концепция возникновения жизни на Земле является результатом широкого синтеза естественных наук, многих теорий и гипотез, выдвинутых исследователями разных специальностей. (иммея огромное множество теории, науку получила одну теорию в данный момент оспариваемую только церковью. Эта теория включает в себя все научные гипотезы рассмотренные выше).
Для возникновения жизни на Земле важна первичная атмосфера (планеты).
Первичная атмосфера Земли содержала метан, аммиак, водяной пар и водород. Воздействую на смесь этих газов электрическими зарядами и ультрафиолетовым излучением, ученым удалось получить сложные органические вещества, входящие в состав живых белков. Элементарными "кирпичиками" живого являются такие химические элементы, как углерод, кислород, азот и водород.
В живой клетке, по весу содержится 70 % кислорода, 17 % углерода, 10% водорода, 3% азота, затем идут фосфор, калий, хлор, кальций, натрий, магний, железо.
Итак, первый шаг на пути возникновения жизни заключается в образовании органических веществ из неорганических. Он связан с наличием химического "сырья", синтез которого может произойти при определённом излучении, давлении, температуре и влажности.
Возникновению простейших живых организмов предшествовала длительная химическая эволюция. Из небольшого числа соединений (в результате естественного отбора) возникли вещества со свойствами, пригодными для жизни. Соединения, возникшие на основе углерода, образовали "первичный бульон" гидросферы. Содержащие азот и углерод вещества возникли в расплавленных глубинах Земли и выносились на поверхность при вулканической деятельности.
Второй шаг в возникновении соединений связан с возникновением в первичном океане Земли биополимеров: нуклеиновых кислот, белков. Если предположить, что в этот период все органические соединения находились в первичном океане Земли, то сложные органические соединения могли образоваться на поверхности океана в виде тонкой плёнки и на прогреваемом солнцем мелководье. Анаэробная среда облегчала синтез полимеров из неорганических соединений. Несложные органические соединения начали объединяться в крупные биологические молекулы.
Образовались ферменты - белковые вещества - катализаторы, которые способствуют возникновению или распаду молекул. В результате активности ферментов возникли "первоэлементы" жизни - нуклеиновые кислоты, сложные полимерные вещества, состоящие из мономеров.
Мономеры в нуклеиновых кислотах расположены таким образом, что несут определенную информацию, код, заключающийся в том, что каждой аминокислоте, входящей в белок, соответствует определённый белок из 3 нуклеотидов (триплет). На основе нуклеиновых кислот могут строиться белки и происходить обмен с внешней средой веществом и энергией.
Симбиоз нуклеиновых кислот образовал "молекулярно - генетические системы управления".
На этой стадии молекулы нуклеиновых кислот приобрели свойства самовоспроизведения себе подобных, стали управлять процессом образования белковых веществ.
У истоков всего живого стояли ревертаза и матричный синтез с ДНК на РНК, эволюция р - РНК - овой молекулярной системы в ДНК - овую. Так возник "геном биосферы".
Жара и холод, молний, ультрафиолетовая реакция, атмосферные электрические заряды, порывы ветра и водяные струи - всё это обеспечивало начало или затухание биохимических реакций, характер их протекания, генные "всплески".
К концу биохимической стадии появились такие структурные образования, как мембраны, ограничивающие смесь органических веществ от внешней среды.
Мембраны сыграли главную роль в построении всех живых клеток. Тела всех растений и животных состоят из клеток.
Живое содержание клетки - протоплазма.
Современные учёные пришли к выводу, что первые организмы на Земле были одноклеточными прокариотами. По своему строению они напоминали бактерии или сине - зелёные водоросли, существующие в настоящее время.
Для существования первых "живых молекул", прокариотов необходим как для всего живого, приток энергии извне. Каждая клетка - маленькая "энергетическая станция". Непосредственным источником энергии для клеток служит АТФ и другие соединения, содержащие фосфор. Энергию клетки получают с пищей, они способны не только тратить, но и запасать энергию.
Учёные предполагают, что на Земле возникло множество первых комочков живой протоплазмы. Около 2 млрд. лет тому назад в живых клетках появилось ядро. Из прокариотов возникли эукариоты. Их на Земле насчитывается 25 - 30 видов. Самые простые из них - амёбы. У эукариотов существует в клетке оформленное ядро с веществом, содержащим код синтеза белка.
К этому времени наметился "выбор" растительного или животного образа жизни. Различия этих образов жизни связано со способом питания и возникновением фотосинтеза, который заключается в создании органических веществ (например, сахаров из углекислоты и воды при использовании энергии света).
Благодаря фотосинтезу, растения вырабатывают органические вещества, за счет которого происходит наращивание массы растений, и вырабатывают большое количество органических веществ.
С возникновением фотосинтеза в атмосферу Земли стал поступать кислород, и образовалась вторичная атмосфера Земли с высоким содержанием кислорода.
Появление кислорода и интенсивное развитие наземных растений - величайший этап в развитии жизни на Земле. С этого момента началось постепенное видоизменение и развитие живых форм.
Жизнь со всеми её проявлениями произвела глубочайшие изменения в развитии нашей планеты. Совершенствуясь в процессе эволюции, живые организмы всё шире распространялись по планете, принимая большое участие в перераспределении энергии и веществ в земной коре, а также в воздушной и водной оболочках Земли.
Возникновение и распространение растительности привели к коренному изменению состава атмосферы, первоначально содержащей очень мало свободного кислорода, и состоящей главным образом из двуокиси углерода и, вероятно, метана и аммиака.
Растения, ассимилирующие углерод из двуокиси углерода, привели к созданию атмосферы, содержащей свободный кислород и лишь следы углекислого газа. Свободный кислород в составе атмосферы служил не только активным химическим агентом, но также источником озона, преградившего путь коротким ультрафиолетовым лучам к поверхности Земли (озоновый экран).
Одновременно углерод, веками скапливавшийся в остатках растений, образовал в земной коре энергетические запасы в виде залежи органических соединений (каменный уголь, торф).
Развитие жизни в Мировом океане привело к созданию осадочных пород, состоящих из скелетов и других остатков морских организмов.
Эти отложения, их механическое давление, химические и физические превращения изменили поверхность земной коры. Всё это свидетельствовало о наличии на Земле биосферы, в которой развертывались и продолжаются поныне жизненные явления.

4. Эволюция форм биологической жизни на Земле
Как же возникло то разнообразие, которое мы наблюдаем в живой природе? Ведь когда - то 2 - 3 млрд. лет тому назад жизнь была представлена довольно однообразными существами.
Идея эволюции живой природы возникла в Новое время как противопоставление креацианизму (от лат. "создание") - учению о сотворении мира богом из ничего и неизменности созданного творцом мира.
Согласно креацианизму, возникновение жизни относится к определённому событию в прошлом, которое можно вычислить.
В 1650 г. архиепископ Ашер из Ирландии вычислил, что Бог сотворил мир в октябре 4004 г. до н.э., а в 9 часов утра октября и человека. Это число он получил из возрастов и родственных связей всех упомянутых в Библии лиц.
Фундаментальную роль в мировоззрении того времени играли также телеологии - учения, по которому всё в природе устроено целесообразно и всякое развитие является осуществлением заранее предопределённых целей.
Теология приписывает процессам и явлениям природы цели, которые устанавливаются богом (Х. Вольф), или являются внутренними причинами природы (Аристотель, Лейбниц).
В преодолении идей креацианизма и телеологии важную роль сыграла концепция ограниченной изменчивости видов в пределах относительно узких подразделений (от одного единого предка под влиянием среды - трансформизм.
Трансформизм в основе своей имеет представления об изменении и превращении органических форм происхождении одних организмов от других. Среди естествоиспытателей и философов - трансформистов ХVII - XVIII вв. известны Ж. Бюффон, Р. Гук, Д. Дидро, Э. Дарвин, И. Гёте и др.
Все трансформисты признавали изменчивость видов организмов под действием изменений окружающей среды.
В становлении идеи эволюции органического мира существенную роль сыграла систематика. К. Линней впервые применил бинарную номенклатуру и построил искусственную классификацию растений и животных. Заслуга Линнея в том, что через создание искусственной системы он подвёл биологию к необходимости рассмотрения колоссального эмпирического материала с позиций общих теоретических принципов.
Большую роль в становлении и развитии идеи эволюции живой природы сыграла эмбриология, для которой в Новое время было характерно противостояние преформизма и эпигенеза.
Таким образом, в XII - XIII вв. возникла идея исторических изменений наследственных признаков организмов, необратимого исторического развития живой природы - идея эволюции органического мира.
Эволюция от лат "развёртывание" - историческое развитие природы. В ходе эволюции:
· возникают новые виды, т.е. увеличивается разнообразие форм организмов;
· организмы адаптируются, т.е. приспосабливаются к изменениям условий внешней среды;
· В результате эволюции, постепенно повышается общий уровень организации живых существ: они усложняются и совершенствуются. Переход от представления о трансформации видов к идее эволюции исторического развития видов предполагал:
· Рассмотрение процесса образования видов в его истории, учёт конструктивной роли фактора времени в историческом развитии организмов;
· Развитие идей о возникновении качественно нового в таком историческом процессе.
Первые эволюционные теории были созданы двумя великими учёными XIX в. - Ж. Ламарком и Ч. Дарвином.
В 1809 г. вышла книга Ламарка "Философия зоологии", в которой была изложена первая целостная теория эволюции органического мира.
Ламарк полагал, что историческое развитие организмов имеет не случайный, а закономерный характер и происходит в направлении постепенного и неуклонного совершенствования.
Ламарк включил в своё учение качественно новое понимание роли среды в развитии органических форм, трактуя внешнюю среду как важный фактор, условия эволюции.
По - своему идея эволюции органического мира развивалась в теории катастроф.
Французский биолог Ж. Кювье писал: "Жизнь не раз потрясала на нашей земле страшными событиями. Бесчисленные живые существа становились жертвой катастроф: одни обитатели суши, были поглощены потопами, другие, населявшие недра вод, оказались на суше вместе с внезапно приподнятым дном моря, сами их расы навеки исчезли, оставив на свете лишь немногие остатки, едва различимые для натуралистов".
Геологическая эра Земли от её образования до зарождения жизни называется катархей.
Катархей (от греч. "ниже древнейшего") - эра, когда была безжизненная Земля, окутанная ядовитой для живых существ атмосферой, лишенной кислорода. Гремели вулканические извержения, сверкали молнии, жесткое ультрафиолетовое излучение пронизывало атмосферу и верхние слои воды. Под влиянием этих явлений из смеси паров сероводорода, аммиака, угарного газа начинают синтезироваться первые органические соединения. Возникают свойства, характерные для жизни.
Такая картина эры катархея существовала около 5 - 3,5 млрд. лет назад.
Вернадский считал, что биосфера геологически вечна, т. е. жизнь на Земле существует столько же времени, сколько и сама Земля как планета.
Архей - древнейшая геологическая эра Земли (3,5 - 2,6 млрд. лет назад). Ко времени архея относится возникновение первых прокариот (бактерий и сине - зелёных водорослей) - организмов, которые в отличие от эукариот не обладают оформленным клеточным ядром и типичным хромосомным аппаратом.
В отложениях архея найдены остатки нитчатых водорослей. В этот период появляются гетеротрофные организмы не только в море, но и на суше. Образуется почва.
В атмосфере снижается содержание метана, аммиака, и водорода, начинается накопление углекислого газа и кислорода.
Протерозой (от греч "первичная жизнь") - огромный по продолжительности этап исторического развития Земли (2,6 млрд. - 570 млн. лет назад).
Возникновение многоклеточности - важный ароморфоз в эволюции жизни.
Конец протерозоя назавают "веком медуз" - очень распространённых в это время представителей кишечнополостных. Палеозой (от греч. "древняя жизнь" - геологическая эра 570 - 230 млн. лет) со следующими периодами: кембрий (570 - 500 млн. лет), ордовик (500 - 440 млн. лет), силур (440 - 410 млн. лет), девон (410 - 350 млн. лет), карбон (350 - 285 млн. лет), пермь (285 - 230 млн. лет).
Для развития жизни в раннем палеозое (кембрий, ордовик, силур) характерно интенсивное развитие наземных растений и выход на сушу животных. Фауна раннего палеозоя: головоногий моллюск, трилобиты - примитивные ракообразные, одиночные кораллы.
Наступивший в конце силура горообразовательный период изменил климат и условия существования организмов. В результате поднятия суши и сокращения морей климат девона был более континентальный.
В девоне появились пустынные и полупустынные области; на суше появились первые леса из гигантских папоротников, хвощей и плаунов. Новые группы животных начинают завоёвывать сушу, но их отрыв от водной среды не был ещё окончательным.
К концу карбона появились первые пресмыкающиеся. Они достигли значительного разнообразия из - за засушливого климата и похолодания. Так, в палеозое произошло завоевание суши многоклеточными растениями и животными.
Мезозой (с греч "средняя жизнь") - это геологическая эра (230 - 67 млн. лет) со следующими периодами: триас (230 - 195 млн. лет), юра (195 - 137 млн. лет), мел (137 - 67 млн. лет). Мезозой называют эрой пресмыкающихся. Их расцвет, широчайшая дивергенция и вымирание происходят в эту эру. В мезозое усиливается засушливость климата. Вымирает множество сухопутных организмов, у которых отдельные этапы жизни связаны с водой: большинство земноводных, папоротники, хвощи и плауны.
В триасе среди растений сильного развития достигают голосеменные, среди животных - пресмыкающиеся. В триасе появляются растительноядные и хищные динозавры. Весьма разнообразны в эту эру морские пресмыкающиеся. Помимо ихтиозавров, в морях юры появляются плезиозавры. В юре пресмыкающиеся начали осваивать и воздушную среду. Летающие ящеры просуществовали до конца мела. В юре от пресмыкающихся возникли и птицы.
Во второй половине мела возникли сумчатые и плацентарные млекопитающие. Приобретение живорождения, теплокровности, были теми ароморфозами, которые обеспечили прогресс млекопитающих.
Геологическая эра, в которой мы живём, называется кайнозой.
Кайнозой (от греч. "новая жизнь") - это эра (67 млн. лет - наше время) расцвета цветковых растений, насекомых, птиц и млекопитающих.
Кайнозой делится на 2 неравных периода: третичный 9 67 - 3 млн. лет) и четвертичный (3 млн. лет - наше время). В первой половине третичного периода широко распространены леса тропического и субтропического типа. В течение третичного периода от насекомоядных млекопитающих обособляется отряд приматов.
Широкое распространение получают и общие предковые формы человекообразных обезьян и людей.
К концу третичного периода встречаются представители всех современных семейств животных и растений.
В это время начинается великий процесс остепнения суши, который привёл к вымиранию одних древесных и лесных форм и к выходу других на открытое пространство. В результате сокращения лесных площадей одни из форм антропоидных обезьян отступали вглубь лесов, другие опустились с деревьев не землю и стали завоёвывать открытые пространства. Потомками их являются люди, возникшие в конце третичного периода.
В течении четвертичного периода вымирают мамонты, саблезубые тигры, гигантские ленивцы, большерогие торфяные олени и др. животные.
Большую роль в вымирании крупных млекопитающих сыграли древние охотники.
Около 10 тыс. лет назад в умеренно тёплых областях Земли наступила "неолитическая революция", связанная с переходом человека от собирательства и охоты к земледелию и скотоводству.
Это определило видовой состав органического мира, который существует и в настоящее время.
Выдающиеся личности:
,

Заключение
Из того, что мы знаем о происхождении жизни на Земле ясно, что процесс возникновения живых организмов из простых органических соединений был крайне длительным. Чтобы на Земле зародилась жизнь, понадобился длившийся много миллионов лет эволюционный процесс.
Жизнь как особая форма существования материи характеризуется двумя отличительными свойствами - самовоспроизведением, и обменом веществ с окружающей средой.
На свойствах саморепродукции и обмена веществ строятся все современные гипотезы возникновения жизни.
Собственно биологическая эволюция начинается с образования клеточной организации и в дальнейшем идёт по пути совершенствования строения и функций клетки, образования многоклеточной организации, разделения живого на царства растений, животных, грибов, с последующей их дифференциацией на виды.
Теория эволюции даёт возможность понять стратегию взаимоотношения человека и окружающей живой природы, позволяет ставить вопрос о разработке принципов управляемой эволюции.
Изучение процессов эволюции важно для охраны окружающей среды. Человек, вторгаясь в природу, ещё не научился предвидеть и предупреждать нежелательные последствия своего вмешательства.
Ещё В. И. Вернадский верил в силу человеческого разума, в то, что всё активнее вторгаясь в природные эволюционные процессы, он сумеет направить эволюцию живого таким образом, чтобы сделать планету ещё прекраснее и богаче.
Сегодня, эволюционная теория позволяет интегрировать достижения всех биологических дисциплин (определяя направления каждой из них), завтра - станет основой оптимальной стратегии взаимоотношения развивающегося человечества и Земли.

Используемые источники
1. А. В. Яблоков, Юсуфов А. Г. Эволюционное учение (Дарвинизм). М, "Высшая школа", 1989 г.
2. Н. Н. Иорданский Эволюция органического мира. М., Владос, 2002 г.
3. А. И. Опарин Жизнь, её природа, происхождение и развитие. М., "Просвещение", 1962 г.
4. Научные иллюстрации: shutterstock.com.